test_pixart.py 15.3 KB
Newer Older
Sayak Paul's avatar
Sayak Paul committed
1
# coding=utf-8
2
# Copyright 2024 HuggingFace Inc.
Sayak Paul's avatar
Sayak Paul committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import gc
import tempfile
import unittest

import numpy as np
import torch
from transformers import AutoTokenizer, T5EncoderModel

from diffusers import (
    AutoencoderKL,
    DDIMScheduler,
    PixArtAlphaPipeline,
28
    PixArtTransformer2DModel,
Sayak Paul's avatar
Sayak Paul committed
29
)
Dhruv Nair's avatar
Dhruv Nair committed
30
31
32
33
34
35
36
from diffusers.utils.testing_utils import (
    enable_full_determinism,
    numpy_cosine_similarity_distance,
    require_torch_gpu,
    slow,
    torch_device,
)
Sayak Paul's avatar
Sayak Paul committed
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineTesterMixin, to_np


enable_full_determinism()


class PixArtAlphaPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
    pipeline_class = PixArtAlphaPipeline
    params = TEXT_TO_IMAGE_PARAMS - {"cross_attention_kwargs"}
    batch_params = TEXT_TO_IMAGE_BATCH_PARAMS
    image_params = TEXT_TO_IMAGE_IMAGE_PARAMS
    image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS

    required_optional_params = PipelineTesterMixin.required_optional_params
Aryan's avatar
Aryan committed
53
    test_layerwise_casting = True
Aryan's avatar
Aryan committed
54
    test_group_offloading = True
Sayak Paul's avatar
Sayak Paul committed
55
56
57

    def get_dummy_components(self):
        torch.manual_seed(0)
58
        transformer = PixArtTransformer2DModel(
Sayak Paul's avatar
Sayak Paul committed
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
            sample_size=8,
            num_layers=2,
            patch_size=2,
            attention_head_dim=8,
            num_attention_heads=3,
            caption_channels=32,
            in_channels=4,
            cross_attention_dim=24,
            out_channels=8,
            attention_bias=True,
            activation_fn="gelu-approximate",
            num_embeds_ada_norm=1000,
            norm_type="ada_norm_single",
            norm_elementwise_affine=False,
            norm_eps=1e-6,
        )
75
        torch.manual_seed(0)
Sayak Paul's avatar
Sayak Paul committed
76
        vae = AutoencoderKL()
77

Sayak Paul's avatar
Sayak Paul committed
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
        scheduler = DDIMScheduler()
        text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")

        tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")

        components = {
            "transformer": transformer.eval(),
            "vae": vae.eval(),
            "scheduler": scheduler,
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
        }
        return components

    def get_dummy_inputs(self, device, seed=0):
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)
        inputs = {
            "prompt": "A painting of a squirrel eating a burger",
            "generator": generator,
            "num_inference_steps": 2,
            "guidance_scale": 5.0,
102
103
            "use_resolution_binning": False,
            "output_type": "np",
Sayak Paul's avatar
Sayak Paul committed
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
        }
        return inputs

    def test_sequential_cpu_offload_forward_pass(self):
        # TODO(PVP, Sayak) need to fix later
        return

    def test_save_load_optional_components(self):
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)

        prompt = inputs["prompt"]
        generator = inputs["generator"]
        num_inference_steps = inputs["num_inference_steps"]
        output_type = inputs["output_type"]

124
125
126
127
128
129
        (
            prompt_embeds,
            prompt_attention_mask,
            negative_prompt_embeds,
            negative_prompt_attention_mask,
        ) = pipe.encode_prompt(prompt)
Sayak Paul's avatar
Sayak Paul committed
130
131
132
133

        # inputs with prompt converted to embeddings
        inputs = {
            "prompt_embeds": prompt_embeds,
134
            "prompt_attention_mask": prompt_attention_mask,
Sayak Paul's avatar
Sayak Paul committed
135
136
            "negative_prompt": None,
            "negative_prompt_embeds": negative_prompt_embeds,
137
            "negative_prompt_attention_mask": negative_prompt_attention_mask,
Sayak Paul's avatar
Sayak Paul committed
138
139
140
            "generator": generator,
            "num_inference_steps": num_inference_steps,
            "output_type": output_type,
141
            "use_resolution_binning": False,
Sayak Paul's avatar
Sayak Paul committed
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
        }

        # set all optional components to None
        for optional_component in pipe._optional_components:
            setattr(pipe, optional_component, None)

        output = pipe(**inputs)[0]

        with tempfile.TemporaryDirectory() as tmpdir:
            pipe.save_pretrained(tmpdir)
            pipe_loaded = self.pipeline_class.from_pretrained(tmpdir)
            pipe_loaded.to(torch_device)
            pipe_loaded.set_progress_bar_config(disable=None)

        for optional_component in pipe._optional_components:
            self.assertTrue(
                getattr(pipe_loaded, optional_component) is None,
                f"`{optional_component}` did not stay set to None after loading.",
            )

        inputs = self.get_dummy_inputs(torch_device)

        generator = inputs["generator"]
        num_inference_steps = inputs["num_inference_steps"]
        output_type = inputs["output_type"]

        # inputs with prompt converted to embeddings
        inputs = {
            "prompt_embeds": prompt_embeds,
171
            "prompt_attention_mask": prompt_attention_mask,
Sayak Paul's avatar
Sayak Paul committed
172
173
            "negative_prompt": None,
            "negative_prompt_embeds": negative_prompt_embeds,
174
            "negative_prompt_attention_mask": negative_prompt_attention_mask,
Sayak Paul's avatar
Sayak Paul committed
175
176
177
            "generator": generator,
            "num_inference_steps": num_inference_steps,
            "output_type": output_type,
178
            "use_resolution_binning": False,
Sayak Paul's avatar
Sayak Paul committed
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
        }

        output_loaded = pipe_loaded(**inputs)[0]

        max_diff = np.abs(to_np(output) - to_np(output_loaded)).max()
        self.assertLess(max_diff, 1e-4)

    def test_inference(self):
        device = "cpu"

        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)
        image = pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1]

        self.assertEqual(image.shape, (1, 8, 8, 3))
199
        expected_slice = np.array([0.6319, 0.3526, 0.3806, 0.6327, 0.4639, 0.483, 0.2583, 0.5331, 0.4852])
Sayak Paul's avatar
Sayak Paul committed
200
201
202
        max_diff = np.abs(image_slice.flatten() - expected_slice).max()
        self.assertLessEqual(max_diff, 1e-3)

203
204
205
206
207
208
209
210
211
212
213
214
    def test_inference_non_square_images(self):
        device = "cpu"

        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)
        image = pipe(**inputs, height=32, width=48).images
        image_slice = image[0, -3:, -3:, -1]
        self.assertEqual(image.shape, (1, 32, 48, 3))
215

216
        expected_slice = np.array([0.6493, 0.537, 0.4081, 0.4762, 0.3695, 0.4711, 0.3026, 0.5218, 0.5263])
217
218
219
        max_diff = np.abs(image_slice.flatten() - expected_slice).max()
        self.assertLessEqual(max_diff, 1e-3)

220
221
222
223
224
225
226
227
228
229
230
231
232
    def test_inference_with_embeddings_and_multiple_images(self):
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)

        prompt = inputs["prompt"]
        generator = inputs["generator"]
        num_inference_steps = inputs["num_inference_steps"]
        output_type = inputs["output_type"]

233
        prompt_embeds, prompt_attn_mask, negative_prompt_embeds, neg_prompt_attn_mask = pipe.encode_prompt(prompt)
234
235
236
237

        # inputs with prompt converted to embeddings
        inputs = {
            "prompt_embeds": prompt_embeds,
238
            "prompt_attention_mask": prompt_attn_mask,
239
240
            "negative_prompt": None,
            "negative_prompt_embeds": negative_prompt_embeds,
241
            "negative_prompt_attention_mask": neg_prompt_attn_mask,
242
243
244
245
            "generator": generator,
            "num_inference_steps": num_inference_steps,
            "output_type": output_type,
            "num_images_per_prompt": 2,
246
            "use_resolution_binning": False,
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
        }

        # set all optional components to None
        for optional_component in pipe._optional_components:
            setattr(pipe, optional_component, None)

        output = pipe(**inputs)[0]

        with tempfile.TemporaryDirectory() as tmpdir:
            pipe.save_pretrained(tmpdir)
            pipe_loaded = self.pipeline_class.from_pretrained(tmpdir)
            pipe_loaded.to(torch_device)
            pipe_loaded.set_progress_bar_config(disable=None)

        for optional_component in pipe._optional_components:
            self.assertTrue(
                getattr(pipe_loaded, optional_component) is None,
                f"`{optional_component}` did not stay set to None after loading.",
            )

        inputs = self.get_dummy_inputs(torch_device)

        generator = inputs["generator"]
        num_inference_steps = inputs["num_inference_steps"]
        output_type = inputs["output_type"]

        # inputs with prompt converted to embeddings
        inputs = {
            "prompt_embeds": prompt_embeds,
276
            "prompt_attention_mask": prompt_attn_mask,
277
278
            "negative_prompt": None,
            "negative_prompt_embeds": negative_prompt_embeds,
279
            "negative_prompt_attention_mask": neg_prompt_attn_mask,
280
281
282
283
            "generator": generator,
            "num_inference_steps": num_inference_steps,
            "output_type": output_type,
            "num_images_per_prompt": 2,
284
            "use_resolution_binning": False,
285
286
287
288
289
290
291
        }

        output_loaded = pipe_loaded(**inputs)[0]

        max_diff = np.abs(to_np(output) - to_np(output_loaded)).max()
        self.assertLess(max_diff, 1e-4)

292
293
294
295
296
297
298
299
300
301
302
303
304
305
    def test_inference_with_multiple_images_per_prompt(self):
        device = "cpu"

        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)
        inputs["num_images_per_prompt"] = 2
        image = pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1]

        self.assertEqual(image.shape, (2, 8, 8, 3))
306
        expected_slice = np.array([0.6319, 0.3526, 0.3806, 0.6327, 0.4639, 0.483, 0.2583, 0.5331, 0.4852])
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
        max_diff = np.abs(image_slice.flatten() - expected_slice).max()
        self.assertLessEqual(max_diff, 1e-3)

    def test_raises_warning_for_mask_feature(self):
        device = "cpu"

        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)
        inputs.update({"mask_feature": True})

        with self.assertWarns(FutureWarning) as warning_ctx:
            _ = pipe(**inputs).images

        assert "mask_feature" in str(warning_ctx.warning)

Sayak Paul's avatar
Sayak Paul committed
326
327
328
329
330
331
332
    def test_inference_batch_single_identical(self):
        self._test_inference_batch_single_identical(expected_max_diff=1e-3)


@slow
@require_torch_gpu
class PixArtAlphaPipelineIntegrationTests(unittest.TestCase):
333
334
335
336
    ckpt_id_1024 = "PixArt-alpha/PixArt-XL-2-1024-MS"
    ckpt_id_512 = "PixArt-alpha/PixArt-XL-2-512x512"
    prompt = "A small cactus with a happy face in the Sahara desert."

337
338
339
340
341
    def setUp(self):
        super().setUp()
        gc.collect()
        torch.cuda.empty_cache()

Sayak Paul's avatar
Sayak Paul committed
342
343
344
345
346
347
    def tearDown(self):
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

    def test_pixart_1024(self):
Dhruv Nair's avatar
Dhruv Nair committed
348
        generator = torch.Generator("cpu").manual_seed(0)
Sayak Paul's avatar
Sayak Paul committed
349

350
        pipe = PixArtAlphaPipeline.from_pretrained(self.ckpt_id_1024, torch_dtype=torch.float16)
Sayak Paul's avatar
Sayak Paul committed
351
        pipe.enable_model_cpu_offload()
352
        prompt = self.prompt
Sayak Paul's avatar
Sayak Paul committed
353

Dhruv Nair's avatar
Dhruv Nair committed
354
        image = pipe(prompt, generator=generator, num_inference_steps=2, output_type="np").images
Sayak Paul's avatar
Sayak Paul committed
355
356

        image_slice = image[0, -3:, -3:, -1]
Dhruv Nair's avatar
Dhruv Nair committed
357
        expected_slice = np.array([0.0742, 0.0835, 0.2114, 0.0295, 0.0784, 0.2361, 0.1738, 0.2251, 0.3589])
Sayak Paul's avatar
Sayak Paul committed
358

Dhruv Nair's avatar
Dhruv Nair committed
359
360
        max_diff = numpy_cosine_similarity_distance(image_slice.flatten(), expected_slice)
        self.assertLessEqual(max_diff, 1e-4)
Sayak Paul's avatar
Sayak Paul committed
361
362

    def test_pixart_512(self):
Dhruv Nair's avatar
Dhruv Nair committed
363
        generator = torch.Generator("cpu").manual_seed(0)
Sayak Paul's avatar
Sayak Paul committed
364

365
        pipe = PixArtAlphaPipeline.from_pretrained(self.ckpt_id_512, torch_dtype=torch.float16)
Sayak Paul's avatar
Sayak Paul committed
366
367
        pipe.enable_model_cpu_offload()

368
        prompt = self.prompt
Sayak Paul's avatar
Sayak Paul committed
369

Dhruv Nair's avatar
Dhruv Nair committed
370
        image = pipe(prompt, generator=generator, num_inference_steps=2, output_type="np").images
Sayak Paul's avatar
Sayak Paul committed
371
372

        image_slice = image[0, -3:, -3:, -1]
Dhruv Nair's avatar
Dhruv Nair committed
373
        expected_slice = np.array([0.3477, 0.3882, 0.4541, 0.3413, 0.3821, 0.4463, 0.4001, 0.4409, 0.4958])
Sayak Paul's avatar
Sayak Paul committed
374

Dhruv Nair's avatar
Dhruv Nair committed
375
376
        max_diff = numpy_cosine_similarity_distance(image_slice.flatten(), expected_slice)
        self.assertLessEqual(max_diff, 1e-4)
377
378
379
380

    def test_pixart_1024_without_resolution_binning(self):
        generator = torch.manual_seed(0)

381
        pipe = PixArtAlphaPipeline.from_pretrained(self.ckpt_id_1024, torch_dtype=torch.float16)
382
383
        pipe.enable_model_cpu_offload()

384
385
        prompt = self.prompt
        height, width = 1024, 768
Dhruv Nair's avatar
Dhruv Nair committed
386
        num_inference_steps = 2
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408

        image = pipe(
            prompt,
            height=height,
            width=width,
            generator=generator,
            num_inference_steps=num_inference_steps,
            output_type="np",
        ).images
        image_slice = image[0, -3:, -3:, -1]

        generator = torch.manual_seed(0)
        no_res_bin_image = pipe(
            prompt,
            height=height,
            width=width,
            generator=generator,
            num_inference_steps=num_inference_steps,
            output_type="np",
            use_resolution_binning=False,
        ).images
        no_res_bin_image_slice = no_res_bin_image[0, -3:, -3:, -1]
409

410
411
412
413
414
415
416
417
418
419
        assert not np.allclose(image_slice, no_res_bin_image_slice, atol=1e-4, rtol=1e-4)

    def test_pixart_512_without_resolution_binning(self):
        generator = torch.manual_seed(0)

        pipe = PixArtAlphaPipeline.from_pretrained(self.ckpt_id_512, torch_dtype=torch.float16)
        pipe.enable_model_cpu_offload()

        prompt = self.prompt
        height, width = 512, 768
Dhruv Nair's avatar
Dhruv Nair committed
420
        num_inference_steps = 2
421
422
423
424
425
426
427
428
429

        image = pipe(
            prompt,
            height=height,
            width=width,
            generator=generator,
            num_inference_steps=num_inference_steps,
            output_type="np",
        ).images
430
431
432
433
        image_slice = image[0, -3:, -3:, -1]

        generator = torch.manual_seed(0)
        no_res_bin_image = pipe(
434
435
436
437
438
439
440
            prompt,
            height=height,
            width=width,
            generator=generator,
            num_inference_steps=num_inference_steps,
            output_type="np",
            use_resolution_binning=False,
441
442
443
444
        ).images
        no_res_bin_image_slice = no_res_bin_image[0, -3:, -3:, -1]

        assert not np.allclose(image_slice, no_res_bin_image_slice, atol=1e-4, rtol=1e-4)