unet.py 10.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and

# limitations under the License.

# helpers functions

import copy
import math
from pathlib import Path

import torch
Patrick von Platen's avatar
improve  
Patrick von Platen committed
23
from torch import nn
24
25
26
27
from torch.cuda.amp import GradScaler, autocast
from torch.optim import Adam
from torch.utils import data

Patrick von Platen's avatar
improve  
Patrick von Platen committed
28
from PIL import Image
29
30
from tqdm import tqdm

Patrick von Platen's avatar
Patrick von Platen committed
31
from ..configuration_utils import ConfigMixin
Patrick von Platen's avatar
Patrick von Platen committed
32
from ..modeling_utils import ModelMixin
33
from .embeddings import get_timestep_embedding
patil-suraj's avatar
patil-suraj committed
34
from .resnet import Upsample
35
36


Patrick von Platen's avatar
improve  
Patrick von Platen committed
37
38
39
def nonlinearity(x):
    # swish
    return x * torch.sigmoid(x)
40
41


Patrick von Platen's avatar
improve  
Patrick von Platen committed
42
43
def Normalize(in_channels):
    return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
44
45


Patrick von Platen's avatar
improve  
Patrick von Platen committed
46
47
class Downsample(nn.Module):
    def __init__(self, in_channels, with_conv):
48
        super().__init__()
Patrick von Platen's avatar
improve  
Patrick von Platen committed
49
50
51
52
        self.with_conv = with_conv
        if self.with_conv:
            # no asymmetric padding in torch conv, must do it ourselves
            self.conv = torch.nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=2, padding=0)
53
54

    def forward(self, x):
Patrick von Platen's avatar
improve  
Patrick von Platen committed
55
56
57
58
59
60
        if self.with_conv:
            pad = (0, 1, 0, 1)
            x = torch.nn.functional.pad(x, pad, mode="constant", value=0)
            x = self.conv(x)
        else:
            x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2)
61
62
63
64
        return x


class ResnetBlock(nn.Module):
Patrick von Platen's avatar
improve  
Patrick von Platen committed
65
    def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False, dropout, temb_channels=512):
66
        super().__init__()
Patrick von Platen's avatar
improve  
Patrick von Platen committed
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
        self.in_channels = in_channels
        out_channels = in_channels if out_channels is None else out_channels
        self.out_channels = out_channels
        self.use_conv_shortcut = conv_shortcut

        self.norm1 = Normalize(in_channels)
        self.conv1 = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
        self.temb_proj = torch.nn.Linear(temb_channels, out_channels)
        self.norm2 = Normalize(out_channels)
        self.dropout = torch.nn.Dropout(dropout)
        self.conv2 = torch.nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
        if self.in_channels != self.out_channels:
            if self.use_conv_shortcut:
                self.conv_shortcut = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
            else:
                self.nin_shortcut = torch.nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0)

    def forward(self, x, temb):
        h = x
        h = self.norm1(h)
        h = nonlinearity(h)
        h = self.conv1(h)

        h = h + self.temb_proj(nonlinearity(temb))[:, :, None, None]

        h = self.norm2(h)
        h = nonlinearity(h)
        h = self.dropout(h)
        h = self.conv2(h)

        if self.in_channels != self.out_channels:
            if self.use_conv_shortcut:
                x = self.conv_shortcut(x)
            else:
                x = self.nin_shortcut(x)

        return x + h


class AttnBlock(nn.Module):
    def __init__(self, in_channels):
108
        super().__init__()
Patrick von Platen's avatar
improve  
Patrick von Platen committed
109
        self.in_channels = in_channels
110

Patrick von Platen's avatar
improve  
Patrick von Platen committed
111
112
113
114
115
        self.norm = Normalize(in_channels)
        self.q = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
        self.k = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
        self.v = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
        self.proj_out = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
116
117

    def forward(self, x):
Patrick von Platen's avatar
improve  
Patrick von Platen committed
118
119
120
121
122
        h_ = x
        h_ = self.norm(h_)
        q = self.q(h_)
        k = self.k(h_)
        v = self.v(h_)
123

Patrick von Platen's avatar
improve  
Patrick von Platen committed
124
125
126
127
128
129
130
131
        # compute attention
        b, c, h, w = q.shape
        q = q.reshape(b, c, h * w)
        q = q.permute(0, 2, 1)  # b,hw,c
        k = k.reshape(b, c, h * w)  # b,c,hw
        w_ = torch.bmm(q, k)  # b,hw,hw    w[b,i,j]=sum_c q[b,i,c]k[b,c,j]
        w_ = w_ * (int(c) ** (-0.5))
        w_ = torch.nn.functional.softmax(w_, dim=2)
132

Patrick von Platen's avatar
improve  
Patrick von Platen committed
133
134
135
136
137
        # attend to values
        v = v.reshape(b, c, h * w)
        w_ = w_.permute(0, 2, 1)  # b,hw,hw (first hw of k, second of q)
        h_ = torch.bmm(v, w_)  # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j]
        h_ = h_.reshape(b, c, h, w)
138

Patrick von Platen's avatar
improve  
Patrick von Platen committed
139
        h_ = self.proj_out(h_)
140

Patrick von Platen's avatar
improve  
Patrick von Platen committed
141
        return x + h_
142
143


Patrick von Platen's avatar
Patrick von Platen committed
144
class UNetModel(ModelMixin, ConfigMixin):
145
146
    def __init__(
        self,
Patrick von Platen's avatar
improve  
Patrick von Platen committed
147
148
149
150
151
152
153
154
155
        ch=128,
        out_ch=3,
        ch_mult=(1, 1, 2, 2, 4, 4),
        num_res_blocks=2,
        attn_resolutions=(16,),
        dropout=0.0,
        resamp_with_conv=True,
        in_channels=3,
        resolution=256,
156
157
    ):
        super().__init__()
158
        self.register_to_config(
Patrick von Platen's avatar
improve  
Patrick von Platen committed
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
            ch=ch,
            out_ch=out_ch,
            ch_mult=ch_mult,
            num_res_blocks=num_res_blocks,
            attn_resolutions=attn_resolutions,
            dropout=dropout,
            resamp_with_conv=resamp_with_conv,
            in_channels=in_channels,
            resolution=resolution,
        )
        ch_mult = tuple(ch_mult)
        self.ch = ch
        self.temb_ch = self.ch * 4
        self.num_resolutions = len(ch_mult)
        self.num_res_blocks = num_res_blocks
        self.resolution = resolution
        self.in_channels = in_channels

        # timestep embedding
        self.temb = nn.Module()
        self.temb.dense = nn.ModuleList(
            [
                torch.nn.Linear(self.ch, self.temb_ch),
                torch.nn.Linear(self.temb_ch, self.temb_ch),
            ]
184
        )
185

Patrick von Platen's avatar
improve  
Patrick von Platen committed
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
        # downsampling
        self.conv_in = torch.nn.Conv2d(in_channels, self.ch, kernel_size=3, stride=1, padding=1)

        curr_res = resolution
        in_ch_mult = (1,) + ch_mult
        self.down = nn.ModuleList()
        for i_level in range(self.num_resolutions):
            block = nn.ModuleList()
            attn = nn.ModuleList()
            block_in = ch * in_ch_mult[i_level]
            block_out = ch * ch_mult[i_level]
            for i_block in range(self.num_res_blocks):
                block.append(
                    ResnetBlock(
                        in_channels=block_in, out_channels=block_out, temb_channels=self.temb_ch, dropout=dropout
                    )
202
                )
Patrick von Platen's avatar
improve  
Patrick von Platen committed
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
                block_in = block_out
                if curr_res in attn_resolutions:
                    attn.append(AttnBlock(block_in))
            down = nn.Module()
            down.block = block
            down.attn = attn
            if i_level != self.num_resolutions - 1:
                down.downsample = Downsample(block_in, resamp_with_conv)
                curr_res = curr_res // 2
            self.down.append(down)

        # middle
        self.mid = nn.Module()
        self.mid.block_1 = ResnetBlock(
            in_channels=block_in, out_channels=block_in, temb_channels=self.temb_ch, dropout=dropout
        )
        self.mid.attn_1 = AttnBlock(block_in)
        self.mid.block_2 = ResnetBlock(
            in_channels=block_in, out_channels=block_in, temb_channels=self.temb_ch, dropout=dropout
        )
223

Patrick von Platen's avatar
improve  
Patrick von Platen committed
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
        # upsampling
        self.up = nn.ModuleList()
        for i_level in reversed(range(self.num_resolutions)):
            block = nn.ModuleList()
            attn = nn.ModuleList()
            block_out = ch * ch_mult[i_level]
            skip_in = ch * ch_mult[i_level]
            for i_block in range(self.num_res_blocks + 1):
                if i_block == self.num_res_blocks:
                    skip_in = ch * in_ch_mult[i_level]
                block.append(
                    ResnetBlock(
                        in_channels=block_in + skip_in,
                        out_channels=block_out,
                        temb_channels=self.temb_ch,
                        dropout=dropout,
                    )
                )
                block_in = block_out
                if curr_res in attn_resolutions:
                    attn.append(AttnBlock(block_in))
            up = nn.Module()
            up.block = block
            up.attn = attn
            if i_level != 0:
patil-suraj's avatar
patil-suraj committed
249
                up.upsample = Upsample(block_in, use_conv=resamp_with_conv)
Patrick von Platen's avatar
improve  
Patrick von Platen committed
250
251
252
253
254
255
256
                curr_res = curr_res * 2
            self.up.insert(0, up)  # prepend to get consistent order

        # end
        self.norm_out = Normalize(block_in)
        self.conv_out = torch.nn.Conv2d(block_in, out_ch, kernel_size=3, stride=1, padding=1)

patil-suraj's avatar
patil-suraj committed
257
    def forward(self, x, timesteps):
Patrick von Platen's avatar
improve  
Patrick von Platen committed
258
259
        assert x.shape[2] == x.shape[3] == self.resolution

patil-suraj's avatar
patil-suraj committed
260
261
        if not torch.is_tensor(timesteps):
            timesteps = torch.tensor([timesteps], dtype=torch.long, device=x.device)
Patrick von Platen's avatar
improve  
Patrick von Platen committed
262
263

        # timestep embedding
patil-suraj's avatar
patil-suraj committed
264
        temb = get_timestep_embedding(timesteps, self.ch)
Patrick von Platen's avatar
improve  
Patrick von Platen committed
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
        temb = self.temb.dense[0](temb)
        temb = nonlinearity(temb)
        temb = self.temb.dense[1](temb)

        # downsampling
        hs = [self.conv_in(x)]
        for i_level in range(self.num_resolutions):
            for i_block in range(self.num_res_blocks):
                h = self.down[i_level].block[i_block](hs[-1], temb)
                if len(self.down[i_level].attn) > 0:
                    h = self.down[i_level].attn[i_block](h)
                hs.append(h)
            if i_level != self.num_resolutions - 1:
                hs.append(self.down[i_level].downsample(hs[-1]))

        # middle
        h = hs[-1]
        h = self.mid.block_1(h, temb)
        h = self.mid.attn_1(h)
        h = self.mid.block_2(h, temb)

        # upsampling
        for i_level in reversed(range(self.num_resolutions)):
            for i_block in range(self.num_res_blocks + 1):
                h = self.up[i_level].block[i_block](torch.cat([h, hs.pop()], dim=1), temb)
                if len(self.up[i_level].attn) > 0:
                    h = self.up[i_level].attn[i_block](h)
            if i_level != 0:
                h = self.up[i_level].upsample(h)

        # end
        h = self.norm_out(h)
        h = nonlinearity(h)
        h = self.conv_out(h)
        return h