scheduling_ddim_flax.py 13 KB
Newer Older
1
# Copyright 2024 Stanford University Team and The HuggingFace Team. All rights reserved.
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion
# and https://github.com/hojonathanho/diffusion

from dataclasses import dataclass
from typing import Optional, Tuple, Union

import flax
import jax.numpy as jnp

from ..configuration_utils import ConfigMixin, register_to_config
25
from .scheduling_utils_flax import (
26
    CommonSchedulerState,
Kashif Rasul's avatar
Kashif Rasul committed
27
    FlaxKarrasDiffusionSchedulers,
28
29
    FlaxSchedulerMixin,
    FlaxSchedulerOutput,
30
    add_noise_common,
31
    get_velocity_common,
32
)
33
34
35
36


@flax.struct.dataclass
class DDIMSchedulerState:
37
38
39
    common: CommonSchedulerState
    final_alpha_cumprod: jnp.ndarray

40
    # setable values
41
    init_noise_sigma: jnp.ndarray
42
43
44
45
    timesteps: jnp.ndarray
    num_inference_steps: Optional[int] = None

    @classmethod
46
47
48
49
50
51
52
53
54
55
56
57
58
    def create(
        cls,
        common: CommonSchedulerState,
        final_alpha_cumprod: jnp.ndarray,
        init_noise_sigma: jnp.ndarray,
        timesteps: jnp.ndarray,
    ):
        return cls(
            common=common,
            final_alpha_cumprod=final_alpha_cumprod,
            init_noise_sigma=init_noise_sigma,
            timesteps=timesteps,
        )
59
60
61


@dataclass
62
class FlaxDDIMSchedulerOutput(FlaxSchedulerOutput):
63
64
65
    state: DDIMSchedulerState


66
class FlaxDDIMScheduler(FlaxSchedulerMixin, ConfigMixin):
67
68
69
70
71
72
    """
    Denoising diffusion implicit models is a scheduler that extends the denoising procedure introduced in denoising
    diffusion probabilistic models (DDPMs) with non-Markovian guidance.

    [`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__`
    function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`.
73
74
    [`SchedulerMixin`] provides general loading and saving functionality via the [`SchedulerMixin.save_pretrained`] and
    [`~SchedulerMixin.from_pretrained`] functions.
75
76
77
78
79
80
81
82
83
84
85
86
87

    For more details, see the original paper: https://arxiv.org/abs/2010.02502

    Args:
        num_train_timesteps (`int`): number of diffusion steps used to train the model.
        beta_start (`float`): the starting `beta` value of inference.
        beta_end (`float`): the final `beta` value.
        beta_schedule (`str`):
            the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
            `linear`, `scaled_linear`, or `squaredcos_cap_v2`.
        trained_betas (`jnp.ndarray`, optional):
            option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc.
        clip_sample (`bool`, default `True`):
88
89
90
            option to clip predicted sample between for numerical stability. The clip range is determined by `clip_sample_range`.
        clip_sample_range (`float`, default `1.0`):
            the maximum magnitude for sample clipping. Valid only when `clip_sample=True`.
91
        set_alpha_to_one (`bool`, default `True`):
92
93
94
95
96
97
98
            each diffusion step uses the value of alphas product at that step and at the previous one. For the final
            step there is no previous alpha. When this option is `True` the previous alpha product is fixed to `1`,
            otherwise it uses the value of alpha at step 0.
        steps_offset (`int`, default `0`):
            an offset added to the inference steps. You can use a combination of `offset=1` and
            `set_alpha_to_one=False`, to make the last step use step 0 for the previous alpha product, as done in
            stable diffusion.
99
100
101
        prediction_type (`str`, default `epsilon`):
            indicates whether the model predicts the noise (epsilon), or the samples. One of `epsilon`, `sample`.
            `v-prediction` is not supported for this scheduler.
102
103
        dtype (`jnp.dtype`, *optional*, defaults to `jnp.float32`):
            the `dtype` used for params and computation.
104
105
    """

Kashif Rasul's avatar
Kashif Rasul committed
106
    _compatibles = [e.name for e in FlaxKarrasDiffusionSchedulers]
107

108
109
    dtype: jnp.dtype

110
111
112
113
    @property
    def has_state(self):
        return True

114
115
116
117
118
119
120
    @register_to_config
    def __init__(
        self,
        num_train_timesteps: int = 1000,
        beta_start: float = 0.0001,
        beta_end: float = 0.02,
        beta_schedule: str = "linear",
121
        trained_betas: Optional[jnp.ndarray] = None,
122
123
        clip_sample: bool = True,
        clip_sample_range: float = 1.0,
124
        set_alpha_to_one: bool = True,
125
        steps_offset: int = 0,
126
        prediction_type: str = "epsilon",
127
        dtype: jnp.dtype = jnp.float32,
128
    ):
129
        self.dtype = dtype
130

131
132
133
    def create_state(self, common: Optional[CommonSchedulerState] = None) -> DDIMSchedulerState:
        if common is None:
            common = CommonSchedulerState.create(self)
134
135
136
137
138

        # At every step in ddim, we are looking into the previous alphas_cumprod
        # For the final step, there is no previous alphas_cumprod because we are already at 0
        # `set_alpha_to_one` decides whether we set this parameter simply to one or
        # whether we use the final alpha of the "non-previous" one.
139
140
141
        final_alpha_cumprod = (
            jnp.array(1.0, dtype=self.dtype) if self.config.set_alpha_to_one else common.alphas_cumprod[0]
        )
142

Suraj Patil's avatar
Suraj Patil committed
143
        # standard deviation of the initial noise distribution
144
145
146
147
148
149
150
151
152
153
        init_noise_sigma = jnp.array(1.0, dtype=self.dtype)

        timesteps = jnp.arange(0, self.config.num_train_timesteps).round()[::-1]

        return DDIMSchedulerState.create(
            common=common,
            final_alpha_cumprod=final_alpha_cumprod,
            init_noise_sigma=init_noise_sigma,
            timesteps=timesteps,
        )
Suraj Patil's avatar
Suraj Patil committed
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168

    def scale_model_input(
        self, state: DDIMSchedulerState, sample: jnp.ndarray, timestep: Optional[int] = None
    ) -> jnp.ndarray:
        """
        Args:
            state (`PNDMSchedulerState`): the `FlaxPNDMScheduler` state data class instance.
            sample (`jnp.ndarray`): input sample
            timestep (`int`, optional): current timestep

        Returns:
            `jnp.ndarray`: scaled input sample
        """
        return sample

169
170
171
    def set_timesteps(
        self, state: DDIMSchedulerState, num_inference_steps: int, shape: Tuple = ()
    ) -> DDIMSchedulerState:
172
173
174
175
176
177
178
179
180
181
182
        """
        Sets the discrete timesteps used for the diffusion chain. Supporting function to be run before inference.

        Args:
            state (`DDIMSchedulerState`):
                the `FlaxDDIMScheduler` state data class instance.
            num_inference_steps (`int`):
                the number of diffusion steps used when generating samples with a pre-trained model.
        """
        step_ratio = self.config.num_train_timesteps // num_inference_steps
        # creates integer timesteps by multiplying by ratio
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
        # rounding to avoid issues when num_inference_step is power of 3
        timesteps = (jnp.arange(0, num_inference_steps) * step_ratio).round()[::-1] + self.config.steps_offset

        return state.replace(
            num_inference_steps=num_inference_steps,
            timesteps=timesteps,
        )

    def _get_variance(self, state: DDIMSchedulerState, timestep, prev_timestep):
        alpha_prod_t = state.common.alphas_cumprod[timestep]
        alpha_prod_t_prev = jnp.where(
            prev_timestep >= 0, state.common.alphas_cumprod[prev_timestep], state.final_alpha_cumprod
        )
        beta_prod_t = 1 - alpha_prod_t
        beta_prod_t_prev = 1 - alpha_prod_t_prev

        variance = (beta_prod_t_prev / beta_prod_t) * (1 - alpha_prod_t / alpha_prod_t_prev)
200

201
        return variance
202
203
204
205
206
207
208

    def step(
        self,
        state: DDIMSchedulerState,
        model_output: jnp.ndarray,
        timestep: int,
        sample: jnp.ndarray,
209
        eta: float = 0.0,
210
        return_dict: bool = True,
211
    ) -> Union[FlaxDDIMSchedulerOutput, Tuple]:
212
213
214
215
216
217
218
219
220
221
        """
        Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion
        process from the learned model outputs (most often the predicted noise).

        Args:
            state (`DDIMSchedulerState`): the `FlaxDDIMScheduler` state data class instance.
            model_output (`jnp.ndarray`): direct output from learned diffusion model.
            timestep (`int`): current discrete timestep in the diffusion chain.
            sample (`jnp.ndarray`):
                current instance of sample being created by diffusion process.
222
            return_dict (`bool`): option for returning tuple rather than FlaxDDIMSchedulerOutput class
223
224

        Returns:
225
226
            [`FlaxDDIMSchedulerOutput`] or `tuple`: [`FlaxDDIMSchedulerOutput`] if `return_dict` is True, otherwise a
            `tuple`. When returning a tuple, the first element is the sample tensor.
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247

        """
        if state.num_inference_steps is None:
            raise ValueError(
                "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
            )

        # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf
        # Ideally, read DDIM paper in-detail understanding

        # Notation (<variable name> -> <name in paper>
        # - pred_noise_t -> e_theta(x_t, t)
        # - pred_original_sample -> f_theta(x_t, t) or x_0
        # - std_dev_t -> sigma_t
        # - eta -> η
        # - pred_sample_direction -> "direction pointing to x_t"
        # - pred_prev_sample -> "x_t-1"

        # 1. get previous step value (=t-1)
        prev_timestep = timestep - self.config.num_train_timesteps // state.num_inference_steps

248
249
        alphas_cumprod = state.common.alphas_cumprod
        final_alpha_cumprod = state.final_alpha_cumprod
250

251
        # 2. compute alphas, betas
252
        alpha_prod_t = alphas_cumprod[timestep]
253
        alpha_prod_t_prev = jnp.where(prev_timestep >= 0, alphas_cumprod[prev_timestep], final_alpha_cumprod)
254

255
256
257
258
        beta_prod_t = 1 - alpha_prod_t

        # 3. compute predicted original sample from predicted noise also called
        # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
259
260
        if self.config.prediction_type == "epsilon":
            pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5)
261
            pred_epsilon = model_output
262
263
        elif self.config.prediction_type == "sample":
            pred_original_sample = model_output
264
            pred_epsilon = (sample - alpha_prod_t ** (0.5) * pred_original_sample) / beta_prod_t ** (0.5)
265
266
        elif self.config.prediction_type == "v_prediction":
            pred_original_sample = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output
267
            pred_epsilon = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample
268
269
270
271
272
        else:
            raise ValueError(
                f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or"
                " `v_prediction`"
            )
273

274
275
276
277
278
279
        # 4. Clip or threshold "predicted x_0"
        if self.config.clip_sample:
            pred_original_sample = pred_original_sample.clip(
                -self.config.clip_sample_range, self.config.clip_sample_range
            )

280
        # 4. compute variance: "sigma_t(η)" -> see formula (16)
281
        # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1)
282
        variance = self._get_variance(state, timestep, prev_timestep)
283
        std_dev_t = eta * variance ** (0.5)
284

285
        # 5. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
286
        pred_sample_direction = (1 - alpha_prod_t_prev - std_dev_t**2) ** (0.5) * pred_epsilon
287

288
        # 6. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
289
290
291
292
293
        prev_sample = alpha_prod_t_prev ** (0.5) * pred_original_sample + pred_sample_direction

        if not return_dict:
            return (prev_sample, state)

294
        return FlaxDDIMSchedulerOutput(prev_sample=prev_sample, state=state)
295
296
297

    def add_noise(
        self,
298
        state: DDIMSchedulerState,
299
300
301
302
        original_samples: jnp.ndarray,
        noise: jnp.ndarray,
        timesteps: jnp.ndarray,
    ) -> jnp.ndarray:
303
        return add_noise_common(state.common, original_samples, noise, timesteps)
304

305
306
307
308
309
310
311
312
313
    def get_velocity(
        self,
        state: DDIMSchedulerState,
        sample: jnp.ndarray,
        noise: jnp.ndarray,
        timesteps: jnp.ndarray,
    ) -> jnp.ndarray:
        return get_velocity_common(state.common, sample, noise, timesteps)

314
315
    def __len__(self):
        return self.config.num_train_timesteps