modelopt_quantizer.py 6.62 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
from typing import TYPE_CHECKING, Any, Dict, List, Union

from ...utils import (
    get_module_from_name,
    is_accelerate_available,
    is_nvidia_modelopt_available,
    is_torch_available,
    logging,
)
from ..base import DiffusersQuantizer


if TYPE_CHECKING:
    from ...models.modeling_utils import ModelMixin


if is_torch_available():
    import torch
    import torch.nn as nn

if is_accelerate_available():
    from accelerate.utils import set_module_tensor_to_device


logger = logging.get_logger(__name__)


class NVIDIAModelOptQuantizer(DiffusersQuantizer):
    r"""
    Diffusers Quantizer for TensorRT Model Optimizer
    """

    use_keep_in_fp32_modules = True
    requires_calibration = False
    required_packages = ["nvidia_modelopt"]

    def __init__(self, quantization_config, **kwargs):
        super().__init__(quantization_config, **kwargs)

    def validate_environment(self, *args, **kwargs):
        if not is_nvidia_modelopt_available():
            raise ImportError(
                "Loading an nvidia-modelopt quantized model requires nvidia-modelopt library (`pip install nvidia-modelopt`)"
            )

        self.offload = False

        device_map = kwargs.get("device_map", None)
        if isinstance(device_map, dict):
            if "cpu" in device_map.values() or "disk" in device_map.values():
                if self.pre_quantized:
                    raise ValueError(
                        "You are attempting to perform cpu/disk offload with a pre-quantized modelopt model "
                        "This is not supported yet. Please remove the CPU or disk device from the `device_map` argument."
                    )
                else:
                    self.offload = True

    def check_if_quantized_param(
        self,
        model: "ModelMixin",
        param_value: "torch.Tensor",
        param_name: str,
        state_dict: Dict[str, Any],
        **kwargs,
    ):
        # ModelOpt imports diffusers internally. This is here to prevent circular imports
        from modelopt.torch.quantization.utils import is_quantized

        module, tensor_name = get_module_from_name(model, param_name)
        if self.pre_quantized:
            return True
        elif is_quantized(module) and "weight" in tensor_name:
            return True
        return False

    def create_quantized_param(
        self,
        model: "ModelMixin",
        param_value: "torch.Tensor",
        param_name: str,
        target_device: "torch.device",
        *args,
        **kwargs,
    ):
        """
        Create the quantized parameter by calling .calibrate() after setting it to the module.
        """
        # ModelOpt imports diffusers internally. This is here to prevent circular imports
        import modelopt.torch.quantization as mtq

        dtype = kwargs.get("dtype", torch.float32)
        module, tensor_name = get_module_from_name(model, param_name)
        if self.pre_quantized:
            module._parameters[tensor_name] = torch.nn.Parameter(param_value.to(device=target_device))
        else:
            set_module_tensor_to_device(model, param_name, target_device, param_value, dtype)
            mtq.calibrate(
                module, self.quantization_config.modelopt_config["algorithm"], self.quantization_config.forward_loop
            )
            mtq.compress(module)
            module.weight.requires_grad = False

    def adjust_max_memory(self, max_memory: Dict[str, Union[int, str]]) -> Dict[str, Union[int, str]]:
        max_memory = {key: val * 0.90 for key, val in max_memory.items()}
        return max_memory

    def adjust_target_dtype(self, target_dtype: "torch.dtype") -> "torch.dtype":
        if self.quantization_config.quant_type == "FP8":
            target_dtype = torch.float8_e4m3fn
        return target_dtype

    def update_torch_dtype(self, torch_dtype: "torch.dtype" = None) -> "torch.dtype":
        if torch_dtype is None:
            logger.info("You did not specify `torch_dtype` in `from_pretrained`. Setting it to `torch.float32`.")
            torch_dtype = torch.float32
        return torch_dtype

    def get_conv_param_names(self, model: "ModelMixin") -> List[str]:
        """
        Get parameter names for all convolutional layers in a HuggingFace ModelMixin. Includes Conv1d/2d/3d and
        ConvTranspose1d/2d/3d.
        """
        conv_types = (
            nn.Conv1d,
            nn.Conv2d,
            nn.Conv3d,
            nn.ConvTranspose1d,
            nn.ConvTranspose2d,
            nn.ConvTranspose3d,
        )

        conv_param_names = []
        for name, module in model.named_modules():
            if isinstance(module, conv_types):
                for param_name, _ in module.named_parameters(recurse=False):
                    conv_param_names.append(f"{name}.{param_name}")

        return conv_param_names

    def _process_model_before_weight_loading(
        self,
        model: "ModelMixin",
        device_map,
        keep_in_fp32_modules: List[str] = [],
        **kwargs,
    ):
        # ModelOpt imports diffusers internally. This is here to prevent circular imports
        import modelopt.torch.opt as mto

        if self.pre_quantized:
            return

        modules_to_not_convert = self.quantization_config.modules_to_not_convert

        if modules_to_not_convert is None:
            modules_to_not_convert = []
        if isinstance(modules_to_not_convert, str):
            modules_to_not_convert = [modules_to_not_convert]
        modules_to_not_convert.extend(keep_in_fp32_modules)
        if self.quantization_config.disable_conv_quantization:
            modules_to_not_convert.extend(self.get_conv_param_names(model))

        for module in modules_to_not_convert:
            self.quantization_config.modelopt_config["quant_cfg"]["*" + module + "*"] = {"enable": False}
        self.quantization_config.modules_to_not_convert = modules_to_not_convert
        mto.apply_mode(model, mode=[("quantize", self.quantization_config.modelopt_config)])
        model.config.quantization_config = self.quantization_config

    def _process_model_after_weight_loading(self, model, **kwargs):
        # ModelOpt imports diffusers internally. This is here to prevent circular imports
        from modelopt.torch.opt import ModeloptStateManager

        if self.pre_quantized:
            return model

        for _, m in model.named_modules():
            if hasattr(m, ModeloptStateManager._state_key) and m is not model:
                ModeloptStateManager.remove_state(m)

        return model

    @property
    def is_trainable(self):
        return True

    @property
    def is_serializable(self):
        self.quantization_config.check_model_patching(operation="saving")
        return True