test_latent_diffusion.py 7 KB
Newer Older
1
# coding=utf-8
Patrick von Platen's avatar
Patrick von Platen committed
2
# Copyright 2023 HuggingFace Inc.
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
import gc
17
18
19
20
import unittest

import numpy as np
import torch
21
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
22
23

from diffusers import AutoencoderKL, DDIMScheduler, LDMTextToImagePipeline, UNet2DConditionModel
24
25
26
27
28
29
30
31
from diffusers.utils.testing_utils import (
    enable_full_determinism,
    load_numpy,
    nightly,
    require_torch_gpu,
    slow,
    torch_device,
)
32

33
34
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
35

36

37
enable_full_determinism()
38
39


40
41
class LDMTextToImagePipelineFastTests(PipelineTesterMixin, unittest.TestCase):
    pipeline_class = LDMTextToImagePipeline
42
43
44
45
46
47
48
49
50
51
52
53
    params = TEXT_TO_IMAGE_PARAMS - {
        "negative_prompt",
        "negative_prompt_embeds",
        "cross_attention_kwargs",
        "prompt_embeds",
    }
    required_optional_params = PipelineTesterMixin.required_optional_params - {
        "num_images_per_prompt",
        "callback",
        "callback_steps",
    }
    batch_params = TEXT_TO_IMAGE_BATCH_PARAMS
54
55
56
    test_cpu_offload = False

    def get_dummy_components(self):
57
        torch.manual_seed(0)
58
        unet = UNet2DConditionModel(
59
60
61
62
63
64
65
66
67
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=4,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
        )
68
69
70
71
72
73
74
        scheduler = DDIMScheduler(
            beta_start=0.00085,
            beta_end=0.012,
            beta_schedule="scaled_linear",
            clip_sample=False,
            set_alpha_to_one=False,
        )
75
        torch.manual_seed(0)
76
77
        vae = AutoencoderKL(
            block_out_channels=(32, 64),
78
79
            in_channels=3,
            out_channels=3,
80
81
            down_block_types=("DownEncoderBlock2D", "DownEncoderBlock2D"),
            up_block_types=("UpDecoderBlock2D", "UpDecoderBlock2D"),
82
83
84
            latent_channels=4,
        )
        torch.manual_seed(0)
85
        text_encoder_config = CLIPTextConfig(
86
87
88
89
90
91
92
93
94
95
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
        )
96
        text_encoder = CLIPTextModel(text_encoder_config)
97
98
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
        components = {
            "unet": unet,
            "scheduler": scheduler,
            "vqvae": vae,
            "bert": text_encoder,
            "tokenizer": tokenizer,
        }
        return components

    def get_dummy_inputs(self, device, seed=0):
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)
        inputs = {
            "prompt": "A painting of a squirrel eating a burger",
            "generator": generator,
            "num_inference_steps": 2,
            "guidance_scale": 6.0,
            "output_type": "numpy",
        }
        return inputs
121
122

    def test_inference_text2img(self):
123
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
124

125
126
127
128
        components = self.get_dummy_components()
        pipe = LDMTextToImagePipeline(**components)
        pipe.to(device)
        pipe.set_progress_bar_config(disable=None)
129

130
131
        inputs = self.get_dummy_inputs(device)
        image = pipe(**inputs).images
132
133
        image_slice = image[0, -3:, -3:, -1]

134
        assert image.shape == (1, 16, 16, 3)
135
        expected_slice = np.array([0.6101, 0.6156, 0.5622, 0.4895, 0.6661, 0.3804, 0.5748, 0.6136, 0.5014])
136

137
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
138

139

140
141
142
143
144
145
146
147
148
@slow
@require_torch_gpu
class LDMTextToImagePipelineSlowTests(unittest.TestCase):
    def tearDown(self):
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

    def get_inputs(self, device, dtype=torch.float32, seed=0):
149
        generator = torch.manual_seed(seed)
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
        latents = np.random.RandomState(seed).standard_normal((1, 4, 32, 32))
        latents = torch.from_numpy(latents).to(device=device, dtype=dtype)
        inputs = {
            "prompt": "A painting of a squirrel eating a burger",
            "latents": latents,
            "generator": generator,
            "num_inference_steps": 3,
            "guidance_scale": 6.0,
            "output_type": "numpy",
        }
        return inputs

    def test_ldm_default_ddim(self):
        pipe = LDMTextToImagePipeline.from_pretrained("CompVis/ldm-text2im-large-256").to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        image = pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1].flatten()
169
170

        assert image.shape == (1, 256, 256, 3)
171
172
173
174
175
176
177
178
179
180
181
182
183
184
        expected_slice = np.array([0.51825, 0.52850, 0.52543, 0.54258, 0.52304, 0.52569, 0.54363, 0.55276, 0.56878])
        max_diff = np.abs(expected_slice - image_slice).max()
        assert max_diff < 1e-3


@nightly
@require_torch_gpu
class LDMTextToImagePipelineNightlyTests(unittest.TestCase):
    def tearDown(self):
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

    def get_inputs(self, device, dtype=torch.float32, seed=0):
185
        generator = torch.manual_seed(seed)
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
        latents = np.random.RandomState(seed).standard_normal((1, 4, 32, 32))
        latents = torch.from_numpy(latents).to(device=device, dtype=dtype)
        inputs = {
            "prompt": "A painting of a squirrel eating a burger",
            "latents": latents,
            "generator": generator,
            "num_inference_steps": 50,
            "guidance_scale": 6.0,
            "output_type": "numpy",
        }
        return inputs

    def test_ldm_default_ddim(self):
        pipe = LDMTextToImagePipeline.from_pretrained("CompVis/ldm-text2im-large-256").to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        image = pipe(**inputs).images[0]

        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/ldm_text2img/ldm_large_256_ddim.npy"
        )
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3