model_loading_utils.py 20.8 KB
Newer Older
1
# coding=utf-8
2
# Copyright 2025 The HuggingFace Inc. team.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# Copyright (c) 2022, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

17
import importlib
18
19
import inspect
import os
20
from array import array
21
from collections import OrderedDict
22
from pathlib import Path
hlky's avatar
hlky committed
23
from typing import Dict, Iterator, List, Optional, Tuple, Union
24
25
26

import safetensors
import torch
Marc Sun's avatar
Marc Sun committed
27
from huggingface_hub import DDUFEntry
28
from huggingface_hub.utils import EntryNotFoundError
29
30

from ..utils import (
31
    GGUF_FILE_EXTENSION,
32
    SAFE_WEIGHTS_INDEX_NAME,
33
    SAFETENSORS_FILE_EXTENSION,
34
35
36
    WEIGHTS_INDEX_NAME,
    _add_variant,
    _get_model_file,
37
    deprecate,
38
    is_accelerate_available,
39
40
    is_gguf_available,
    is_torch_available,
41
42
43
44
45
46
47
    is_torch_version,
    logging,
)


logger = logging.get_logger(__name__)

48
49
50
51
52
53
54
_CLASS_REMAPPING_DICT = {
    "Transformer2DModel": {
        "ada_norm_zero": "DiTTransformer2DModel",
        "ada_norm_single": "PixArtTransformer2DModel",
    }
}

55
56
57
58
59
60
61

if is_accelerate_available():
    from accelerate import infer_auto_device_map
    from accelerate.utils import get_balanced_memory, get_max_memory, set_module_tensor_to_device


# Adapted from `transformers` (see modeling_utils.py)
62
63
64
def _determine_device_map(
    model: torch.nn.Module, device_map, max_memory, torch_dtype, keep_in_fp32_modules=[], hf_quantizer=None
):
65
    if isinstance(device_map, str):
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
        special_dtypes = {}
        if hf_quantizer is not None:
            special_dtypes.update(hf_quantizer.get_special_dtypes_update(model, torch_dtype))
        special_dtypes.update(
            {
                name: torch.float32
                for name, _ in model.named_parameters()
                if any(m in name for m in keep_in_fp32_modules)
            }
        )

        target_dtype = torch_dtype
        if hf_quantizer is not None:
            target_dtype = hf_quantizer.adjust_target_dtype(target_dtype)

81
82
83
        no_split_modules = model._get_no_split_modules(device_map)
        device_map_kwargs = {"no_split_module_classes": no_split_modules}

84
85
86
87
88
89
90
91
        if "special_dtypes" in inspect.signature(infer_auto_device_map).parameters:
            device_map_kwargs["special_dtypes"] = special_dtypes
        elif len(special_dtypes) > 0:
            logger.warning(
                "This model has some weights that should be kept in higher precision, you need to upgrade "
                "`accelerate` to properly deal with them (`pip install --upgrade accelerate`)."
            )

92
93
94
95
96
97
98
99
100
101
102
        if device_map != "sequential":
            max_memory = get_balanced_memory(
                model,
                dtype=torch_dtype,
                low_zero=(device_map == "balanced_low_0"),
                max_memory=max_memory,
                **device_map_kwargs,
            )
        else:
            max_memory = get_max_memory(max_memory)

103
104
105
        if hf_quantizer is not None:
            max_memory = hf_quantizer.adjust_max_memory(max_memory)

106
        device_map_kwargs["max_memory"] = max_memory
107
108
109
110
        device_map = infer_auto_device_map(model, dtype=target_dtype, **device_map_kwargs)

        if hf_quantizer is not None:
            hf_quantizer.validate_environment(device_map=device_map)
111
112
113
114

    return device_map


115
116
def _fetch_remapped_cls_from_config(config, old_class):
    previous_class_name = old_class.__name__
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
    remapped_class_name = _CLASS_REMAPPING_DICT.get(previous_class_name).get(config["norm_type"], None)

    # Details:
    # https://github.com/huggingface/diffusers/pull/7647#discussion_r1621344818
    if remapped_class_name:
        # load diffusers library to import compatible and original scheduler
        diffusers_library = importlib.import_module(__name__.split(".")[0])
        remapped_class = getattr(diffusers_library, remapped_class_name)
        logger.info(
            f"Changing class object to be of `{remapped_class_name}` type from `{previous_class_name}` type."
            f"This is because `{previous_class_name}` is scheduled to be deprecated in a future version. Note that this"
            " DOESN'T affect the final results."
        )
        return remapped_class
    else:
        return old_class
133
134


135
def load_state_dict(
Marc Sun's avatar
Marc Sun committed
136
137
138
139
    checkpoint_file: Union[str, os.PathLike],
    variant: Optional[str] = None,
    dduf_entries: Optional[Dict[str, DDUFEntry]] = None,
    disable_mmap: bool = False,
140
):
141
142
143
    """
    Reads a checkpoint file, returning properly formatted errors if they arise.
    """
144
145
146
147
    # TODO: We merge the sharded checkpoints in case we're doing quantization. We can revisit this change
    # when refactoring the _merge_sharded_checkpoints() method later.
    if isinstance(checkpoint_file, dict):
        return checkpoint_file
148
149
150
    try:
        file_extension = os.path.basename(checkpoint_file).split(".")[-1]
        if file_extension == SAFETENSORS_FILE_EXTENSION:
Marc Sun's avatar
Marc Sun committed
151
152
153
154
            if dduf_entries:
                # tensors are loaded on cpu
                with dduf_entries[checkpoint_file].as_mmap() as mm:
                    return safetensors.torch.load(mm)
155
156
157
158
            if disable_mmap:
                return safetensors.torch.load(open(checkpoint_file, "rb").read())
            else:
                return safetensors.torch.load_file(checkpoint_file, device="cpu")
159
160
        elif file_extension == GGUF_FILE_EXTENSION:
            return load_gguf_checkpoint(checkpoint_file)
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
        else:
            weights_only_kwarg = {"weights_only": True} if is_torch_version(">=", "1.13") else {}
            return torch.load(
                checkpoint_file,
                map_location="cpu",
                **weights_only_kwarg,
            )
    except Exception as e:
        try:
            with open(checkpoint_file) as f:
                if f.read().startswith("version"):
                    raise OSError(
                        "You seem to have cloned a repository without having git-lfs installed. Please install "
                        "git-lfs and run `git lfs install` followed by `git lfs pull` in the folder "
                        "you cloned."
                    )
                else:
                    raise ValueError(
                        f"Unable to locate the file {checkpoint_file} which is necessary to load this pretrained "
                        "model. Make sure you have saved the model properly."
                    ) from e
        except (UnicodeDecodeError, ValueError):
            raise OSError(
                f"Unable to load weights from checkpoint file for '{checkpoint_file}' " f"at '{checkpoint_file}'. "
            )


def load_model_dict_into_meta(
    model,
    state_dict: OrderedDict,
    device: Optional[Union[str, torch.device]] = None,
    dtype: Optional[Union[str, torch.dtype]] = None,
    model_name_or_path: Optional[str] = None,
194
195
    hf_quantizer=None,
    keep_in_fp32_modules=None,
hlky's avatar
hlky committed
196
    named_buffers: Optional[Iterator[Tuple[str, torch.Tensor]]] = None,
197
) -> List[str]:
198
199
    if device is not None and not isinstance(device, (str, torch.device)):
        raise ValueError(f"Expected device to have type `str` or `torch.device`, but got {type(device)=}.")
200
201
    if hf_quantizer is None:
        device = device or torch.device("cpu")
202
    dtype = dtype or torch.float32
203
    is_quantized = hf_quantizer is not None
204
205
206

    accepts_dtype = "dtype" in set(inspect.signature(set_module_tensor_to_device).parameters.keys())
    empty_state_dict = model.state_dict()
207
208
    unexpected_keys = [param_name for param_name in state_dict if param_name not in empty_state_dict]

209
210
211
212
    for param_name, param in state_dict.items():
        if param_name not in empty_state_dict:
            continue

213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
        set_module_kwargs = {}
        # We convert floating dtypes to the `dtype` passed. We also want to keep the buffers/params
        # in int/uint/bool and not cast them.
        # TODO: revisit cases when param.dtype == torch.float8_e4m3fn
        if torch.is_floating_point(param):
            if (
                keep_in_fp32_modules is not None
                and any(
                    module_to_keep_in_fp32 in param_name.split(".") for module_to_keep_in_fp32 in keep_in_fp32_modules
                )
                and dtype == torch.float16
            ):
                param = param.to(torch.float32)
                if accepts_dtype:
                    set_module_kwargs["dtype"] = torch.float32
            else:
                param = param.to(dtype)
                if accepts_dtype:
                    set_module_kwargs["dtype"] = dtype

        # bnb params are flattened.
234
        # gguf quants have a different shape based on the type of quantization applied
235
236
        if empty_state_dict[param_name].shape != param.shape:
            if (
Aryan's avatar
Aryan committed
237
                is_quantized
238
239
240
                and hf_quantizer.pre_quantized
                and hf_quantizer.check_if_quantized_param(model, param, param_name, state_dict, param_device=device)
            ):
241
                hf_quantizer.check_quantized_param_shape(param_name, empty_state_dict[param_name], param)
Aryan's avatar
Aryan committed
242
            else:
243
244
                model_name_or_path_str = f"{model_name_or_path} " if model_name_or_path is not None else ""
                raise ValueError(
245
                    f"Cannot load {model_name_or_path_str} because {param_name} expected shape {empty_state_dict[param_name].shape}, but got {param.shape}. If you want to instead overwrite randomly initialized weights, please make sure to pass both `low_cpu_mem_usage=False` and `ignore_mismatched_sizes=True`. For more information, see also: https://github.com/huggingface/diffusers/issues/1619#issuecomment-1345604389 as an example."
246
                )
247

248
249
        if is_quantized and (
            hf_quantizer.check_if_quantized_param(model, param, param_name, state_dict, param_device=device)
250
        ):
251
252
            hf_quantizer.create_quantized_param(model, param, param_name, device, state_dict, unexpected_keys)
        else:
253
254
            if accepts_dtype:
                set_module_tensor_to_device(model, param_name, device, value=param, **set_module_kwargs)
hlky's avatar
hlky committed
255
256
257
258
259
260
261
262
263
264
265
266
267
268
            else:
                set_module_tensor_to_device(model, param_name, device, value=param)

    if named_buffers is None:
        return unexpected_keys

    for param_name, param in named_buffers:
        if is_quantized and (
            hf_quantizer.check_if_quantized_param(model, param, param_name, state_dict, param_device=device)
        ):
            hf_quantizer.create_quantized_param(model, param, param_name, device, state_dict, unexpected_keys)
        else:
            if accepts_dtype:
                set_module_tensor_to_device(model, param_name, device, value=param, **set_module_kwargs)
269
270
271
            else:
                set_module_tensor_to_device(model, param_name, device, value=param)

272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
    return unexpected_keys


def _load_state_dict_into_model(model_to_load, state_dict: OrderedDict) -> List[str]:
    # Convert old format to new format if needed from a PyTorch state_dict
    # copy state_dict so _load_from_state_dict can modify it
    state_dict = state_dict.copy()
    error_msgs = []

    # PyTorch's `_load_from_state_dict` does not copy parameters in a module's descendants
    # so we need to apply the function recursively.
    def load(module: torch.nn.Module, prefix: str = ""):
        args = (state_dict, prefix, {}, True, [], [], error_msgs)
        module._load_from_state_dict(*args)

        for name, child in module._modules.items():
            if child is not None:
                load(child, prefix + name + ".")

    load(model_to_load)

    return error_msgs
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309


def _fetch_index_file(
    is_local,
    pretrained_model_name_or_path,
    subfolder,
    use_safetensors,
    cache_dir,
    variant,
    force_download,
    proxies,
    local_files_only,
    token,
    revision,
    user_agent,
    commit_hash,
Marc Sun's avatar
Marc Sun committed
310
    dduf_entries: Optional[Dict[str, DDUFEntry]] = None,
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
):
    if is_local:
        index_file = Path(
            pretrained_model_name_or_path,
            subfolder or "",
            _add_variant(SAFE_WEIGHTS_INDEX_NAME if use_safetensors else WEIGHTS_INDEX_NAME, variant),
        )
    else:
        index_file_in_repo = Path(
            subfolder or "",
            _add_variant(SAFE_WEIGHTS_INDEX_NAME if use_safetensors else WEIGHTS_INDEX_NAME, variant),
        ).as_posix()
        try:
            index_file = _get_model_file(
                pretrained_model_name_or_path,
                weights_name=index_file_in_repo,
                cache_dir=cache_dir,
                force_download=force_download,
                proxies=proxies,
                local_files_only=local_files_only,
                token=token,
                revision=revision,
333
                subfolder=None,
334
335
                user_agent=user_agent,
                commit_hash=commit_hash,
Marc Sun's avatar
Marc Sun committed
336
                dduf_entries=dduf_entries,
337
            )
Marc Sun's avatar
Marc Sun committed
338
339
            if not dduf_entries:
                index_file = Path(index_file)
340
341
342
343
        except (EntryNotFoundError, EnvironmentError):
            index_file = None

    return index_file
344
345


346
347
# Adapted from
# https://github.com/bghira/SimpleTuner/blob/cea2457ab063f6dedb9e697830ae68a96be90641/helpers/training/save_hooks.py#L64
Marc Sun's avatar
Marc Sun committed
348
349
350
def _merge_sharded_checkpoints(
    sharded_ckpt_cached_folder, sharded_metadata, dduf_entries: Optional[Dict[str, DDUFEntry]] = None
):
351
352
353
354
355
356
357
358
359
360
361
362
    weight_map = sharded_metadata.get("weight_map", None)
    if weight_map is None:
        raise KeyError("'weight_map' key not found in the shard index file.")

    # Collect all unique safetensors files from weight_map
    files_to_load = set(weight_map.values())
    is_safetensors = all(f.endswith(".safetensors") for f in files_to_load)
    merged_state_dict = {}

    # Load tensors from each unique file
    for file_name in files_to_load:
        part_file_path = os.path.join(sharded_ckpt_cached_folder, file_name)
Marc Sun's avatar
Marc Sun committed
363
364
365
366
367
368
        if dduf_entries:
            if part_file_path not in dduf_entries:
                raise FileNotFoundError(f"Part file {file_name} not found.")
        else:
            if not os.path.exists(part_file_path):
                raise FileNotFoundError(f"Part file {file_name} not found.")
369
370

        if is_safetensors:
Marc Sun's avatar
Marc Sun committed
371
372
373
374
375
376
377
378
379
            if dduf_entries:
                with dduf_entries[part_file_path].as_mmap() as mm:
                    tensors = safetensors.torch.load(mm)
                    merged_state_dict.update(tensors)
            else:
                with safetensors.safe_open(part_file_path, framework="pt", device="cpu") as f:
                    for tensor_key in f.keys():
                        if tensor_key in weight_map:
                            merged_state_dict[tensor_key] = f.get_tensor(tensor_key)
380
381
382
383
384
385
        else:
            merged_state_dict.update(torch.load(part_file_path, weights_only=True, map_location="cpu"))

    return merged_state_dict


386
387
388
389
390
391
392
393
394
395
396
397
398
399
def _fetch_index_file_legacy(
    is_local,
    pretrained_model_name_or_path,
    subfolder,
    use_safetensors,
    cache_dir,
    variant,
    force_download,
    proxies,
    local_files_only,
    token,
    revision,
    user_agent,
    commit_hash,
Marc Sun's avatar
Marc Sun committed
400
    dduf_entries: Optional[Dict[str, DDUFEntry]] = None,
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
):
    if is_local:
        index_file = Path(
            pretrained_model_name_or_path,
            subfolder or "",
            SAFE_WEIGHTS_INDEX_NAME if use_safetensors else WEIGHTS_INDEX_NAME,
        ).as_posix()
        splits = index_file.split(".")
        split_index = -3 if ".cache" in index_file else -2
        splits = splits[:-split_index] + [variant] + splits[-split_index:]
        index_file = ".".join(splits)
        if os.path.exists(index_file):
            deprecation_message = f"This serialization format is now deprecated to standardize the serialization format between `transformers` and `diffusers`. We recommend you to remove the existing files associated with the current variant ({variant}) and re-obtain them by running a `save_pretrained()`."
            deprecate("legacy_sharded_ckpts_with_variant", "1.0.0", deprecation_message, standard_warn=False)
            index_file = Path(index_file)
        else:
            index_file = None
    else:
        if variant is not None:
            index_file_in_repo = Path(
                subfolder or "",
                SAFE_WEIGHTS_INDEX_NAME if use_safetensors else WEIGHTS_INDEX_NAME,
            ).as_posix()
            splits = index_file_in_repo.split(".")
            split_index = -2
            splits = splits[:-split_index] + [variant] + splits[-split_index:]
            index_file_in_repo = ".".join(splits)
            try:
                index_file = _get_model_file(
                    pretrained_model_name_or_path,
                    weights_name=index_file_in_repo,
                    cache_dir=cache_dir,
                    force_download=force_download,
                    proxies=proxies,
                    local_files_only=local_files_only,
                    token=token,
                    revision=revision,
                    subfolder=None,
                    user_agent=user_agent,
                    commit_hash=commit_hash,
Marc Sun's avatar
Marc Sun committed
441
                    dduf_entries=dduf_entries,
442
443
444
445
446
447
448
449
                )
                index_file = Path(index_file)
                deprecation_message = f"This serialization format is now deprecated to standardize the serialization format between `transformers` and `diffusers`. We recommend you to remove the existing files associated with the current variant ({variant}) and re-obtain them by running a `save_pretrained()`."
                deprecate("legacy_sharded_ckpts_with_variant", "1.0.0", deprecation_message, standard_warn=False)
            except (EntryNotFoundError, EnvironmentError):
                index_file = None

    return index_file
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524


def _gguf_parse_value(_value, data_type):
    if not isinstance(data_type, list):
        data_type = [data_type]
    if len(data_type) == 1:
        data_type = data_type[0]
        array_data_type = None
    else:
        if data_type[0] != 9:
            raise ValueError("Received multiple types, therefore expected the first type to indicate an array.")
        data_type, array_data_type = data_type

    if data_type in [0, 1, 2, 3, 4, 5, 10, 11]:
        _value = int(_value[0])
    elif data_type in [6, 12]:
        _value = float(_value[0])
    elif data_type in [7]:
        _value = bool(_value[0])
    elif data_type in [8]:
        _value = array("B", list(_value)).tobytes().decode()
    elif data_type in [9]:
        _value = _gguf_parse_value(_value, array_data_type)
    return _value


def load_gguf_checkpoint(gguf_checkpoint_path, return_tensors=False):
    """
    Load a GGUF file and return a dictionary of parsed parameters containing tensors, the parsed tokenizer and config
    attributes.

    Args:
        gguf_checkpoint_path (`str`):
            The path the to GGUF file to load
        return_tensors (`bool`, defaults to `True`):
            Whether to read the tensors from the file and return them. Not doing so is faster and only loads the
            metadata in memory.
    """

    if is_gguf_available() and is_torch_available():
        import gguf
        from gguf import GGUFReader

        from ..quantizers.gguf.utils import SUPPORTED_GGUF_QUANT_TYPES, GGUFParameter
    else:
        logger.error(
            "Loading a GGUF checkpoint in PyTorch, requires both PyTorch and GGUF>=0.10.0 to be installed. Please see "
            "https://pytorch.org/ and https://github.com/ggerganov/llama.cpp/tree/master/gguf-py for installation instructions."
        )
        raise ImportError("Please install torch and gguf>=0.10.0 to load a GGUF checkpoint in PyTorch.")

    reader = GGUFReader(gguf_checkpoint_path)

    parsed_parameters = {}
    for tensor in reader.tensors:
        name = tensor.name
        quant_type = tensor.tensor_type

        # if the tensor is a torch supported dtype do not use GGUFParameter
        is_gguf_quant = quant_type not in [gguf.GGMLQuantizationType.F32, gguf.GGMLQuantizationType.F16]
        if is_gguf_quant and quant_type not in SUPPORTED_GGUF_QUANT_TYPES:
            _supported_quants_str = "\n".join([str(type) for type in SUPPORTED_GGUF_QUANT_TYPES])
            raise ValueError(
                (
                    f"{name} has a quantization type: {str(quant_type)} which is unsupported."
                    "\n\nCurrently the following quantization types are supported: \n\n"
                    f"{_supported_quants_str}"
                    "\n\nTo request support for this quantization type please open an issue here: https://github.com/huggingface/diffusers"
                )
            )

        weights = torch.from_numpy(tensor.data.copy())
        parsed_parameters[name] = GGUFParameter(weights, quant_type=quant_type) if is_gguf_quant else weights

    return parsed_parameters