test_unidiffuser.py 30.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
import gc
import random
import unittest

import numpy as np
import torch
from PIL import Image
from transformers import (
    CLIPImageProcessor,
    CLIPTextModel,
    CLIPTokenizer,
    CLIPVisionModelWithProjection,
    GPT2Tokenizer,
)

from diffusers import (
    AutoencoderKL,
    DPMSolverMultistepScheduler,
    UniDiffuserModel,
    UniDiffuserPipeline,
    UniDiffuserTextDecoder,
)
23
from diffusers.utils.testing_utils import (
24
    backend_empty_cache,
25
26
27
28
    enable_full_determinism,
    floats_tensor,
    load_image,
    nightly,
29
    require_torch_accelerator,
30
31
    torch_device,
)
Dhruv Nair's avatar
Dhruv Nair committed
32
from diffusers.utils.torch_utils import randn_tensor
33

34
35
36
37
38
39
40
41
42
43
from ..pipeline_params import (
    IMAGE_TO_IMAGE_IMAGE_PARAMS,
    TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS,
    TEXT_GUIDED_IMAGE_VARIATION_PARAMS,
)
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin


enable_full_determinism()

44

45
46
47
class UniDiffuserPipelineFastTests(
    PipelineTesterMixin, PipelineLatentTesterMixin, PipelineKarrasSchedulerTesterMixin, unittest.TestCase
):
48
49
50
    pipeline_class = UniDiffuserPipeline
    params = TEXT_GUIDED_IMAGE_VARIATION_PARAMS
    batch_params = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS
51
52
53
    image_params = IMAGE_TO_IMAGE_IMAGE_PARAMS
    # vae_latents, not latents, is the argument that corresponds to VAE latent inputs
    image_latents_params = frozenset(["vae_latents"])
54

Marc Sun's avatar
Marc Sun committed
55
56
    supports_dduf = False

57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
    def get_dummy_components(self):
        unet = UniDiffuserModel.from_pretrained(
            "hf-internal-testing/unidiffuser-diffusers-test",
            subfolder="unet",
        )

        scheduler = DPMSolverMultistepScheduler(
            beta_start=0.00085,
            beta_end=0.012,
            beta_schedule="scaled_linear",
            solver_order=3,
        )

        vae = AutoencoderKL.from_pretrained(
            "hf-internal-testing/unidiffuser-diffusers-test",
            subfolder="vae",
        )

        text_encoder = CLIPTextModel.from_pretrained(
            "hf-internal-testing/unidiffuser-diffusers-test",
            subfolder="text_encoder",
        )
        clip_tokenizer = CLIPTokenizer.from_pretrained(
            "hf-internal-testing/unidiffuser-diffusers-test",
            subfolder="clip_tokenizer",
        )

        image_encoder = CLIPVisionModelWithProjection.from_pretrained(
            "hf-internal-testing/unidiffuser-diffusers-test",
            subfolder="image_encoder",
        )
        # From the Stable Diffusion Image Variation pipeline tests
89
        clip_image_processor = CLIPImageProcessor(crop_size=32, size=32)
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
        # image_processor = CLIPImageProcessor.from_pretrained("hf-internal-testing/tiny-random-clip")

        text_tokenizer = GPT2Tokenizer.from_pretrained(
            "hf-internal-testing/unidiffuser-diffusers-test",
            subfolder="text_tokenizer",
        )
        text_decoder = UniDiffuserTextDecoder.from_pretrained(
            "hf-internal-testing/unidiffuser-diffusers-test",
            subfolder="text_decoder",
        )

        components = {
            "vae": vae,
            "text_encoder": text_encoder,
            "image_encoder": image_encoder,
105
            "clip_image_processor": clip_image_processor,
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
            "clip_tokenizer": clip_tokenizer,
            "text_decoder": text_decoder,
            "text_tokenizer": text_tokenizer,
            "unet": unet,
            "scheduler": scheduler,
        }

        return components

    def get_dummy_inputs(self, device, seed=0):
        image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device)
        image = image.cpu().permute(0, 2, 3, 1)[0]
        image = Image.fromarray(np.uint8(image)).convert("RGB")
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)
        inputs = {
            "prompt": "an elephant under the sea",
            "image": image,
            "generator": generator,
            "num_inference_steps": 2,
            "guidance_scale": 6.0,
129
            "output_type": "np",
130
131
132
133
        }
        return inputs

    def get_fixed_latents(self, device, seed=0):
134
        if isinstance(device, str):
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
            device = torch.device(device)
        generator = torch.Generator(device=device).manual_seed(seed)
        # Hardcode the shapes for now.
        prompt_latents = randn_tensor((1, 77, 32), generator=generator, device=device, dtype=torch.float32)
        vae_latents = randn_tensor((1, 4, 16, 16), generator=generator, device=device, dtype=torch.float32)
        clip_latents = randn_tensor((1, 1, 32), generator=generator, device=device, dtype=torch.float32)

        latents = {
            "prompt_latents": prompt_latents,
            "vae_latents": vae_latents,
            "clip_latents": clip_latents,
        }
        return latents

    def get_dummy_inputs_with_latents(self, device, seed=0):
        # image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device)
        # image = image.cpu().permute(0, 2, 3, 1)[0]
        # image = Image.fromarray(np.uint8(image)).convert("RGB")
        image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/unidiffuser/unidiffuser_example_image.jpg",
        )
        image = image.resize((32, 32))
        latents = self.get_fixed_latents(device, seed=seed)

        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)

        inputs = {
            "prompt": "an elephant under the sea",
            "image": image,
            "generator": generator,
            "num_inference_steps": 2,
            "guidance_scale": 6.0,
170
            "output_type": "np",
171
172
173
174
175
176
            "prompt_latents": latents.get("prompt_latents"),
            "vae_latents": latents.get("vae_latents"),
            "clip_latents": latents.get("clip_latents"),
        }
        return inputs

177
178
179
180
181
182
    def test_dict_tuple_outputs_equivalent(self):
        expected_slice = None
        if torch_device == "cpu":
            expected_slice = np.array([0.7489, 0.3722, 0.4475, 0.5630, 0.5923, 0.4992, 0.3936, 0.5844, 0.4975])
        super().test_dict_tuple_outputs_equivalent(expected_slice=expected_slice)

183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
    def test_unidiffuser_default_joint_v0(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        components = self.get_dummy_components()
        unidiffuser_pipe = UniDiffuserPipeline(**components)
        unidiffuser_pipe = unidiffuser_pipe.to(device)
        unidiffuser_pipe.set_progress_bar_config(disable=None)

        # Set mode to 'joint'
        unidiffuser_pipe.set_joint_mode()
        assert unidiffuser_pipe.mode == "joint"

        # inputs = self.get_dummy_inputs(device)
        inputs = self.get_dummy_inputs_with_latents(device)
        # Delete prompt and image for joint inference.
        del inputs["prompt"]
        del inputs["image"]
        sample = unidiffuser_pipe(**inputs)
        image = sample.images
        text = sample.text
        assert image.shape == (1, 32, 32, 3)

        image_slice = image[0, -3:, -3:, -1]
        expected_img_slice = np.array([0.5760, 0.6270, 0.6571, 0.4965, 0.4638, 0.5663, 0.5254, 0.5068, 0.5716])
        assert np.abs(image_slice.flatten() - expected_img_slice).max() < 1e-3

        expected_text_prefix = " no no no "
        assert text[0][:10] == expected_text_prefix

    def test_unidiffuser_default_joint_no_cfg_v0(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        components = self.get_dummy_components()
        unidiffuser_pipe = UniDiffuserPipeline(**components)
        unidiffuser_pipe = unidiffuser_pipe.to(device)
        unidiffuser_pipe.set_progress_bar_config(disable=None)

        # Set mode to 'joint'
        unidiffuser_pipe.set_joint_mode()
        assert unidiffuser_pipe.mode == "joint"

        # inputs = self.get_dummy_inputs(device)
        inputs = self.get_dummy_inputs_with_latents(device)
        # Delete prompt and image for joint inference.
        del inputs["prompt"]
        del inputs["image"]
        # Set guidance scale to 1.0 to turn off CFG
        inputs["guidance_scale"] = 1.0
        sample = unidiffuser_pipe(**inputs)
        image = sample.images
        text = sample.text
        assert image.shape == (1, 32, 32, 3)

        image_slice = image[0, -3:, -3:, -1]
        expected_img_slice = np.array([0.5760, 0.6270, 0.6571, 0.4965, 0.4638, 0.5663, 0.5254, 0.5068, 0.5716])
        assert np.abs(image_slice.flatten() - expected_img_slice).max() < 1e-3

        expected_text_prefix = " no no no "
        assert text[0][:10] == expected_text_prefix

    def test_unidiffuser_default_text2img_v0(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        components = self.get_dummy_components()
        unidiffuser_pipe = UniDiffuserPipeline(**components)
        unidiffuser_pipe = unidiffuser_pipe.to(device)
        unidiffuser_pipe.set_progress_bar_config(disable=None)

        # Set mode to 'text2img'
        unidiffuser_pipe.set_text_to_image_mode()
        assert unidiffuser_pipe.mode == "text2img"

        inputs = self.get_dummy_inputs_with_latents(device)
        # Delete image for text-conditioned image generation
        del inputs["image"]
        image = unidiffuser_pipe(**inputs).images
        assert image.shape == (1, 32, 32, 3)

        image_slice = image[0, -3:, -3:, -1]
        expected_slice = np.array([0.5758, 0.6269, 0.6570, 0.4967, 0.4639, 0.5664, 0.5257, 0.5067, 0.5715])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3

    def test_unidiffuser_default_image_0(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        components = self.get_dummy_components()
        unidiffuser_pipe = UniDiffuserPipeline(**components)
        unidiffuser_pipe = unidiffuser_pipe.to(device)
        unidiffuser_pipe.set_progress_bar_config(disable=None)

        # Set mode to 'img'
        unidiffuser_pipe.set_image_mode()
        assert unidiffuser_pipe.mode == "img"

        inputs = self.get_dummy_inputs(device)
        # Delete prompt and image for unconditional ("marginal") text generation.
        del inputs["prompt"]
        del inputs["image"]
        image = unidiffuser_pipe(**inputs).images
        assert image.shape == (1, 32, 32, 3)

        image_slice = image[0, -3:, -3:, -1]
        expected_slice = np.array([0.5760, 0.6270, 0.6571, 0.4966, 0.4638, 0.5663, 0.5254, 0.5068, 0.5715])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3

    def test_unidiffuser_default_text_v0(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        components = self.get_dummy_components()
        unidiffuser_pipe = UniDiffuserPipeline(**components)
        unidiffuser_pipe = unidiffuser_pipe.to(device)
        unidiffuser_pipe.set_progress_bar_config(disable=None)

        # Set mode to 'img'
        unidiffuser_pipe.set_text_mode()
        assert unidiffuser_pipe.mode == "text"

        inputs = self.get_dummy_inputs(device)
        # Delete prompt and image for unconditional ("marginal") text generation.
        del inputs["prompt"]
        del inputs["image"]
        text = unidiffuser_pipe(**inputs).text

        expected_text_prefix = " no no no "
        assert text[0][:10] == expected_text_prefix

    def test_unidiffuser_default_img2text_v0(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        components = self.get_dummy_components()
        unidiffuser_pipe = UniDiffuserPipeline(**components)
        unidiffuser_pipe = unidiffuser_pipe.to(device)
        unidiffuser_pipe.set_progress_bar_config(disable=None)

        # Set mode to 'img2text'
        unidiffuser_pipe.set_image_to_text_mode()
        assert unidiffuser_pipe.mode == "img2text"

        inputs = self.get_dummy_inputs_with_latents(device)
        # Delete text for image-conditioned text generation
        del inputs["prompt"]
        text = unidiffuser_pipe(**inputs).text

        expected_text_prefix = " no no no "
        assert text[0][:10] == expected_text_prefix

    def test_unidiffuser_default_joint_v1(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        unidiffuser_pipe = UniDiffuserPipeline.from_pretrained("hf-internal-testing/unidiffuser-test-v1")
        unidiffuser_pipe = unidiffuser_pipe.to(device)
        unidiffuser_pipe.set_progress_bar_config(disable=None)

        # Set mode to 'joint'
        unidiffuser_pipe.set_joint_mode()
        assert unidiffuser_pipe.mode == "joint"

        # inputs = self.get_dummy_inputs(device)
        inputs = self.get_dummy_inputs_with_latents(device)
        # Delete prompt and image for joint inference.
        del inputs["prompt"]
        del inputs["image"]
        inputs["data_type"] = 1
        sample = unidiffuser_pipe(**inputs)
        image = sample.images
        text = sample.text
        assert image.shape == (1, 32, 32, 3)

        image_slice = image[0, -3:, -3:, -1]
        expected_img_slice = np.array([0.5760, 0.6270, 0.6571, 0.4965, 0.4638, 0.5663, 0.5254, 0.5068, 0.5716])
        assert np.abs(image_slice.flatten() - expected_img_slice).max() < 1e-3

        expected_text_prefix = " no no no "
        assert text[0][:10] == expected_text_prefix

    def test_unidiffuser_default_text2img_v1(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        unidiffuser_pipe = UniDiffuserPipeline.from_pretrained("hf-internal-testing/unidiffuser-test-v1")
        unidiffuser_pipe = unidiffuser_pipe.to(device)
        unidiffuser_pipe.set_progress_bar_config(disable=None)

        # Set mode to 'text2img'
        unidiffuser_pipe.set_text_to_image_mode()
        assert unidiffuser_pipe.mode == "text2img"

        inputs = self.get_dummy_inputs_with_latents(device)
        # Delete image for text-conditioned image generation
        del inputs["image"]
        image = unidiffuser_pipe(**inputs).images
        assert image.shape == (1, 32, 32, 3)

        image_slice = image[0, -3:, -3:, -1]
        expected_slice = np.array([0.5758, 0.6269, 0.6570, 0.4967, 0.4639, 0.5664, 0.5257, 0.5067, 0.5715])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3

    def test_unidiffuser_default_img2text_v1(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        unidiffuser_pipe = UniDiffuserPipeline.from_pretrained("hf-internal-testing/unidiffuser-test-v1")
        unidiffuser_pipe = unidiffuser_pipe.to(device)
        unidiffuser_pipe.set_progress_bar_config(disable=None)

        # Set mode to 'img2text'
        unidiffuser_pipe.set_image_to_text_mode()
        assert unidiffuser_pipe.mode == "img2text"

        inputs = self.get_dummy_inputs_with_latents(device)
        # Delete text for image-conditioned text generation
        del inputs["prompt"]
        text = unidiffuser_pipe(**inputs).text

        expected_text_prefix = " no no no "
        assert text[0][:10] == expected_text_prefix

    def test_unidiffuser_text2img_multiple_images(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        components = self.get_dummy_components()
        unidiffuser_pipe = UniDiffuserPipeline(**components)
        unidiffuser_pipe = unidiffuser_pipe.to(device)
        unidiffuser_pipe.set_progress_bar_config(disable=None)

        # Set mode to 'text2img'
        unidiffuser_pipe.set_text_to_image_mode()
        assert unidiffuser_pipe.mode == "text2img"

        inputs = self.get_dummy_inputs(device)
        # Delete image for text-conditioned image generation
        del inputs["image"]
        inputs["num_images_per_prompt"] = 2
        inputs["num_prompts_per_image"] = 3
        image = unidiffuser_pipe(**inputs).images
        assert image.shape == (2, 32, 32, 3)

    def test_unidiffuser_img2text_multiple_prompts(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        components = self.get_dummy_components()
        unidiffuser_pipe = UniDiffuserPipeline(**components)
        unidiffuser_pipe = unidiffuser_pipe.to(device)
        unidiffuser_pipe.set_progress_bar_config(disable=None)

        # Set mode to 'img2text'
        unidiffuser_pipe.set_image_to_text_mode()
        assert unidiffuser_pipe.mode == "img2text"

        inputs = self.get_dummy_inputs(device)
        # Delete text for image-conditioned text generation
        del inputs["prompt"]
        inputs["num_images_per_prompt"] = 2
        inputs["num_prompts_per_image"] = 3
        text = unidiffuser_pipe(**inputs).text

        assert len(text) == 3

    def test_unidiffuser_text2img_multiple_images_with_latents(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        components = self.get_dummy_components()
        unidiffuser_pipe = UniDiffuserPipeline(**components)
        unidiffuser_pipe = unidiffuser_pipe.to(device)
        unidiffuser_pipe.set_progress_bar_config(disable=None)

        # Set mode to 'text2img'
        unidiffuser_pipe.set_text_to_image_mode()
        assert unidiffuser_pipe.mode == "text2img"

        inputs = self.get_dummy_inputs_with_latents(device)
        # Delete image for text-conditioned image generation
        del inputs["image"]
        inputs["num_images_per_prompt"] = 2
        inputs["num_prompts_per_image"] = 3
        image = unidiffuser_pipe(**inputs).images
        assert image.shape == (2, 32, 32, 3)

    def test_unidiffuser_img2text_multiple_prompts_with_latents(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        components = self.get_dummy_components()
        unidiffuser_pipe = UniDiffuserPipeline(**components)
        unidiffuser_pipe = unidiffuser_pipe.to(device)
        unidiffuser_pipe.set_progress_bar_config(disable=None)

        # Set mode to 'img2text'
        unidiffuser_pipe.set_image_to_text_mode()
        assert unidiffuser_pipe.mode == "img2text"

        inputs = self.get_dummy_inputs_with_latents(device)
        # Delete text for image-conditioned text generation
        del inputs["prompt"]
        inputs["num_images_per_prompt"] = 2
        inputs["num_prompts_per_image"] = 3
        text = unidiffuser_pipe(**inputs).text

        assert len(text) == 3

467
468
469
    def test_inference_batch_single_identical(self):
        super().test_inference_batch_single_identical(expected_max_diff=2e-4)

470
471
    @require_torch_accelerator
    def test_unidiffuser_default_joint_v1_fp16(self):
472
473
474
        unidiffuser_pipe = UniDiffuserPipeline.from_pretrained(
            "hf-internal-testing/unidiffuser-test-v1", torch_dtype=torch.float16
        )
475
        unidiffuser_pipe = unidiffuser_pipe.to(torch_device)
476
477
478
479
480
481
        unidiffuser_pipe.set_progress_bar_config(disable=None)

        # Set mode to 'joint'
        unidiffuser_pipe.set_joint_mode()
        assert unidiffuser_pipe.mode == "joint"

482
        inputs = self.get_dummy_inputs_with_latents(torch_device)
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
        # Delete prompt and image for joint inference.
        del inputs["prompt"]
        del inputs["image"]
        inputs["data_type"] = 1
        sample = unidiffuser_pipe(**inputs)
        image = sample.images
        text = sample.text
        assert image.shape == (1, 32, 32, 3)

        image_slice = image[0, -3:, -3:, -1]
        expected_img_slice = np.array([0.5049, 0.5498, 0.5854, 0.3052, 0.4460, 0.6489, 0.5122, 0.4810, 0.6138])
        assert np.abs(image_slice.flatten() - expected_img_slice).max() < 1e-3

        expected_text_prefix = '" This This'
        assert text[0][: len(expected_text_prefix)] == expected_text_prefix

499
500
    @require_torch_accelerator
    def test_unidiffuser_default_text2img_v1_fp16(self):
501
502
503
        unidiffuser_pipe = UniDiffuserPipeline.from_pretrained(
            "hf-internal-testing/unidiffuser-test-v1", torch_dtype=torch.float16
        )
504
        unidiffuser_pipe = unidiffuser_pipe.to(torch_device)
505
506
507
508
509
510
        unidiffuser_pipe.set_progress_bar_config(disable=None)

        # Set mode to 'text2img'
        unidiffuser_pipe.set_text_to_image_mode()
        assert unidiffuser_pipe.mode == "text2img"

511
        inputs = self.get_dummy_inputs_with_latents(torch_device)
512
513
514
515
516
517
518
519
520
521
522
        # Delete prompt and image for joint inference.
        del inputs["image"]
        inputs["data_type"] = 1
        sample = unidiffuser_pipe(**inputs)
        image = sample.images
        assert image.shape == (1, 32, 32, 3)

        image_slice = image[0, -3:, -3:, -1]
        expected_img_slice = np.array([0.5054, 0.5498, 0.5854, 0.3052, 0.4458, 0.6489, 0.5122, 0.4810, 0.6138])
        assert np.abs(image_slice.flatten() - expected_img_slice).max() < 1e-3

523
524
    @require_torch_accelerator
    def test_unidiffuser_default_img2text_v1_fp16(self):
525
526
527
        unidiffuser_pipe = UniDiffuserPipeline.from_pretrained(
            "hf-internal-testing/unidiffuser-test-v1", torch_dtype=torch.float16
        )
528
        unidiffuser_pipe = unidiffuser_pipe.to(torch_device)
529
530
531
532
533
534
        unidiffuser_pipe.set_progress_bar_config(disable=None)

        # Set mode to 'img2text'
        unidiffuser_pipe.set_image_to_text_mode()
        assert unidiffuser_pipe.mode == "img2text"

535
        inputs = self.get_dummy_inputs_with_latents(torch_device)
536
537
538
539
540
541
542
543
        # Delete prompt and image for joint inference.
        del inputs["prompt"]
        inputs["data_type"] = 1
        text = unidiffuser_pipe(**inputs).text

        expected_text_prefix = '" This This'
        assert text[0][: len(expected_text_prefix)] == expected_text_prefix

544
    @unittest.skip(
545
        "Test not supported because it has a bunch of direct configs at init and also, this pipeline isn't used that much now."
546
547
548
549
    )
    def test_encode_prompt_works_in_isolation():
        pass

550

551
@nightly
552
@require_torch_accelerator
553
class UniDiffuserPipelineSlowTests(unittest.TestCase):
554
555
556
    def setUp(self):
        super().setUp()
        gc.collect()
557
        backend_empty_cache(torch_device)
558

559
560
561
    def tearDown(self):
        super().tearDown()
        gc.collect()
562
        backend_empty_cache(torch_device)
563
564
565
566
567
568
569
570
571
572
573
574

    def get_inputs(self, device, seed=0, generate_latents=False):
        generator = torch.manual_seed(seed)
        image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/unidiffuser/unidiffuser_example_image.jpg"
        )
        inputs = {
            "prompt": "an elephant under the sea",
            "image": image,
            "generator": generator,
            "num_inference_steps": 3,
            "guidance_scale": 8.0,
575
            "output_type": "np",
576
577
578
579
580
581
582
583
        }
        if generate_latents:
            latents = self.get_fixed_latents(device, seed=seed)
            for latent_name, latent_tensor in latents.items():
                inputs[latent_name] = latent_tensor
        return inputs

    def get_fixed_latents(self, device, seed=0):
584
        if isinstance(device, str):
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
            device = torch.device(device)
        latent_device = torch.device("cpu")
        generator = torch.Generator(device=latent_device).manual_seed(seed)
        # Hardcode the shapes for now.
        prompt_latents = randn_tensor((1, 77, 768), generator=generator, device=device, dtype=torch.float32)
        vae_latents = randn_tensor((1, 4, 64, 64), generator=generator, device=device, dtype=torch.float32)
        clip_latents = randn_tensor((1, 1, 512), generator=generator, device=device, dtype=torch.float32)

        # Move latents onto desired device.
        prompt_latents = prompt_latents.to(device)
        vae_latents = vae_latents.to(device)
        clip_latents = clip_latents.to(device)

        latents = {
            "prompt_latents": prompt_latents,
            "vae_latents": vae_latents,
            "clip_latents": clip_latents,
        }
        return latents

    def test_unidiffuser_default_joint_v1(self):
        pipe = UniDiffuserPipeline.from_pretrained("thu-ml/unidiffuser-v1")
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

        # inputs = self.get_dummy_inputs(device)
        inputs = self.get_inputs(device=torch_device, generate_latents=True)
        # Delete prompt and image for joint inference.
        del inputs["prompt"]
        del inputs["image"]
        sample = pipe(**inputs)
        image = sample.images
        text = sample.text
        assert image.shape == (1, 512, 512, 3)

        image_slice = image[0, -3:, -3:, -1]
        expected_img_slice = np.array([0.2402, 0.2375, 0.2285, 0.2378, 0.2407, 0.2263, 0.2354, 0.2307, 0.2520])
        assert np.abs(image_slice.flatten() - expected_img_slice).max() < 1e-1

625
        expected_text_prefix = "a living room"
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
        assert text[0][: len(expected_text_prefix)] == expected_text_prefix

    def test_unidiffuser_default_text2img_v1(self):
        pipe = UniDiffuserPipeline.from_pretrained("thu-ml/unidiffuser-v1")
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

        inputs = self.get_inputs(device=torch_device, generate_latents=True)
        del inputs["image"]
        sample = pipe(**inputs)
        image = sample.images
        assert image.shape == (1, 512, 512, 3)

        image_slice = image[0, -3:, -3:, -1]
        expected_slice = np.array([0.0242, 0.0103, 0.0022, 0.0129, 0.0000, 0.0090, 0.0376, 0.0508, 0.0005])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1

    def test_unidiffuser_default_img2text_v1(self):
        pipe = UniDiffuserPipeline.from_pretrained("thu-ml/unidiffuser-v1")
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

        inputs = self.get_inputs(device=torch_device, generate_latents=True)
        del inputs["prompt"]
        sample = pipe(**inputs)
        text = sample.text

        expected_text_prefix = "An astronaut"
        assert text[0][: len(expected_text_prefix)] == expected_text_prefix

658
659

@nightly
660
@require_torch_accelerator
661
class UniDiffuserPipelineNightlyTests(unittest.TestCase):
662
663
664
    def setUp(self):
        super().setUp()
        gc.collect()
665
        backend_empty_cache(torch_device)
666

667
668
669
    def tearDown(self):
        super().tearDown()
        gc.collect()
670
        backend_empty_cache(torch_device)
671
672
673
674
675
676
677
678
679
680
681
682

    def get_inputs(self, device, seed=0, generate_latents=False):
        generator = torch.manual_seed(seed)
        image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/unidiffuser/unidiffuser_example_image.jpg"
        )
        inputs = {
            "prompt": "an elephant under the sea",
            "image": image,
            "generator": generator,
            "num_inference_steps": 3,
            "guidance_scale": 8.0,
683
            "output_type": "np",
684
685
686
687
688
689
690
691
        }
        if generate_latents:
            latents = self.get_fixed_latents(device, seed=seed)
            for latent_name, latent_tensor in latents.items():
                inputs[latent_name] = latent_tensor
        return inputs

    def get_fixed_latents(self, device, seed=0):
692
        if isinstance(device, str):
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
            device = torch.device(device)
        latent_device = torch.device("cpu")
        generator = torch.Generator(device=latent_device).manual_seed(seed)
        # Hardcode the shapes for now.
        prompt_latents = randn_tensor((1, 77, 768), generator=generator, device=device, dtype=torch.float32)
        vae_latents = randn_tensor((1, 4, 64, 64), generator=generator, device=device, dtype=torch.float32)
        clip_latents = randn_tensor((1, 1, 512), generator=generator, device=device, dtype=torch.float32)

        # Move latents onto desired device.
        prompt_latents = prompt_latents.to(device)
        vae_latents = vae_latents.to(device)
        clip_latents = clip_latents.to(device)

        latents = {
            "prompt_latents": prompt_latents,
            "vae_latents": vae_latents,
            "clip_latents": clip_latents,
        }
        return latents

713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
    def test_unidiffuser_default_joint_v1_fp16(self):
        pipe = UniDiffuserPipeline.from_pretrained("thu-ml/unidiffuser-v1", torch_dtype=torch.float16)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

        # inputs = self.get_dummy_inputs(device)
        inputs = self.get_inputs(device=torch_device, generate_latents=True)
        # Delete prompt and image for joint inference.
        del inputs["prompt"]
        del inputs["image"]
        sample = pipe(**inputs)
        image = sample.images
        text = sample.text
        assert image.shape == (1, 512, 512, 3)

        image_slice = image[0, -3:, -3:, -1]
        expected_img_slice = np.array([0.2402, 0.2375, 0.2285, 0.2378, 0.2407, 0.2263, 0.2354, 0.2307, 0.2520])
731
        assert np.abs(image_slice.flatten() - expected_img_slice).max() < 2e-1
732

733
        expected_text_prefix = "a living room"
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
        assert text[0][: len(expected_text_prefix)] == expected_text_prefix

    def test_unidiffuser_default_text2img_v1_fp16(self):
        pipe = UniDiffuserPipeline.from_pretrained("thu-ml/unidiffuser-v1", torch_dtype=torch.float16)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

        inputs = self.get_inputs(device=torch_device, generate_latents=True)
        del inputs["image"]
        sample = pipe(**inputs)
        image = sample.images
        assert image.shape == (1, 512, 512, 3)

        image_slice = image[0, -3:, -3:, -1]
        expected_slice = np.array([0.0242, 0.0103, 0.0022, 0.0129, 0.0000, 0.0090, 0.0376, 0.0508, 0.0005])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1

    def test_unidiffuser_default_img2text_v1_fp16(self):
        pipe = UniDiffuserPipeline.from_pretrained("thu-ml/unidiffuser-v1", torch_dtype=torch.float16)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

        inputs = self.get_inputs(device=torch_device, generate_latents=True)
        del inputs["prompt"]
        sample = pipe(**inputs)
        text = sample.text

        expected_text_prefix = "An astronaut"
        assert text[0][: len(expected_text_prefix)] == expected_text_prefix