regional_prompting_stable_diffusion.py 23 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
import torchvision.transforms.functional as FF
import torch
import torchvision
from typing import Dict, Optional
from diffusers import StableDiffusionPipeline
from diffusers.models import AutoencoderKL, UNet2DConditionModel
from diffusers.utils import USE_PEFT_BACKEND
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
from diffusers.schedulers import KarrasDiffusionSchedulers
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer

try:
    from compel import Compel
except:
    Compel = None

KCOMM = "ADDCOMM"
KBRK = "BREAK"

class RegionalPromptingStableDiffusionPipeline(StableDiffusionPipeline):
    r"""
    Args for Regional Prompting Pipeline:
        rp_args:dict
        Required 
            rp_args["mode"]: cols, rows, prompt, prompt-ex
        for cols, rows mode
            rp_args["div"]: ex) 1;1;1(Divide into 3 regions)
        for prompt, prompt-ex mode   
            rp_args["th"]: ex) 0.5,0.5,0.6 (threshold for prompt mode)
        
        Optional
            rp_args["save_mask"]: True/False (save masks in prompt mode)

    Pipeline for text-to-image generation using Stable Diffusion.

    This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
    library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)

    Args:
        vae ([`AutoencoderKL`]):
            Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
        text_encoder ([`CLIPTextModel`]):
            Frozen text-encoder. Stable Diffusion uses the text portion of
            [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
            the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
        tokenizer (`CLIPTokenizer`):
            Tokenizer of class
            [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
        unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
        scheduler ([`SchedulerMixin`]):
            A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
            [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
        safety_checker ([`StableDiffusionSafetyChecker`]):
            Classification module that estimates whether generated images could be considered offensive or harmful.
            Please, refer to the [model card](https://huggingface.co/CompVis/stable-diffusion-v1-4) for details.
        feature_extractor ([`CLIPImageProcessor`]):
            Model that extracts features from generated images to be used as inputs for the `safety_checker`.
    """
    def __init__(
        self,
        vae: AutoencoderKL,
        text_encoder: CLIPTextModel,
        tokenizer: CLIPTokenizer,
        unet: UNet2DConditionModel,
        scheduler: KarrasDiffusionSchedulers,
        safety_checker: StableDiffusionSafetyChecker,
        feature_extractor: CLIPFeatureExtractor,
        requires_safety_checker: bool = True,
    ):
        super().__init__(vae,text_encoder,tokenizer,unet,scheduler,safety_checker,feature_extractor,requires_safety_checker)
        self.register_modules(
            vae=vae,
            text_encoder=text_encoder,
            tokenizer=tokenizer,
            unet=unet,
            scheduler=scheduler,
            safety_checker=safety_checker,
            feature_extractor=feature_extractor,
        )

    @torch.no_grad()
    def __call__(
        self,
        prompt: str,
        height: int = 512,
        width: int = 512,
        num_inference_steps: int = 50,
        guidance_scale: float = 7.5,
        negative_prompt: str = None,
        num_images_per_prompt: Optional[int] = 1,
        eta: float = 0.0,
        generator: Optional[torch.Generator] = None,
        latents: Optional[torch.FloatTensor] = None,
        output_type: Optional[str] = "pil",
        return_dict: bool = True,
        rp_args:Dict[str,str] = None,
    ):

        active = KBRK in prompt[0] if type(prompt) == list else KBRK in prompt
        if negative_prompt is None: negative_prompt = "" if type(prompt) == str else [""] * len(prompt)

        device = self._execution_device
        regions = 0
        
        self.power = int(rp_args["power"]) if "power" in rp_args else 1

        prompts = prompt if type(prompt) == list else [prompt]
        n_prompts = negative_prompt if type(negative_prompt) == list else [negative_prompt]
        self.batch = batch = num_images_per_prompt * len(prompts)
        all_prompts_cn, all_prompts_p = promptsmaker(prompts,num_images_per_prompt)
        all_n_prompts_cn, _ = promptsmaker(n_prompts,num_images_per_prompt)

        cn = len(all_prompts_cn) == len(all_n_prompts_cn)

        if Compel:
            compel = Compel(tokenizer=self.tokenizer, text_encoder=self.text_encoder)
            def getcompelembs(prps):
                embl = []
                for prp in prps:
                    embl.append(compel.build_conditioning_tensor(prp))
                return torch.cat(embl)
            conds = getcompelembs(all_prompts_cn)
            unconds =  getcompelembs(all_n_prompts_cn) if cn else getcompelembs(n_prompts)
            embs = getcompelembs(prompts)
            n_embs = getcompelembs(n_prompts)
            prompt = negative_prompt = None
        else:
            conds = self.encode_prompt(prompts, device, 1, True)[0]
            unconds = self.encode_prompt(n_prompts, device, 1, True)[0] if cn else self.encode_prompt(all_n_prompts_cn, device, 1, True)[0]
            embs = n_embs = None

        if not active:
            pcallback = None
            mode = None
        else:
            if any(x in rp_args["mode"].upper() for x in ["COL","ROW"]):
                mode =  "COL" if "COL" in rp_args["mode"].upper() else "ROW"
                ocells,icells,regions = make_cells(rp_args["div"])
                
            elif "PRO" in rp_args["mode"].upper():
                regions = len(all_prompts_p[0])
                mode = "PROMPT"
                reset_attnmaps(self)
                self.ex = "EX" in rp_args["mode"].upper()
                self.target_tokens = target_tokens = tokendealer(self, all_prompts_p)
                thresholds = [float(x) for x in rp_args["th"].split(",")]
    
            orig_hw = (height,width)
            revers = True

            def pcallback(s_self, step: int, timestep: int, latents: torch.FloatTensor,selfs=None):
                if "PRO" in mode:  # in Prompt mode, make masks from sum of attension maps
                    self.step = step
                    
                    if len(self.attnmaps_sizes) > 3:
                        self.history[step] = self.attnmaps.copy()
                        for hw in self.attnmaps_sizes:
                            allmasks = []
                            basemasks = [None] * batch
                            for tt, th in zip(target_tokens, thresholds):
                                for b in range(batch):
                                    key = f"{tt}-{b}"
                                    _, mask, _ = makepmask(self, self.attnmaps[key], hw[0], hw[1], th, step)
                                    mask = mask.unsqueeze(0).unsqueeze(-1)
                                    if self.ex:
                                        allmasks[b::batch] = [x - mask for x in allmasks[b::batch]]
                                        allmasks[b::batch] = [torch.where(x > 0, 1, 0) for x in allmasks[b::batch]]
                                    allmasks.append(mask)
                                    basemasks[b] = mask if basemasks[b] is None else basemasks[b] + mask
                            basemasks = [1 -mask for mask in basemasks]
                            basemasks = [torch.where(x > 0, 1, 0) for x in basemasks]
                            allmasks = basemasks + allmasks

                            self.attnmasks[hw] = torch.cat(allmasks)
                        self.maskready = True
                return latents

            def hook_forward(module):
                #diffusers==0.23.2
                def forward(
                    hidden_states: torch.FloatTensor,
                    encoder_hidden_states: Optional[torch.FloatTensor] = None,
                    attention_mask: Optional[torch.FloatTensor] = None,
                    temb: Optional[torch.FloatTensor] = None,
                    scale: float = 1.0,
                ) -> torch.Tensor:

                    attn = module       
                    xshape = hidden_states.shape
                    self.hw = (h,w) = split_dims(xshape[1], *orig_hw)

                    if revers:
                        nx,px = hidden_states.chunk(2)
                    else:
                        px,nx = hidden_states.chunk(2)

                    if cn:
                        hidden_states = torch.cat([px for i in range(regions)] + [nx for i in range(regions)],0)
                        encoder_hidden_states = torch.cat([conds]+[unconds])                        
                    else:
                        hidden_states = torch.cat([px for i in range(regions)] + [nx],0)
                        encoder_hidden_states = torch.cat([conds]+[unconds])

                    residual = hidden_states

                    args = () if USE_PEFT_BACKEND else (scale,)

                    if attn.spatial_norm is not None:
                        hidden_states = attn.spatial_norm(hidden_states, temb)

                    input_ndim = hidden_states.ndim

                    if input_ndim == 4:
                        batch_size, channel, height, width = hidden_states.shape
                        hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)

                    batch_size, sequence_length, _ = (
                        hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
                    )

                    if attention_mask is not None:
                        attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
                        attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])

                    if attn.group_norm is not None:
                        hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)

                    args = () if USE_PEFT_BACKEND else (scale,)
                    query = attn.to_q(hidden_states, *args)

                    if encoder_hidden_states is None:
                        encoder_hidden_states = hidden_states
                    elif attn.norm_cross:
                        encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)

                    key = attn.to_k(encoder_hidden_states, *args)
                    value = attn.to_v(encoder_hidden_states, *args)

                    inner_dim = key.shape[-1]
                    head_dim = inner_dim // attn.heads

                    query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

                    key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
                    value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

                    # the output of sdp = (batch, num_heads, seq_len, head_dim)
                    # TODO: add support for attn.scale when we move to Torch 2.1
                    hidden_states = scaled_dot_product_attention(
                        self, query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False, getattn = "PRO" in mode
                    )

                    hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
                    hidden_states = hidden_states.to(query.dtype)
    
                    # linear proj
                    hidden_states = attn.to_out[0](hidden_states, *args)
                    # dropout
                    hidden_states = attn.to_out[1](hidden_states)

                    if input_ndim == 4:
                        hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)

                    if attn.residual_connection:
                        hidden_states = hidden_states + residual

                    hidden_states = hidden_states / attn.rescale_output_factor

                    #### Regional Prompting Col/Row mode
                    if any(x in mode for x in ["COL", "ROW"]):
                        reshaped = hidden_states.reshape(hidden_states.size()[0], h, w, hidden_states.size()[2])
                        center = reshaped.shape[0] // 2
                        px = reshaped[0:center] if cn else reshaped[0:-batch]
                        nx = reshaped[center:] if cn else reshaped[-batch:]
                        outs = [px,nx] if cn else [px]
                        for out in outs:
                            c = 0
                            for i,ocell in enumerate(ocells):
                                for icell in icells[i]:
                                    if "ROW" in mode:
                                        out[0:batch,int(h*ocell[0]):int(h*ocell[1]),int(w*icell[0]):int(w*icell[1]),:] = out[c*batch:(c+1)*batch,int(h*ocell[0]):int(h*ocell[1]),int(w*icell[0]):int(w*icell[1]),:]
                                    else:
                                        out[0:batch,int(h*icell[0]):int(h*icell[1]),int(w*ocell[0]):int(w*ocell[1]),:] = out[c*batch:(c+1)*batch,int(h*icell[0]):int(h*icell[1]),int(w*ocell[0]):int(w*ocell[1]),:]
                                    c += 1
                        px, nx = (px[0:batch], nx[0:batch]) if cn else (px[0:batch], nx)
                        hidden_states = torch.cat([nx,px],0) if revers else torch.cat([px,nx],0) 
                        hidden_states = hidden_states.reshape(xshape)

                    #### Regional Prompting Prompt mode
                    elif "PRO" in mode:
                        center = reshaped.shape[0] // 2
                        px = reshaped[0:center] if cn else reshaped[0:-batch]
                        nx = reshaped[center:] if cn else reshaped[-batch:]
                        
                        if (h,w) in self.attnmasks and self.maskready:
                            def mask(input):
                                out = torch.multiply(input,self.attnmasks[(h,w)])
                                for b in range(batch):
                                    for r in range(1, regions):
                                        out[b] = out[b] + out[r * batch + b]
                                return out
                            px, nx = (mask(px), mask(nx)) if cn else (mask(px), nx)
                        px, nx = (px[0:batch], nx[0:batch]) if cn else (px[0:batch], nx)
                        hidden_states = torch.cat([nx,px],0) if revers else torch.cat([px,nx],0)
                    return hidden_states

                return forward

            def hook_forwards(root_module: torch.nn.Module):
                for name, module in root_module.named_modules():
                    if "attn2" in name and module.__class__.__name__ == "Attention":
                        module.forward = hook_forward(module)

            hook_forwards(self.unet)

        output = StableDiffusionPipeline(**self.components)(
            prompt=prompt,
            prompt_embeds=embs,
            negative_prompt=negative_prompt,
            negative_prompt_embeds=n_embs,
            height=height,
            width=width,
            num_inference_steps=num_inference_steps,
            guidance_scale=guidance_scale,
            num_images_per_prompt=num_images_per_prompt,
            eta=eta,
            generator=generator,
            latents=latents,
            output_type=output_type,
            return_dict=return_dict,
            callback_on_step_end = pcallback
        )

        if "save_mask" in rp_args:
            save_mask = rp_args["save_mask"]
        else:
            save_mask = False

        if mode == "PROMPT" and save_mask: saveattnmaps(self, output, height, width, thresholds, num_inference_steps // 2, regions)

        return output


### Make prompt list for each regions
def promptsmaker(prompts,batch):
    out_p = []
    plen = len(prompts)
    for prompt in prompts:
        add = ""
        if KCOMM in prompt:
            add, prompt = prompt.split(KCOMM)
            add = add + " "
        prompts = prompt.split(KBRK)
        out_p.append([add + p for p in prompts])
    out = [None]*batch*len(out_p[0]) * len(out_p)
    for p, prs in enumerate(out_p):          # inputs prompts
        for r, pr in enumerate(prs):            # prompts for regions
            start = (p + r * plen) * batch
            out[start : start + batch]= [pr] * batch          #P1R1B1,P1R1B2...,P1R2B1,P1R2B2...,P2R1B1...
    return out, out_p

### make regions from ratios
### ";" makes outercells, "," makes inner cells
def make_cells(ratios):
    if ";" not in ratios and "," in ratios:ratios = ratios.replace(",",";")
    ratios = ratios.split(";")
    ratios = [inratios.split(",") for inratios in ratios]

    icells = []
    ocells = []

    def startend(cells,array):
        current_start = 0
        array = [float(x) for x in array]
        for value in array:
            end = current_start + (value / sum(array))
            cells.append([current_start, end])
            current_start = end

    startend(ocells,[r[0] for r in ratios])

    for inratios in ratios:
        if 2 > len(inratios):
            icells.append([[0,1]])
        else:
            add = []
            startend(add,inratios[1:])
            icells.append(add)

    return ocells, icells, sum(len(cell) for cell in icells)

def make_emblist(self, prompts):
    with torch.no_grad():
        tokens = self.tokenizer(prompts, max_length=self.tokenizer.model_max_length, padding=True, truncation=True, return_tensors='pt').input_ids.to(self.device)
        embs = self.text_encoder(tokens, output_hidden_states=True).last_hidden_state.to(self.device, dtype = self.dtype)
    return embs
import math

def split_dims(xs, height, width):
    xs = xs
    def repeat_div(x,y):
        while y > 0:
            x = math.ceil(x / 2)
            y = y - 1
        return x
    scale = math.ceil(math.log2(math.sqrt(height * width / xs)))
    dsh = repeat_div(height,scale)
    dsw = repeat_div(width,scale)
    return dsh,dsw

##### for prompt mode
def get_attn_maps(self,attn):
    height,width = self.hw
    target_tokens = self.target_tokens
    if (height,width) not in self.attnmaps_sizes:
        self.attnmaps_sizes.append((height,width))
    
    for b in range(self.batch):
        for t in target_tokens:
            power = self.power
            add = attn[b,:,:,t[0]:t[0]+len(t)]**(power)*(self.attnmaps_sizes.index((height,width)) + 1) 
            add = torch.sum(add,dim = 2)
            key = f"{t}-{b}"         
            if key not in self.attnmaps:
                self.attnmaps[key] = add
            else:
                if self.attnmaps[key].shape[1] != add.shape[1]:
                    add = add.view(8,height,width)
                    add = FF.resize(add,self.attnmaps_sizes[0],antialias=None)
                    add = add.reshape_as(self.attnmaps[key])

                self.attnmaps[key] = self.attnmaps[key] + add

def reset_attnmaps(self): # init parameters in every batch
    self.step = 0
    self.attnmaps = {}             #maked from attention maps
    self.attnmaps_sizes =[]      #height,width set of u-net blocks
    self.attnmasks = {}           #maked from attnmaps for regions
    self.maskready = False
    self.history = {}

def saveattnmaps(self,output,h,w,th,step,regions):
    masks = []
    for i, mask in enumerate(self.history[step].values()):
        img, _ , mask = makepmask(self, mask, h, w, th[i % len(th)], step)
        if self.ex:
            masks = [x - mask for x in masks]
            masks.append(mask)
            if len(masks) == regions - 1:
                output.images.extend([FF.to_pil_image(mask) for mask in masks])
                masks = []
        else:
            output.images.append(img)

def makepmask(self, mask, h, w, th, step): # make masks from attention cache return [for preview, for attention, for Latent]
    th = th - step * 0.005
    if 0.05 >= th: th = 0.05
    mask = torch.mean(mask,dim=0)
    mask = mask / mask.max().item()
    mask = torch.where(mask > th ,1,0)
    mask = mask.float()
    mask = mask.view(1,*self.attnmaps_sizes[0])
    img = FF.to_pil_image(mask)
    img = img.resize((w,h))
    mask = FF.resize(mask,(h,w),interpolation=FF.InterpolationMode.NEAREST,antialias=None)
    lmask = mask
    mask = mask.reshape(h*w)
    mask = torch.where(mask > 0.1 ,1,0)
    return img, mask, lmask

def tokendealer(self, all_prompts):
    for prompts in all_prompts:
        targets =[p.split(",")[-1] for p in prompts[1:]]
        tt = []

        for target in targets:
            ptokens = (self.tokenizer(prompts, max_length=self.tokenizer.model_max_length, padding=True, truncation=True, return_tensors='pt').input_ids)[0]
            ttokens = (self.tokenizer(target, max_length=self.tokenizer.model_max_length, padding=True, truncation=True, return_tensors='pt').input_ids)[0]

            tlist = []

            for t in range(ttokens.shape[0] -2):
                for p in range(ptokens.shape[0]):
                    if ttokens[t + 1] == ptokens[p]:
                        tlist.append(p)
            if tlist != [] : tt.append(tlist)

    return tt

def scaled_dot_product_attention(self, query, key, value, attn_mask=None, dropout_p=0.0, is_causal=False, scale=None, getattn = False) -> torch.Tensor:
    # Efficient implementation equivalent to the following:
    L, S = query.size(-2), key.size(-2)
    scale_factor = 1 / math.sqrt(query.size(-1)) if scale is None else scale
    attn_bias = torch.zeros(L, S, dtype=query.dtype,device=self.device)
    if is_causal:
        assert attn_mask is None
        temp_mask = torch.ones(L, S, dtype=torch.bool).tril(diagonal=0)
        attn_bias.masked_fill_(temp_mask.logical_not(), float("-inf"))
        attn_bias.to(query.dtype)

    if attn_mask is not None:
        if attn_mask.dtype == torch.bool:
            attn_mask.masked_fill_(attn_mask.logical_not(), float("-inf"))
        else:
            attn_bias += attn_mask
    attn_weight = query @ key.transpose(-2, -1) * scale_factor
    attn_weight += attn_bias
    attn_weight = torch.softmax(attn_weight, dim=-1)
    if getattn: get_attn_maps(self,attn_weight)
    attn_weight = torch.dropout(attn_weight, dropout_p, train=True)
    return attn_weight @ value