test_pipelines_flax.py 7.34 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest

import numpy as np

from diffusers.utils import is_flax_available
from diffusers.utils.testing_utils import require_flax, slow


if is_flax_available():
    import jax
26
    import jax.numpy as jnp
27
    from diffusers import FlaxDDIMScheduler, FlaxStableDiffusionPipeline
Patrick von Platen's avatar
Patrick von Platen committed
28
29
30
31
32
33
    from flax.jax_utils import replicate
    from flax.training.common_utils import shard
    from jax import pmap


@slow
34
@require_flax
Patrick von Platen's avatar
Patrick von Platen committed
35
36
37
class FlaxPipelineTests(unittest.TestCase):
    def test_dummy_all_tpus(self):
        pipeline, params = FlaxStableDiffusionPipeline.from_pretrained(
38
            "hf-internal-testing/tiny-stable-diffusion-pipe", safety_checker=None
Patrick von Platen's avatar
Patrick von Platen committed
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
        )

        prompt = (
            "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of"
            " field, close up, split lighting, cinematic"
        )

        prng_seed = jax.random.PRNGKey(0)
        num_inference_steps = 4

        num_samples = jax.device_count()
        prompt = num_samples * [prompt]
        prompt_ids = pipeline.prepare_inputs(prompt)

        p_sample = pmap(pipeline.__call__, static_broadcasted_argnums=(3,))

        # shard inputs and rng
        params = replicate(params)
        prng_seed = jax.random.split(prng_seed, 8)
        prompt_ids = shard(prompt_ids)

        images = p_sample(prompt_ids, params, prng_seed, num_inference_steps).images
61

62
63
64
        assert images.shape == (8, 1, 128, 128, 3)
        assert np.abs(np.abs(images[0, 0, :2, :2, -2:], dtype=np.float32).sum() - 3.1111548) < 1e-3
        assert np.abs(np.abs(images, dtype=np.float32).sum() - 199746.95) < 5e-1
65

Patrick von Platen's avatar
Patrick von Platen committed
66
67
68
        images_pil = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:])))

        assert len(images_pil) == 8
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97

    def test_stable_diffusion_v1_4(self):
        pipeline, params = FlaxStableDiffusionPipeline.from_pretrained(
            "CompVis/stable-diffusion-v1-4", revision="flax", safety_checker=None
        )

        prompt = (
            "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of"
            " field, close up, split lighting, cinematic"
        )

        prng_seed = jax.random.PRNGKey(0)
        num_inference_steps = 50

        num_samples = jax.device_count()
        prompt = num_samples * [prompt]
        prompt_ids = pipeline.prepare_inputs(prompt)

        p_sample = pmap(pipeline.__call__, static_broadcasted_argnums=(3,))

        # shard inputs and rng
        params = replicate(params)
        prng_seed = jax.random.split(prng_seed, 8)
        prompt_ids = shard(prompt_ids)

        images = p_sample(prompt_ids, params, prng_seed, num_inference_steps).images

        assert images.shape == (8, 1, 512, 512, 3)
        assert np.abs((np.abs(images[0, 0, :2, :2, -2:], dtype=np.float32).sum() - 0.05652401)) < 1e-3
98
        assert np.abs((np.abs(images, dtype=np.float32).sum() - 2383808.2)) < 5e-1
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

    def test_stable_diffusion_v1_4_bfloat_16(self):
        pipeline, params = FlaxStableDiffusionPipeline.from_pretrained(
            "CompVis/stable-diffusion-v1-4", revision="bf16", dtype=jnp.bfloat16, safety_checker=None
        )

        prompt = (
            "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of"
            " field, close up, split lighting, cinematic"
        )

        prng_seed = jax.random.PRNGKey(0)
        num_inference_steps = 50

        num_samples = jax.device_count()
        prompt = num_samples * [prompt]
        prompt_ids = pipeline.prepare_inputs(prompt)

        p_sample = pmap(pipeline.__call__, static_broadcasted_argnums=(3,))

        # shard inputs and rng
        params = replicate(params)
        prng_seed = jax.random.split(prng_seed, 8)
        prompt_ids = shard(prompt_ids)

        images = p_sample(prompt_ids, params, prng_seed, num_inference_steps).images

        assert images.shape == (8, 1, 512, 512, 3)
        assert np.abs((np.abs(images[0, 0, :2, :2, -2:], dtype=np.float32).sum() - 0.06652832)) < 1e-3
128
        assert np.abs((np.abs(images, dtype=np.float32).sum() - 2384849.8)) < 5e-1
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155

    def test_stable_diffusion_v1_4_bfloat_16_with_safety(self):
        pipeline, params = FlaxStableDiffusionPipeline.from_pretrained(
            "CompVis/stable-diffusion-v1-4", revision="bf16", dtype=jnp.bfloat16
        )

        prompt = (
            "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of"
            " field, close up, split lighting, cinematic"
        )

        prng_seed = jax.random.PRNGKey(0)
        num_inference_steps = 50

        num_samples = jax.device_count()
        prompt = num_samples * [prompt]
        prompt_ids = pipeline.prepare_inputs(prompt)

        # shard inputs and rng
        params = replicate(params)
        prng_seed = jax.random.split(prng_seed, 8)
        prompt_ids = shard(prompt_ids)

        images = pipeline(prompt_ids, params, prng_seed, num_inference_steps, jit=True).images

        assert images.shape == (8, 1, 512, 512, 3)
        assert np.abs((np.abs(images[0, 0, :2, :2, -2:], dtype=np.float32).sum() - 0.06652832)) < 1e-3
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
        assert np.abs((np.abs(images, dtype=np.float32).sum() - 2384849.8)) < 5e-1

    def test_stable_diffusion_v1_4_bfloat_16_ddim(self):
        scheduler = FlaxDDIMScheduler(
            beta_start=0.00085,
            beta_end=0.012,
            beta_schedule="scaled_linear",
            set_alpha_to_one=False,
            steps_offset=1,
        )

        pipeline, params = FlaxStableDiffusionPipeline.from_pretrained(
            "CompVis/stable-diffusion-v1-4",
            revision="bf16",
            dtype=jnp.bfloat16,
            scheduler=scheduler,
            safety_checker=None,
        )
        scheduler_state = scheduler.create_state()

        params["scheduler"] = scheduler_state

        prompt = (
            "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of"
            " field, close up, split lighting, cinematic"
        )

        prng_seed = jax.random.PRNGKey(0)
        num_inference_steps = 50

        num_samples = jax.device_count()
        prompt = num_samples * [prompt]
        prompt_ids = pipeline.prepare_inputs(prompt)

        p_sample = pmap(pipeline.__call__, static_broadcasted_argnums=(3,))

        # shard inputs and rng
        params = replicate(params)
        prng_seed = jax.random.split(prng_seed, 8)
        prompt_ids = shard(prompt_ids)

        images = p_sample(prompt_ids, params, prng_seed, num_inference_steps).images

        assert images.shape == (8, 1, 512, 512, 3)
        assert np.abs((np.abs(images[0, 0, :2, :2, -2:], dtype=np.float32).sum() - 0.045043945)) < 1e-3
        assert np.abs((np.abs(images, dtype=np.float32).sum() - 2347693.5)) < 5e-1