train_controlnet.py 46.8 KB
Newer Older
Henrik Forstén's avatar
Henrik Forstén committed
1
2
#!/usr/bin/env python
# coding=utf-8
3
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
Henrik Forstén's avatar
Henrik Forstén committed
4
5
6
7
8
9
10
11
12
13
14
15
16
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and

import argparse
17
18
import contextlib
import gc
Henrik Forstén's avatar
Henrik Forstén committed
19
20
21
22
import logging
import math
import os
import random
23
import shutil
Henrik Forstén's avatar
Henrik Forstén committed
24
25
26
27
28
29
30
31
32
33
34
35
from pathlib import Path

import accelerate
import numpy as np
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
import transformers
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import ProjectConfiguration, set_seed
from datasets import load_dataset
36
from huggingface_hub import create_repo, upload_folder
Henrik Forstén's avatar
Henrik Forstén committed
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
from packaging import version
from PIL import Image
from torchvision import transforms
from tqdm.auto import tqdm
from transformers import AutoTokenizer, PretrainedConfig

import diffusers
from diffusers import (
    AutoencoderKL,
    ControlNetModel,
    DDPMScheduler,
    StableDiffusionControlNetPipeline,
    UNet2DConditionModel,
    UniPCMultistepScheduler,
)
from diffusers.optimization import get_scheduler
from diffusers.utils import check_min_version, is_wandb_available
54
from diffusers.utils.hub_utils import load_or_create_model_card, populate_model_card
Henrik Forstén's avatar
Henrik Forstén committed
55
from diffusers.utils.import_utils import is_xformers_available
56
from diffusers.utils.torch_utils import is_compiled_module
Henrik Forstén's avatar
Henrik Forstén committed
57
58
59
60
61
62


if is_wandb_available():
    import wandb

# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
Sayak Paul's avatar
Sayak Paul committed
63
check_min_version("0.27.0.dev0")
Henrik Forstén's avatar
Henrik Forstén committed
64
65
66
67

logger = get_logger(__name__)


68
69
70
71
72
73
74
75
76
77
78
def image_grid(imgs, rows, cols):
    assert len(imgs) == rows * cols

    w, h = imgs[0].size
    grid = Image.new("RGB", size=(cols * w, rows * h))

    for i, img in enumerate(imgs):
        grid.paste(img, box=(i % cols * w, i // cols * h))
    return grid


79
80
81
def log_validation(
    vae, text_encoder, tokenizer, unet, controlnet, args, accelerator, weight_dtype, step, is_final_validation=False
):
Henrik Forstén's avatar
Henrik Forstén committed
82
83
    logger.info("Running validation... ")

84
85
86
87
    if not is_final_validation:
        controlnet = accelerator.unwrap_model(controlnet)
    else:
        controlnet = ControlNetModel.from_pretrained(args.output_dir, torch_dtype=weight_dtype)
Henrik Forstén's avatar
Henrik Forstén committed
88
89
90
91
92
93
94
95
96
97

    pipeline = StableDiffusionControlNetPipeline.from_pretrained(
        args.pretrained_model_name_or_path,
        vae=vae,
        text_encoder=text_encoder,
        tokenizer=tokenizer,
        unet=unet,
        controlnet=controlnet,
        safety_checker=None,
        revision=args.revision,
98
        variant=args.variant,
Henrik Forstén's avatar
Henrik Forstén committed
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
        torch_dtype=weight_dtype,
    )
    pipeline.scheduler = UniPCMultistepScheduler.from_config(pipeline.scheduler.config)
    pipeline = pipeline.to(accelerator.device)
    pipeline.set_progress_bar_config(disable=True)

    if args.enable_xformers_memory_efficient_attention:
        pipeline.enable_xformers_memory_efficient_attention()

    if args.seed is None:
        generator = None
    else:
        generator = torch.Generator(device=accelerator.device).manual_seed(args.seed)

    if len(args.validation_image) == len(args.validation_prompt):
        validation_images = args.validation_image
        validation_prompts = args.validation_prompt
    elif len(args.validation_image) == 1:
        validation_images = args.validation_image * len(args.validation_prompt)
        validation_prompts = args.validation_prompt
    elif len(args.validation_prompt) == 1:
        validation_images = args.validation_image
        validation_prompts = args.validation_prompt * len(args.validation_image)
    else:
        raise ValueError(
            "number of `args.validation_image` and `args.validation_prompt` should be checked in `parse_args`"
        )

    image_logs = []
128
    inference_ctx = contextlib.nullcontext() if is_final_validation else torch.autocast("cuda")
Henrik Forstén's avatar
Henrik Forstén committed
129
130

    for validation_prompt, validation_image in zip(validation_prompts, validation_images):
Patrick von Platen's avatar
Patrick von Platen committed
131
        validation_image = Image.open(validation_image).convert("RGB")
Henrik Forstén's avatar
Henrik Forstén committed
132
133
134
135

        images = []

        for _ in range(args.num_validation_images):
136
            with inference_ctx:
Henrik Forstén's avatar
Henrik Forstén committed
137
138
139
140
141
142
143
144
145
146
                image = pipeline(
                    validation_prompt, validation_image, num_inference_steps=20, generator=generator
                ).images[0]

            images.append(image)

        image_logs.append(
            {"validation_image": validation_image, "images": images, "validation_prompt": validation_prompt}
        )

147
    tracker_key = "test" if is_final_validation else "validation"
Henrik Forstén's avatar
Henrik Forstén committed
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
    for tracker in accelerator.trackers:
        if tracker.name == "tensorboard":
            for log in image_logs:
                images = log["images"]
                validation_prompt = log["validation_prompt"]
                validation_image = log["validation_image"]

                formatted_images = []

                formatted_images.append(np.asarray(validation_image))

                for image in images:
                    formatted_images.append(np.asarray(image))

                formatted_images = np.stack(formatted_images)

                tracker.writer.add_images(validation_prompt, formatted_images, step, dataformats="NHWC")
        elif tracker.name == "wandb":
            formatted_images = []

            for log in image_logs:
                images = log["images"]
                validation_prompt = log["validation_prompt"]
                validation_image = log["validation_image"]

                formatted_images.append(wandb.Image(validation_image, caption="Controlnet conditioning"))

                for image in images:
                    image = wandb.Image(image, caption=validation_prompt)
                    formatted_images.append(image)

179
            tracker.log({tracker_key: formatted_images})
Henrik Forstén's avatar
Henrik Forstén committed
180
        else:
181
            logger.warning(f"image logging not implemented for {tracker.name}")
Henrik Forstén's avatar
Henrik Forstén committed
182

183
184
185
186
        del pipeline
        gc.collect()
        torch.cuda.empty_cache()

187
188
        return image_logs

Henrik Forstén's avatar
Henrik Forstén committed
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209

def import_model_class_from_model_name_or_path(pretrained_model_name_or_path: str, revision: str):
    text_encoder_config = PretrainedConfig.from_pretrained(
        pretrained_model_name_or_path,
        subfolder="text_encoder",
        revision=revision,
    )
    model_class = text_encoder_config.architectures[0]

    if model_class == "CLIPTextModel":
        from transformers import CLIPTextModel

        return CLIPTextModel
    elif model_class == "RobertaSeriesModelWithTransformation":
        from diffusers.pipelines.alt_diffusion.modeling_roberta_series import RobertaSeriesModelWithTransformation

        return RobertaSeriesModelWithTransformation
    else:
        raise ValueError(f"{model_class} is not supported.")


210
211
212
def save_model_card(repo_id: str, image_logs=None, base_model=str, repo_folder=None):
    img_str = ""
    if image_logs is not None:
213
        img_str = "You can find some example images below.\n\n"
214
215
216
217
218
219
220
221
222
223
        for i, log in enumerate(image_logs):
            images = log["images"]
            validation_prompt = log["validation_prompt"]
            validation_image = log["validation_image"]
            validation_image.save(os.path.join(repo_folder, "image_control.png"))
            img_str += f"prompt: {validation_prompt}\n"
            images = [validation_image] + images
            image_grid(images, 1, len(images)).save(os.path.join(repo_folder, f"images_{i}.png"))
            img_str += f"![images_{i})](./images_{i}.png)\n"

224
    model_description = f"""
225
226
227
228
229
# controlnet-{repo_id}

These are controlnet weights trained on {base_model} with new type of conditioning.
{img_str}
"""
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
    model_card = load_or_create_model_card(
        repo_id_or_path=repo_id,
        from_training=True,
        license="creativeml-openrail-m",
        base_model=base_model,
        model_description=model_description,
        inference=True,
    )

    tags = [
        "stable-diffusion",
        "stable-diffusion-diffusers",
        "text-to-image",
        "diffusers",
        "controlnet",
245
        "diffusers-training",
246
247
248
249
    ]
    model_card = populate_model_card(model_card, tags=tags)

    model_card.save(os.path.join(repo_folder, "README.md"))
250
251


Henrik Forstén's avatar
Henrik Forstén committed
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
def parse_args(input_args=None):
    parser = argparse.ArgumentParser(description="Simple example of a ControlNet training script.")
    parser.add_argument(
        "--pretrained_model_name_or_path",
        type=str,
        default=None,
        required=True,
        help="Path to pretrained model or model identifier from huggingface.co/models.",
    )
    parser.add_argument(
        "--controlnet_model_name_or_path",
        type=str,
        default=None,
        help="Path to pretrained controlnet model or model identifier from huggingface.co/models."
        " If not specified controlnet weights are initialized from unet.",
    )
    parser.add_argument(
        "--revision",
        type=str,
        default=None,
        required=False,
273
274
275
276
277
278
279
        help="Revision of pretrained model identifier from huggingface.co/models.",
    )
    parser.add_argument(
        "--variant",
        type=str,
        default=None,
        help="Variant of the model files of the pretrained model identifier from huggingface.co/models, 'e.g.' fp16",
Henrik Forstén's avatar
Henrik Forstén committed
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
    )
    parser.add_argument(
        "--tokenizer_name",
        type=str,
        default=None,
        help="Pretrained tokenizer name or path if not the same as model_name",
    )
    parser.add_argument(
        "--output_dir",
        type=str,
        default="controlnet-model",
        help="The output directory where the model predictions and checkpoints will be written.",
    )
    parser.add_argument(
        "--cache_dir",
        type=str,
        default=None,
        help="The directory where the downloaded models and datasets will be stored.",
    )
    parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
    parser.add_argument(
        "--resolution",
        type=int,
        default=512,
        help=(
            "The resolution for input images, all the images in the train/validation dataset will be resized to this"
            " resolution"
        ),
    )
    parser.add_argument(
        "--train_batch_size", type=int, default=4, help="Batch size (per device) for the training dataloader."
    )
    parser.add_argument("--num_train_epochs", type=int, default=1)
    parser.add_argument(
        "--max_train_steps",
        type=int,
        default=None,
        help="Total number of training steps to perform.  If provided, overrides num_train_epochs.",
    )
    parser.add_argument(
        "--checkpointing_steps",
        type=int,
        default=500,
        help=(
            "Save a checkpoint of the training state every X updates. Checkpoints can be used for resuming training via `--resume_from_checkpoint`. "
            "In the case that the checkpoint is better than the final trained model, the checkpoint can also be used for inference."
            "Using a checkpoint for inference requires separate loading of the original pipeline and the individual checkpointed model components."
            "See https://huggingface.co/docs/diffusers/main/en/training/dreambooth#performing-inference-using-a-saved-checkpoint for step by step"
            "instructions."
        ),
    )
    parser.add_argument(
        "--checkpoints_total_limit",
        type=int,
        default=None,
335
        help=("Max number of checkpoints to store."),
Henrik Forstén's avatar
Henrik Forstén committed
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
    )
    parser.add_argument(
        "--resume_from_checkpoint",
        type=str,
        default=None,
        help=(
            "Whether training should be resumed from a previous checkpoint. Use a path saved by"
            ' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.'
        ),
    )
    parser.add_argument(
        "--gradient_accumulation_steps",
        type=int,
        default=1,
        help="Number of updates steps to accumulate before performing a backward/update pass.",
    )
    parser.add_argument(
        "--gradient_checkpointing",
        action="store_true",
        help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.",
    )
    parser.add_argument(
        "--learning_rate",
        type=float,
        default=5e-6,
        help="Initial learning rate (after the potential warmup period) to use.",
    )
    parser.add_argument(
        "--scale_lr",
        action="store_true",
        default=False,
        help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",
    )
    parser.add_argument(
        "--lr_scheduler",
        type=str,
        default="constant",
        help=(
            'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
            ' "constant", "constant_with_warmup"]'
        ),
    )
    parser.add_argument(
        "--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler."
    )
    parser.add_argument(
        "--lr_num_cycles",
        type=int,
        default=1,
        help="Number of hard resets of the lr in cosine_with_restarts scheduler.",
    )
    parser.add_argument("--lr_power", type=float, default=1.0, help="Power factor of the polynomial scheduler.")
    parser.add_argument(
        "--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes."
    )
    parser.add_argument(
        "--dataloader_num_workers",
        type=int,
        default=0,
        help=(
            "Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process."
        ),
    )
    parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.")
    parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.")
    parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.")
    parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer")
    parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
    parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")
    parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.")
    parser.add_argument(
        "--hub_model_id",
        type=str,
        default=None,
        help="The name of the repository to keep in sync with the local `output_dir`.",
    )
    parser.add_argument(
        "--logging_dir",
        type=str,
        default="logs",
        help=(
            "[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
            " *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
        ),
    )
    parser.add_argument(
        "--allow_tf32",
        action="store_true",
        help=(
            "Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see"
            " https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices"
        ),
    )
    parser.add_argument(
        "--report_to",
        type=str,
        default="tensorboard",
        help=(
            'The integration to report the results and logs to. Supported platforms are `"tensorboard"`'
            ' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.'
        ),
    )
    parser.add_argument(
        "--mixed_precision",
        type=str,
        default=None,
        choices=["no", "fp16", "bf16"],
        help=(
            "Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
            " 1.10.and an Nvidia Ampere GPU.  Default to the value of accelerate config of the current system or the"
            " flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config."
        ),
    )
    parser.add_argument(
        "--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers."
    )
    parser.add_argument(
        "--set_grads_to_none",
        action="store_true",
        help=(
            "Save more memory by using setting grads to None instead of zero. Be aware, that this changes certain"
            " behaviors, so disable this argument if it causes any problems. More info:"
            " https://pytorch.org/docs/stable/generated/torch.optim.Optimizer.zero_grad.html"
        ),
    )
    parser.add_argument(
        "--dataset_name",
        type=str,
        default=None,
        help=(
            "The name of the Dataset (from the HuggingFace hub) to train on (could be your own, possibly private,"
            " dataset). It can also be a path pointing to a local copy of a dataset in your filesystem,"
            " or to a folder containing files that 🤗 Datasets can understand."
        ),
    )
    parser.add_argument(
        "--dataset_config_name",
        type=str,
        default=None,
        help="The config of the Dataset, leave as None if there's only one config.",
    )
    parser.add_argument(
        "--train_data_dir",
        type=str,
        default=None,
        help=(
            "A folder containing the training data. Folder contents must follow the structure described in"
            " https://huggingface.co/docs/datasets/image_dataset#imagefolder. In particular, a `metadata.jsonl` file"
            " must exist to provide the captions for the images. Ignored if `dataset_name` is specified."
        ),
    )
    parser.add_argument(
        "--image_column", type=str, default="image", help="The column of the dataset containing the target image."
    )
    parser.add_argument(
        "--conditioning_image_column",
        type=str,
        default="conditioning_image",
        help="The column of the dataset containing the controlnet conditioning image.",
    )
    parser.add_argument(
        "--caption_column",
        type=str,
        default="text",
        help="The column of the dataset containing a caption or a list of captions.",
    )
    parser.add_argument(
        "--max_train_samples",
        type=int,
        default=None,
        help=(
            "For debugging purposes or quicker training, truncate the number of training examples to this "
            "value if set."
        ),
    )
    parser.add_argument(
        "--proportion_empty_prompts",
        type=float,
        default=0,
        help="Proportion of image prompts to be replaced with empty strings. Defaults to 0 (no prompt replacement).",
    )
    parser.add_argument(
        "--validation_prompt",
        type=str,
        default=None,
        nargs="+",
        help=(
            "A set of prompts evaluated every `--validation_steps` and logged to `--report_to`."
            " Provide either a matching number of `--validation_image`s, a single `--validation_image`"
            " to be used with all prompts, or a single prompt that will be used with all `--validation_image`s."
        ),
    )
    parser.add_argument(
        "--validation_image",
        type=str,
        default=None,
        nargs="+",
        help=(
            "A set of paths to the controlnet conditioning image be evaluated every `--validation_steps`"
            " and logged to `--report_to`. Provide either a matching number of `--validation_prompt`s, a"
            " a single `--validation_prompt` to be used with all `--validation_image`s, or a single"
            " `--validation_image` that will be used with all `--validation_prompt`s."
        ),
    )
    parser.add_argument(
        "--num_validation_images",
        type=int,
        default=4,
        help="Number of images to be generated for each `--validation_image`, `--validation_prompt` pair",
    )
    parser.add_argument(
        "--validation_steps",
        type=int,
        default=100,
        help=(
            "Run validation every X steps. Validation consists of running the prompt"
            " `args.validation_prompt` multiple times: `args.num_validation_images`"
            " and logging the images."
        ),
    )
    parser.add_argument(
        "--tracker_project_name",
        type=str,
        default="train_controlnet",
        help=(
            "The `project_name` argument passed to Accelerator.init_trackers for"
            " more information see https://huggingface.co/docs/accelerate/v0.17.0/en/package_reference/accelerator#accelerate.Accelerator"
        ),
    )

    if input_args is not None:
        args = parser.parse_args(input_args)
    else:
        args = parser.parse_args()

    if args.dataset_name is None and args.train_data_dir is None:
        raise ValueError("Specify either `--dataset_name` or `--train_data_dir`")

    if args.dataset_name is not None and args.train_data_dir is not None:
        raise ValueError("Specify only one of `--dataset_name` or `--train_data_dir`")

    if args.proportion_empty_prompts < 0 or args.proportion_empty_prompts > 1:
        raise ValueError("`--proportion_empty_prompts` must be in the range [0, 1].")

    if args.validation_prompt is not None and args.validation_image is None:
        raise ValueError("`--validation_image` must be set if `--validation_prompt` is set")

    if args.validation_prompt is None and args.validation_image is not None:
        raise ValueError("`--validation_prompt` must be set if `--validation_image` is set")

    if (
        args.validation_image is not None
        and args.validation_prompt is not None
        and len(args.validation_image) != 1
        and len(args.validation_prompt) != 1
        and len(args.validation_image) != len(args.validation_prompt)
    ):
        raise ValueError(
            "Must provide either 1 `--validation_image`, 1 `--validation_prompt`,"
            " or the same number of `--validation_prompt`s and `--validation_image`s"
        )

598
599
600
601
602
    if args.resolution % 8 != 0:
        raise ValueError(
            "`--resolution` must be divisible by 8 for consistently sized encoded images between the VAE and the controlnet encoder."
        )

Henrik Forstén's avatar
Henrik Forstén committed
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
    return args


def make_train_dataset(args, tokenizer, accelerator):
    # Get the datasets: you can either provide your own training and evaluation files (see below)
    # or specify a Dataset from the hub (the dataset will be downloaded automatically from the datasets Hub).

    # In distributed training, the load_dataset function guarantees that only one local process can concurrently
    # download the dataset.
    if args.dataset_name is not None:
        # Downloading and loading a dataset from the hub.
        dataset = load_dataset(
            args.dataset_name,
            args.dataset_config_name,
            cache_dir=args.cache_dir,
        )
    else:
        if args.train_data_dir is not None:
621
622
623
624
            dataset = load_dataset(
                args.train_data_dir,
                cache_dir=args.cache_dir,
            )
Henrik Forstén's avatar
Henrik Forstén committed
625
        # See more about loading custom images at
626
        # https://huggingface.co/docs/datasets/v2.0.0/en/dataset_script
Henrik Forstén's avatar
Henrik Forstén committed
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654

    # Preprocessing the datasets.
    # We need to tokenize inputs and targets.
    column_names = dataset["train"].column_names

    # 6. Get the column names for input/target.
    if args.image_column is None:
        image_column = column_names[0]
        logger.info(f"image column defaulting to {image_column}")
    else:
        image_column = args.image_column
        if image_column not in column_names:
            raise ValueError(
                f"`--image_column` value '{args.image_column}' not found in dataset columns. Dataset columns are: {', '.join(column_names)}"
            )

    if args.caption_column is None:
        caption_column = column_names[1]
        logger.info(f"caption column defaulting to {caption_column}")
    else:
        caption_column = args.caption_column
        if caption_column not in column_names:
            raise ValueError(
                f"`--caption_column` value '{args.caption_column}' not found in dataset columns. Dataset columns are: {', '.join(column_names)}"
            )

    if args.conditioning_image_column is None:
        conditioning_image_column = column_names[2]
655
        logger.info(f"conditioning image column defaulting to {conditioning_image_column}")
Henrik Forstén's avatar
Henrik Forstén committed
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
    else:
        conditioning_image_column = args.conditioning_image_column
        if conditioning_image_column not in column_names:
            raise ValueError(
                f"`--conditioning_image_column` value '{args.conditioning_image_column}' not found in dataset columns. Dataset columns are: {', '.join(column_names)}"
            )

    def tokenize_captions(examples, is_train=True):
        captions = []
        for caption in examples[caption_column]:
            if random.random() < args.proportion_empty_prompts:
                captions.append("")
            elif isinstance(caption, str):
                captions.append(caption)
            elif isinstance(caption, (list, np.ndarray)):
                # take a random caption if there are multiple
                captions.append(random.choice(caption) if is_train else caption[0])
            else:
                raise ValueError(
                    f"Caption column `{caption_column}` should contain either strings or lists of strings."
                )
        inputs = tokenizer(
            captions, max_length=tokenizer.model_max_length, padding="max_length", truncation=True, return_tensors="pt"
        )
        return inputs.input_ids

    image_transforms = transforms.Compose(
        [
            transforms.Resize(args.resolution, interpolation=transforms.InterpolationMode.BILINEAR),
685
            transforms.CenterCrop(args.resolution),
Henrik Forstén's avatar
Henrik Forstén committed
686
687
688
689
690
691
692
693
            transforms.ToTensor(),
            transforms.Normalize([0.5], [0.5]),
        ]
    )

    conditioning_image_transforms = transforms.Compose(
        [
            transforms.Resize(args.resolution, interpolation=transforms.InterpolationMode.BILINEAR),
694
            transforms.CenterCrop(args.resolution),
Henrik Forstén's avatar
Henrik Forstén committed
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
            transforms.ToTensor(),
        ]
    )

    def preprocess_train(examples):
        images = [image.convert("RGB") for image in examples[image_column]]
        images = [image_transforms(image) for image in images]

        conditioning_images = [image.convert("RGB") for image in examples[conditioning_image_column]]
        conditioning_images = [conditioning_image_transforms(image) for image in conditioning_images]

        examples["pixel_values"] = images
        examples["conditioning_pixel_values"] = conditioning_images
        examples["input_ids"] = tokenize_captions(examples)

        return examples

    with accelerator.main_process_first():
        if args.max_train_samples is not None:
            dataset["train"] = dataset["train"].shuffle(seed=args.seed).select(range(args.max_train_samples))
        # Set the training transforms
        train_dataset = dataset["train"].with_transform(preprocess_train)

    return train_dataset


def collate_fn(examples):
    pixel_values = torch.stack([example["pixel_values"] for example in examples])
    pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float()

    conditioning_pixel_values = torch.stack([example["conditioning_pixel_values"] for example in examples])
    conditioning_pixel_values = conditioning_pixel_values.to(memory_format=torch.contiguous_format).float()

    input_ids = torch.stack([example["input_ids"] for example in examples])

    return {
        "pixel_values": pixel_values,
        "conditioning_pixel_values": conditioning_pixel_values,
        "input_ids": input_ids,
    }


def main(args):
738
739
740
741
742
743
    if args.report_to == "wandb" and args.hub_token is not None:
        raise ValueError(
            "You cannot use both --report_to=wandb and --hub_token due to a security risk of exposing your token."
            " Please use `huggingface-cli login` to authenticate with the Hub."
        )

Henrik Forstén's avatar
Henrik Forstén committed
744
745
    logging_dir = Path(args.output_dir, args.logging_dir)

746
    accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir)
Henrik Forstén's avatar
Henrik Forstén committed
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774

    accelerator = Accelerator(
        gradient_accumulation_steps=args.gradient_accumulation_steps,
        mixed_precision=args.mixed_precision,
        log_with=args.report_to,
        project_config=accelerator_project_config,
    )

    # Make one log on every process with the configuration for debugging.
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO,
    )
    logger.info(accelerator.state, main_process_only=False)
    if accelerator.is_local_main_process:
        transformers.utils.logging.set_verbosity_warning()
        diffusers.utils.logging.set_verbosity_info()
    else:
        transformers.utils.logging.set_verbosity_error()
        diffusers.utils.logging.set_verbosity_error()

    # If passed along, set the training seed now.
    if args.seed is not None:
        set_seed(args.seed)

    # Handle the repository creation
    if accelerator.is_main_process:
775
        if args.output_dir is not None:
Henrik Forstén's avatar
Henrik Forstén committed
776
777
            os.makedirs(args.output_dir, exist_ok=True)

778
779
780
781
782
        if args.push_to_hub:
            repo_id = create_repo(
                repo_id=args.hub_model_id or Path(args.output_dir).name, exist_ok=True, token=args.hub_token
            ).repo_id

Henrik Forstén's avatar
Henrik Forstén committed
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
    # Load the tokenizer
    if args.tokenizer_name:
        tokenizer = AutoTokenizer.from_pretrained(args.tokenizer_name, revision=args.revision, use_fast=False)
    elif args.pretrained_model_name_or_path:
        tokenizer = AutoTokenizer.from_pretrained(
            args.pretrained_model_name_or_path,
            subfolder="tokenizer",
            revision=args.revision,
            use_fast=False,
        )

    # import correct text encoder class
    text_encoder_cls = import_model_class_from_model_name_or_path(args.pretrained_model_name_or_path, args.revision)

    # Load scheduler and models
    noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler")
    text_encoder = text_encoder_cls.from_pretrained(
800
801
802
803
        args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision, variant=args.variant
    )
    vae = AutoencoderKL.from_pretrained(
        args.pretrained_model_name_or_path, subfolder="vae", revision=args.revision, variant=args.variant
Henrik Forstén's avatar
Henrik Forstén committed
804
805
    )
    unet = UNet2DConditionModel.from_pretrained(
806
        args.pretrained_model_name_or_path, subfolder="unet", revision=args.revision, variant=args.variant
Henrik Forstén's avatar
Henrik Forstén committed
807
808
809
810
811
812
813
814
815
    )

    if args.controlnet_model_name_or_path:
        logger.info("Loading existing controlnet weights")
        controlnet = ControlNetModel.from_pretrained(args.controlnet_model_name_or_path)
    else:
        logger.info("Initializing controlnet weights from unet")
        controlnet = ControlNetModel.from_unet(unet)

816
817
818
819
820
821
    # Taken from [Sayak Paul's Diffusers PR #6511](https://github.com/huggingface/diffusers/pull/6511/files)
    def unwrap_model(model):
        model = accelerator.unwrap_model(model)
        model = model._orig_mod if is_compiled_module(model) else model
        return model

Henrik Forstén's avatar
Henrik Forstén committed
822
823
824
825
    # `accelerate` 0.16.0 will have better support for customized saving
    if version.parse(accelerate.__version__) >= version.parse("0.16.0"):
        # create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format
        def save_model_hook(models, weights, output_dir):
826
827
            if accelerator.is_main_process:
                i = len(weights) - 1
Henrik Forstén's avatar
Henrik Forstén committed
828

829
830
831
                while len(weights) > 0:
                    weights.pop()
                    model = models[i]
Henrik Forstén's avatar
Henrik Forstén committed
832

833
834
                    sub_dir = "controlnet"
                    model.save_pretrained(os.path.join(output_dir, sub_dir))
Henrik Forstén's avatar
Henrik Forstén committed
835

836
                    i -= 1
Henrik Forstén's avatar
Henrik Forstén committed
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

        def load_model_hook(models, input_dir):
            while len(models) > 0:
                # pop models so that they are not loaded again
                model = models.pop()

                # load diffusers style into model
                load_model = ControlNetModel.from_pretrained(input_dir, subfolder="controlnet")
                model.register_to_config(**load_model.config)

                model.load_state_dict(load_model.state_dict())
                del load_model

        accelerator.register_save_state_pre_hook(save_model_hook)
        accelerator.register_load_state_pre_hook(load_model_hook)

    vae.requires_grad_(False)
    unet.requires_grad_(False)
    text_encoder.requires_grad_(False)
    controlnet.train()

    if args.enable_xformers_memory_efficient_attention:
        if is_xformers_available():
            import xformers

            xformers_version = version.parse(xformers.__version__)
            if xformers_version == version.parse("0.0.16"):
864
                logger.warning(
Henrik Forstén's avatar
Henrik Forstén committed
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
                    "xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details."
                )
            unet.enable_xformers_memory_efficient_attention()
            controlnet.enable_xformers_memory_efficient_attention()
        else:
            raise ValueError("xformers is not available. Make sure it is installed correctly")

    if args.gradient_checkpointing:
        controlnet.enable_gradient_checkpointing()

    # Check that all trainable models are in full precision
    low_precision_error_string = (
        " Please make sure to always have all model weights in full float32 precision when starting training - even if"
        " doing mixed precision training, copy of the weights should still be float32."
    )

881
    if unwrap_model(controlnet).dtype != torch.float32:
Henrik Forstén's avatar
Henrik Forstén committed
882
        raise ValueError(
883
            f"Controlnet loaded as datatype {unwrap_model(controlnet).dtype}. {low_precision_error_string}"
Henrik Forstén's avatar
Henrik Forstén committed
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
        )

    # Enable TF32 for faster training on Ampere GPUs,
    # cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices
    if args.allow_tf32:
        torch.backends.cuda.matmul.allow_tf32 = True

    if args.scale_lr:
        args.learning_rate = (
            args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes
        )

    # Use 8-bit Adam for lower memory usage or to fine-tune the model in 16GB GPUs
    if args.use_8bit_adam:
        try:
            import bitsandbytes as bnb
        except ImportError:
            raise ImportError(
                "To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`."
            )

        optimizer_class = bnb.optim.AdamW8bit
    else:
        optimizer_class = torch.optim.AdamW

    # Optimizer creation
    params_to_optimize = controlnet.parameters()
    optimizer = optimizer_class(
        params_to_optimize,
        lr=args.learning_rate,
        betas=(args.adam_beta1, args.adam_beta2),
        weight_decay=args.adam_weight_decay,
        eps=args.adam_epsilon,
    )

    train_dataset = make_train_dataset(args, tokenizer, accelerator)

    train_dataloader = torch.utils.data.DataLoader(
        train_dataset,
        shuffle=True,
        collate_fn=collate_fn,
        batch_size=args.train_batch_size,
        num_workers=args.dataloader_num_workers,
    )

    # Scheduler and math around the number of training steps.
    overrode_max_train_steps = False
    num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
    if args.max_train_steps is None:
        args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
        overrode_max_train_steps = True

    lr_scheduler = get_scheduler(
        args.lr_scheduler,
        optimizer=optimizer,
939
940
        num_warmup_steps=args.lr_warmup_steps * accelerator.num_processes,
        num_training_steps=args.max_train_steps * accelerator.num_processes,
Henrik Forstén's avatar
Henrik Forstén committed
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
        num_cycles=args.lr_num_cycles,
        power=args.lr_power,
    )

    # Prepare everything with our `accelerator`.
    controlnet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
        controlnet, optimizer, train_dataloader, lr_scheduler
    )

    # For mixed precision training we cast the text_encoder and vae weights to half-precision
    # as these models are only used for inference, keeping weights in full precision is not required.
    weight_dtype = torch.float32
    if accelerator.mixed_precision == "fp16":
        weight_dtype = torch.float16
    elif accelerator.mixed_precision == "bf16":
        weight_dtype = torch.bfloat16

    # Move vae, unet and text_encoder to device and cast to weight_dtype
    vae.to(accelerator.device, dtype=weight_dtype)
    unet.to(accelerator.device, dtype=weight_dtype)
    text_encoder.to(accelerator.device, dtype=weight_dtype)

    # We need to recalculate our total training steps as the size of the training dataloader may have changed.
    num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
    if overrode_max_train_steps:
        args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
    # Afterwards we recalculate our number of training epochs
    args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)

    # We need to initialize the trackers we use, and also store our configuration.
    # The trackers initializes automatically on the main process.
    if accelerator.is_main_process:
        tracker_config = dict(vars(args))

        # tensorboard cannot handle list types for config
        tracker_config.pop("validation_prompt")
        tracker_config.pop("validation_image")

        accelerator.init_trackers(args.tracker_project_name, config=tracker_config)

    # Train!
    total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps

    logger.info("***** Running training *****")
    logger.info(f"  Num examples = {len(train_dataset)}")
    logger.info(f"  Num batches each epoch = {len(train_dataloader)}")
    logger.info(f"  Num Epochs = {args.num_train_epochs}")
    logger.info(f"  Instantaneous batch size per device = {args.train_batch_size}")
    logger.info(f"  Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
    logger.info(f"  Gradient Accumulation steps = {args.gradient_accumulation_steps}")
    logger.info(f"  Total optimization steps = {args.max_train_steps}")
    global_step = 0
    first_epoch = 0

    # Potentially load in the weights and states from a previous save
    if args.resume_from_checkpoint:
        if args.resume_from_checkpoint != "latest":
            path = os.path.basename(args.resume_from_checkpoint)
        else:
            # Get the most recent checkpoint
            dirs = os.listdir(args.output_dir)
            dirs = [d for d in dirs if d.startswith("checkpoint")]
            dirs = sorted(dirs, key=lambda x: int(x.split("-")[1]))
            path = dirs[-1] if len(dirs) > 0 else None

        if path is None:
            accelerator.print(
                f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run."
            )
            args.resume_from_checkpoint = None
            initial_global_step = 0
        else:
            accelerator.print(f"Resuming from checkpoint {path}")
            accelerator.load_state(os.path.join(args.output_dir, path))
            global_step = int(path.split("-")[1])

1017
            initial_global_step = global_step
Henrik Forstén's avatar
Henrik Forstén committed
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
            first_epoch = global_step // num_update_steps_per_epoch
    else:
        initial_global_step = 0

    progress_bar = tqdm(
        range(0, args.max_train_steps),
        initial=initial_global_step,
        desc="Steps",
        # Only show the progress bar once on each machine.
        disable=not accelerator.is_local_main_process,
    )

1030
    image_logs = None
Henrik Forstén's avatar
Henrik Forstén committed
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
    for epoch in range(first_epoch, args.num_train_epochs):
        for step, batch in enumerate(train_dataloader):
            with accelerator.accumulate(controlnet):
                # Convert images to latent space
                latents = vae.encode(batch["pixel_values"].to(dtype=weight_dtype)).latent_dist.sample()
                latents = latents * vae.config.scaling_factor

                # Sample noise that we'll add to the latents
                noise = torch.randn_like(latents)
                bsz = latents.shape[0]
                # Sample a random timestep for each image
                timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device)
                timesteps = timesteps.long()

                # Add noise to the latents according to the noise magnitude at each timestep
                # (this is the forward diffusion process)
                noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)

                # Get the text embedding for conditioning
1050
                encoder_hidden_states = text_encoder(batch["input_ids"], return_dict=False)[0]
Henrik Forstén's avatar
Henrik Forstén committed
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066

                controlnet_image = batch["conditioning_pixel_values"].to(dtype=weight_dtype)

                down_block_res_samples, mid_block_res_sample = controlnet(
                    noisy_latents,
                    timesteps,
                    encoder_hidden_states=encoder_hidden_states,
                    controlnet_cond=controlnet_image,
                    return_dict=False,
                )

                # Predict the noise residual
                model_pred = unet(
                    noisy_latents,
                    timesteps,
                    encoder_hidden_states=encoder_hidden_states,
1067
1068
1069
1070
                    down_block_additional_residuals=[
                        sample.to(dtype=weight_dtype) for sample in down_block_res_samples
                    ],
                    mid_block_additional_residual=mid_block_res_sample.to(dtype=weight_dtype),
1071
1072
                    return_dict=False,
                )[0]
Henrik Forstén's avatar
Henrik Forstén committed
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097

                # Get the target for loss depending on the prediction type
                if noise_scheduler.config.prediction_type == "epsilon":
                    target = noise
                elif noise_scheduler.config.prediction_type == "v_prediction":
                    target = noise_scheduler.get_velocity(latents, noise, timesteps)
                else:
                    raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}")
                loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean")

                accelerator.backward(loss)
                if accelerator.sync_gradients:
                    params_to_clip = controlnet.parameters()
                    accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm)
                optimizer.step()
                lr_scheduler.step()
                optimizer.zero_grad(set_to_none=args.set_grads_to_none)

            # Checks if the accelerator has performed an optimization step behind the scenes
            if accelerator.sync_gradients:
                progress_bar.update(1)
                global_step += 1

                if accelerator.is_main_process:
                    if global_step % args.checkpointing_steps == 0:
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
                        # _before_ saving state, check if this save would set us over the `checkpoints_total_limit`
                        if args.checkpoints_total_limit is not None:
                            checkpoints = os.listdir(args.output_dir)
                            checkpoints = [d for d in checkpoints if d.startswith("checkpoint")]
                            checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[1]))

                            # before we save the new checkpoint, we need to have at _most_ `checkpoints_total_limit - 1` checkpoints
                            if len(checkpoints) >= args.checkpoints_total_limit:
                                num_to_remove = len(checkpoints) - args.checkpoints_total_limit + 1
                                removing_checkpoints = checkpoints[0:num_to_remove]

                                logger.info(
                                    f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints"
                                )
                                logger.info(f"removing checkpoints: {', '.join(removing_checkpoints)}")

                                for removing_checkpoint in removing_checkpoints:
                                    removing_checkpoint = os.path.join(args.output_dir, removing_checkpoint)
                                    shutil.rmtree(removing_checkpoint)

Henrik Forstén's avatar
Henrik Forstén committed
1118
1119
1120
1121
1122
                        save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}")
                        accelerator.save_state(save_path)
                        logger.info(f"Saved state to {save_path}")

                    if args.validation_prompt is not None and global_step % args.validation_steps == 0:
1123
                        image_logs = log_validation(
Henrik Forstén's avatar
Henrik Forstén committed
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
                            vae,
                            text_encoder,
                            tokenizer,
                            unet,
                            controlnet,
                            args,
                            accelerator,
                            weight_dtype,
                            global_step,
                        )

            logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]}
            progress_bar.set_postfix(**logs)
            accelerator.log(logs, step=global_step)

            if global_step >= args.max_train_steps:
                break

    # Create the pipeline using using the trained modules and save it.
    accelerator.wait_for_everyone()
    if accelerator.is_main_process:
1145
        controlnet = unwrap_model(controlnet)
Henrik Forstén's avatar
Henrik Forstén committed
1146
1147
        controlnet.save_pretrained(args.output_dir)

1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
        # Run a final round of validation.
        image_logs = None
        if args.validation_prompt is not None:
            image_logs = log_validation(
                vae=vae,
                text_encoder=text_encoder,
                tokenizer=tokenizer,
                unet=unet,
                controlnet=None,
                args=args,
                accelerator=accelerator,
                weight_dtype=weight_dtype,
                step=global_step,
                is_final_validation=True,
            )

Henrik Forstén's avatar
Henrik Forstén committed
1164
        if args.push_to_hub:
1165
1166
1167
1168
1169
1170
            save_model_card(
                repo_id,
                image_logs=image_logs,
                base_model=args.pretrained_model_name_or_path,
                repo_folder=args.output_dir,
            )
1171
1172
1173
1174
1175
1176
            upload_folder(
                repo_id=repo_id,
                folder_path=args.output_dir,
                commit_message="End of training",
                ignore_patterns=["step_*", "epoch_*"],
            )
Henrik Forstén's avatar
Henrik Forstén committed
1177
1178
1179
1180
1181
1182
1183

    accelerator.end_training()


if __name__ == "__main__":
    args = parse_args()
    main(args)