unconditional_training.mdx 4.88 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Nathan Lambert's avatar
Nathan Lambert committed
2
3
4
5
6
7
8
9
10
11
12

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->

13
# Unconditional image generation
Patrick von Platen's avatar
Patrick von Platen committed
14

15
Unconditional image generation is not conditioned on any text or images, unlike text- or image-to-image models. It only generates images that resemble its training data distribution.
Patrick von Platen's avatar
Patrick von Platen committed
16

17
18
19
20
21
22
<iframe
	src="https://stevhliu-ddpm-butterflies-128.hf.space"
	frameborder="0"
	width="850"
	height="550"
></iframe>
Patrick von Platen's avatar
Patrick von Platen committed
23

24
25
26
27

This guide will show you how to train an unconditional image generation model on existing datasets as well as your own custom dataset. All the training scripts for unconditional image generation can be found [here](https://github.com/huggingface/diffusers/tree/main/examples/unconditional_image_generation) if you're interested in learning more about the training details.

Before running the script, make sure you install the library's training dependencies:
Patrick von Platen's avatar
Patrick von Platen committed
28

29
30
```bash
pip install diffusers[training] accelerate datasets
Patrick von Platen's avatar
Patrick von Platen committed
31
```
32

33
Next, initialize an 🤗 [Accelerate](https://github.com/huggingface/accelerate/) environment with:
34
35
36
37
38

```bash
accelerate config
```

39
40
41
42
43
To setup a default 🤗 Accelerate environment without choosing any configurations:

```bash
accelerate config default
```
44

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
Or if your environment doesn't support an interactive shell like a notebook, you can use:

```bash
from accelerate.utils import write_basic_config

write_basic_config()
```

## Upload model to Hub

You can upload your model on the Hub by adding the following argument to the training script:

```bash
--push_to_hub
```

## Save and load checkpoints

It is a good idea to regularly save checkpoints in case anything happens during training. To save a checkpoint, pass the following argument to the training script:

```bash
--checkpointing_steps=500
```

The full training state is saved in a subfolder in the `output_dir` every 500 steps, which allows you to load a checkpoint and resume training if you pass the `--resume_from_checkpoint` argument to the training script:

```bash
--resume_from_checkpoint="checkpoint-1500"
```

## Finetuning

Steven Liu's avatar
Steven Liu committed
77
78
79
You're ready to launch the [training script](https://github.com/huggingface/diffusers/blob/main/examples/unconditional_image_generation/train_unconditional.py) now! Specify the dataset name to finetune on with the `--dataset_name` argument and then save it to the path in `--output_dir`. To use your own dataset, take a look at the [Create a dataset for training](create_dataset) guide.

The training script creates and saves a `diffusion_pytorch_model.bin` file in your repository.
80
81
82
83
84
85
86
87

<Tip>

💡 A full training run takes 2 hours on 4xV100 GPUs.

</Tip>

For example, to finetune on the [Oxford Flowers](https://huggingface.co/datasets/huggan/flowers-102-categories) dataset:
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102

```bash
accelerate launch train_unconditional.py \
  --dataset_name="huggan/flowers-102-categories" \
  --resolution=64 \
  --output_dir="ddpm-ema-flowers-64" \
  --train_batch_size=16 \
  --num_epochs=100 \
  --gradient_accumulation_steps=1 \
  --learning_rate=1e-4 \
  --lr_warmup_steps=500 \
  --mixed_precision=no \
  --push_to_hub
```

103
104
105
<div class="flex justify-center">
    <img src="https://user-images.githubusercontent.com/26864830/180248660-a0b143d0-b89a-42c5-8656-2ebf6ece7e52.png"/>
</div>
106

107
Or if you want to train your model on the [Pokemon](https://huggingface.co/datasets/huggan/pokemon) dataset:
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122

```bash
accelerate launch train_unconditional.py \
  --dataset_name="huggan/pokemon" \
  --resolution=64 \
  --output_dir="ddpm-ema-pokemon-64" \
  --train_batch_size=16 \
  --num_epochs=100 \
  --gradient_accumulation_steps=1 \
  --learning_rate=1e-4 \
  --lr_warmup_steps=500 \
  --mixed_precision=no \
  --push_to_hub
```

123
124
125
<div class="flex justify-center">
    <img src="https://user-images.githubusercontent.com/26864830/180248200-928953b4-db38-48db-b0c6-8b740fe6786f.png"/>
</div>
126

127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
### Training with multiple GPUs

`accelerate` allows for seamless multi-GPU training. Follow the instructions [here](https://huggingface.co/docs/accelerate/basic_tutorials/launch)
for running distributed training with `accelerate`. Here is an example command:

```bash
accelerate launch --mixed_precision="fp16" --multi_gpu train_unconditional.py \
  --dataset_name="huggan/pokemon" \
  --resolution=64 --center_crop --random_flip \
  --output_dir="ddpm-ema-pokemon-64" \
  --train_batch_size=16 \
  --num_epochs=100 \
  --gradient_accumulation_steps=1 \
  --use_ema \
  --learning_rate=1e-4 \
  --lr_warmup_steps=500 \
  --mixed_precision="fp16" \
  --logger="wandb"
Steven Liu's avatar
Steven Liu committed
145
```