test_models_unet_2d.py 9.56 KB
Newer Older
1
# coding=utf-8
Patrick von Platen's avatar
Patrick von Platen committed
2
# Copyright 2023 HuggingFace Inc.
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
import gc
17
18
19
20
21
import math
import unittest

import torch

22
23
from diffusers import UNet2DModel
from diffusers.utils import floats_tensor, logging, slow, torch_all_close, torch_device
24
from diffusers.utils.testing_utils import enable_full_determinism
25

26
from .test_modeling_common import ModelTesterMixin
27
28


Patrick von Platen's avatar
Patrick von Platen committed
29
logger = logging.get_logger(__name__)
30
31

enable_full_determinism()
32
33


34
class Unet2DModelTests(ModelTesterMixin, unittest.TestCase):
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
    model_class = UNet2DModel

    @property
    def dummy_input(self):
        batch_size = 4
        num_channels = 3
        sizes = (32, 32)

        noise = floats_tensor((batch_size, num_channels) + sizes).to(torch_device)
        time_step = torch.tensor([10]).to(torch_device)

        return {"sample": noise, "timestep": time_step}

    @property
    def input_shape(self):
        return (3, 32, 32)

    @property
    def output_shape(self):
        return (3, 32, 32)

    def prepare_init_args_and_inputs_for_common(self):
        init_dict = {
            "block_out_channels": (32, 64),
            "down_block_types": ("DownBlock2D", "AttnDownBlock2D"),
            "up_block_types": ("AttnUpBlock2D", "UpBlock2D"),
            "attention_head_dim": None,
            "out_channels": 3,
            "in_channels": 3,
            "layers_per_block": 2,
            "sample_size": 32,
        }
        inputs_dict = self.dummy_input
        return init_dict, inputs_dict


class UNetLDMModelTests(ModelTesterMixin, unittest.TestCase):
    model_class = UNet2DModel

    @property
    def dummy_input(self):
        batch_size = 4
        num_channels = 4
        sizes = (32, 32)

        noise = floats_tensor((batch_size, num_channels) + sizes).to(torch_device)
        time_step = torch.tensor([10]).to(torch_device)

        return {"sample": noise, "timestep": time_step}

    @property
    def input_shape(self):
        return (4, 32, 32)

    @property
    def output_shape(self):
        return (4, 32, 32)

    def prepare_init_args_and_inputs_for_common(self):
        init_dict = {
            "sample_size": 32,
            "in_channels": 4,
            "out_channels": 4,
            "layers_per_block": 2,
            "block_out_channels": (32, 64),
            "attention_head_dim": 32,
            "down_block_types": ("DownBlock2D", "DownBlock2D"),
            "up_block_types": ("UpBlock2D", "UpBlock2D"),
        }
        inputs_dict = self.dummy_input
        return init_dict, inputs_dict

    def test_from_pretrained_hub(self):
        model, loading_info = UNet2DModel.from_pretrained("fusing/unet-ldm-dummy-update", output_loading_info=True)

        self.assertIsNotNone(model)
        self.assertEqual(len(loading_info["missing_keys"]), 0)

        model.to(torch_device)
114
        image = model(**self.dummy_input).sample
115
116
117

        assert image is not None, "Make sure output is not None"

Anton Lozhkov's avatar
Anton Lozhkov committed
118
    @unittest.skipIf(torch_device != "cuda", "This test is supposed to run on GPU")
119
    def test_from_pretrained_accelerate(self):
120
        model, _ = UNet2DModel.from_pretrained("fusing/unet-ldm-dummy-update", output_loading_info=True)
121
122
123
124
125
        model.to(torch_device)
        image = model(**self.dummy_input).sample

        assert image is not None, "Make sure output is not None"

Anton Lozhkov's avatar
Anton Lozhkov committed
126
    @unittest.skipIf(torch_device != "cuda", "This test is supposed to run on GPU")
127
    def test_from_pretrained_accelerate_wont_change_results(self):
128
        # by defautl model loading will use accelerate as `low_cpu_mem_usage=True`
129
        model_accelerate, _ = UNet2DModel.from_pretrained("fusing/unet-ldm-dummy-update", output_loading_info=True)
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
        model_accelerate.to(torch_device)
        model_accelerate.eval()

        noise = torch.randn(
            1,
            model_accelerate.config.in_channels,
            model_accelerate.config.sample_size,
            model_accelerate.config.sample_size,
            generator=torch.manual_seed(0),
        )
        noise = noise.to(torch_device)
        time_step = torch.tensor([10] * noise.shape[0]).to(torch_device)

        arr_accelerate = model_accelerate(noise, time_step)["sample"]

        # two models don't need to stay in the device at the same time
        del model_accelerate
        torch.cuda.empty_cache()
        gc.collect()

150
        model_normal_load, _ = UNet2DModel.from_pretrained(
151
            "fusing/unet-ldm-dummy-update", output_loading_info=True, low_cpu_mem_usage=False
152
        )
153
154
155
156
        model_normal_load.to(torch_device)
        model_normal_load.eval()
        arr_normal_load = model_normal_load(noise, time_step)["sample"]

157
        assert torch_all_close(arr_accelerate, arr_normal_load, rtol=1e-3)
158

159
160
161
    def test_output_pretrained(self):
        model = UNet2DModel.from_pretrained("fusing/unet-ldm-dummy-update")
        model.eval()
162
        model.to(torch_device)
163

164
165
166
167
168
169
170
        noise = torch.randn(
            1,
            model.config.in_channels,
            model.config.sample_size,
            model.config.sample_size,
            generator=torch.manual_seed(0),
        )
171
172
        noise = noise.to(torch_device)
        time_step = torch.tensor([10] * noise.shape[0]).to(torch_device)
173
174

        with torch.no_grad():
175
            output = model(noise, time_step).sample
176

177
        output_slice = output[0, -1, -3:, -3:].flatten().cpu()
178
179
180
181
        # fmt: off
        expected_output_slice = torch.tensor([-13.3258, -20.1100, -15.9873, -17.6617, -23.0596, -17.9419, -13.3675, -16.1889, -12.3800])
        # fmt: on

182
        self.assertTrue(torch_all_close(output_slice, expected_output_slice, rtol=1e-3))
183
184
185
186
187
188
189
190
191
192
193


class NCSNppModelTests(ModelTesterMixin, unittest.TestCase):
    model_class = UNet2DModel

    @property
    def dummy_input(self, sizes=(32, 32)):
        batch_size = 4
        num_channels = 3

        noise = floats_tensor((batch_size, num_channels) + sizes).to(torch_device)
194
        time_step = torch.tensor(batch_size * [10]).to(dtype=torch.int32, device=torch_device)
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231

        return {"sample": noise, "timestep": time_step}

    @property
    def input_shape(self):
        return (3, 32, 32)

    @property
    def output_shape(self):
        return (3, 32, 32)

    def prepare_init_args_and_inputs_for_common(self):
        init_dict = {
            "block_out_channels": [32, 64, 64, 64],
            "in_channels": 3,
            "layers_per_block": 1,
            "out_channels": 3,
            "time_embedding_type": "fourier",
            "norm_eps": 1e-6,
            "mid_block_scale_factor": math.sqrt(2.0),
            "norm_num_groups": None,
            "down_block_types": [
                "SkipDownBlock2D",
                "AttnSkipDownBlock2D",
                "SkipDownBlock2D",
                "SkipDownBlock2D",
            ],
            "up_block_types": [
                "SkipUpBlock2D",
                "SkipUpBlock2D",
                "AttnSkipUpBlock2D",
                "SkipUpBlock2D",
            ],
        }
        inputs_dict = self.dummy_input
        return init_dict, inputs_dict

232
    @slow
233
    def test_from_pretrained_hub(self):
234
        model, loading_info = UNet2DModel.from_pretrained("google/ncsnpp-celebahq-256", output_loading_info=True)
235
236
237
238
239
240
241
242
243
244
245
        self.assertIsNotNone(model)
        self.assertEqual(len(loading_info["missing_keys"]), 0)

        model.to(torch_device)
        inputs = self.dummy_input
        noise = floats_tensor((4, 3) + (256, 256)).to(torch_device)
        inputs["sample"] = noise
        image = model(**inputs)

        assert image is not None, "Make sure output is not None"

246
    @slow
247
    def test_output_pretrained_ve_mid(self):
248
        model = UNet2DModel.from_pretrained("google/ncsnpp-celebahq-256")
249
250
251
252
253
254
255
256
257
258
        model.to(torch_device)

        batch_size = 4
        num_channels = 3
        sizes = (256, 256)

        noise = torch.ones((batch_size, num_channels) + sizes).to(torch_device)
        time_step = torch.tensor(batch_size * [1e-4]).to(torch_device)

        with torch.no_grad():
259
            output = model(noise, time_step).sample
260
261
262

        output_slice = output[0, -3:, -3:, -1].flatten().cpu()
        # fmt: off
263
        expected_output_slice = torch.tensor([-4842.8691, -6499.6631, -3800.1953, -7978.2686, -10980.7129, -20028.8535, 8148.2822, 2342.2905, 567.7608])
264
265
        # fmt: on

266
        self.assertTrue(torch_all_close(output_slice, expected_output_slice, rtol=1e-2))
267
268
269
270
271
272
273
274
275
276
277
278
279

    def test_output_pretrained_ve_large(self):
        model = UNet2DModel.from_pretrained("fusing/ncsnpp-ffhq-ve-dummy-update")
        model.to(torch_device)

        batch_size = 4
        num_channels = 3
        sizes = (32, 32)

        noise = torch.ones((batch_size, num_channels) + sizes).to(torch_device)
        time_step = torch.tensor(batch_size * [1e-4]).to(torch_device)

        with torch.no_grad():
280
            output = model(noise, time_step).sample
281
282
283
284
285
286

        output_slice = output[0, -3:, -3:, -1].flatten().cpu()
        # fmt: off
        expected_output_slice = torch.tensor([-0.0325, -0.0900, -0.0869, -0.0332, -0.0725, -0.0270, -0.0101, 0.0227, 0.0256])
        # fmt: on

287
        self.assertTrue(torch_all_close(output_slice, expected_output_slice, rtol=1e-2))
288
289
290
291

    def test_forward_with_norm_groups(self):
        # not required for this model
        pass