embeddings.py 53.8 KB
Newer Older
1
# Copyright 2024 The HuggingFace Team. All rights reserved.
Patrick von Platen's avatar
Patrick von Platen committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
import math
15
from typing import List, Optional, Tuple, Union
Patrick von Platen's avatar
Patrick von Platen committed
16

17
18
import numpy as np
import torch
19
import torch.nn.functional as F
20
from torch import nn
Patrick von Platen's avatar
Patrick von Platen committed
21

22
from ..utils import deprecate
23
from .activations import FP32SiLU, get_activation
24
from .attention_processor import Attention
25

26

27
def get_timestep_embedding(
Kashif Rasul's avatar
Kashif Rasul committed
28
29
30
31
32
33
    timesteps: torch.Tensor,
    embedding_dim: int,
    flip_sin_to_cos: bool = False,
    downscale_freq_shift: float = 1,
    scale: float = 1,
    max_period: int = 10000,
34
):
Patrick von Platen's avatar
Patrick von Platen committed
35
    """
Patrick von Platen's avatar
Patrick von Platen committed
36
    This matches the implementation in Denoising Diffusion Probabilistic Models: Create sinusoidal timestep embeddings.
37

38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
    Args
        timesteps (torch.Tensor):
            a 1-D Tensor of N indices, one per batch element. These may be fractional.
        embedding_dim (int):
            the dimension of the output.
        flip_sin_to_cos (bool):
            Whether the embedding order should be `cos, sin` (if True) or `sin, cos` (if False)
        downscale_freq_shift (float):
            Controls the delta between frequencies between dimensions
        scale (float):
            Scaling factor applied to the embeddings.
        max_period (int):
            Controls the maximum frequency of the embeddings
    Returns
        torch.Tensor: an [N x dim] Tensor of positional embeddings.
Patrick von Platen's avatar
Patrick von Platen committed
53
    """
54
    assert len(timesteps.shape) == 1, "Timesteps should be a 1d-array"
Patrick von Platen's avatar
Patrick von Platen committed
55
56

    half_dim = embedding_dim // 2
57
58
59
    exponent = -math.log(max_period) * torch.arange(
        start=0, end=half_dim, dtype=torch.float32, device=timesteps.device
    )
60
    exponent = exponent / (half_dim - downscale_freq_shift)
61

62
    emb = torch.exp(exponent)
63
64
    emb = timesteps[:, None].float() * emb[None, :]

65
66
67
    # scale embeddings
    emb = scale * emb

68
    # concat sine and cosine embeddings
69
    emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=-1)
70

71
    # flip sine and cosine embeddings
72
73
74
75
76
    if flip_sin_to_cos:
        emb = torch.cat([emb[:, half_dim:], emb[:, :half_dim]], dim=-1)

    # zero pad
    if embedding_dim % 2 == 1:
Patrick von Platen's avatar
Patrick von Platen committed
77
78
79
80
        emb = torch.nn.functional.pad(emb, (0, 1, 0, 0))
    return emb


Sayak Paul's avatar
Sayak Paul committed
81
82
83
def get_2d_sincos_pos_embed(
    embed_dim, grid_size, cls_token=False, extra_tokens=0, interpolation_scale=1.0, base_size=16
):
Kashif Rasul's avatar
Kashif Rasul committed
84
85
86
87
    """
    grid_size: int of the grid height and width return: pos_embed: [grid_size*grid_size, embed_dim] or
    [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token)
    """
Sayak Paul's avatar
Sayak Paul committed
88
89
90
91
92
    if isinstance(grid_size, int):
        grid_size = (grid_size, grid_size)

    grid_h = np.arange(grid_size[0], dtype=np.float32) / (grid_size[0] / base_size) / interpolation_scale
    grid_w = np.arange(grid_size[1], dtype=np.float32) / (grid_size[1] / base_size) / interpolation_scale
Kashif Rasul's avatar
Kashif Rasul committed
93
94
95
    grid = np.meshgrid(grid_w, grid_h)  # here w goes first
    grid = np.stack(grid, axis=0)

Sayak Paul's avatar
Sayak Paul committed
96
    grid = grid.reshape([2, 1, grid_size[1], grid_size[0]])
Kashif Rasul's avatar
Kashif Rasul committed
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
    pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
    if cls_token and extra_tokens > 0:
        pos_embed = np.concatenate([np.zeros([extra_tokens, embed_dim]), pos_embed], axis=0)
    return pos_embed


def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
    if embed_dim % 2 != 0:
        raise ValueError("embed_dim must be divisible by 2")

    # use half of dimensions to encode grid_h
    emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0])  # (H*W, D/2)
    emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1])  # (H*W, D/2)

    emb = np.concatenate([emb_h, emb_w], axis=1)  # (H*W, D)
    return emb


def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
    """
    embed_dim: output dimension for each position pos: a list of positions to be encoded: size (M,) out: (M, D)
    """
    if embed_dim % 2 != 0:
        raise ValueError("embed_dim must be divisible by 2")

    omega = np.arange(embed_dim // 2, dtype=np.float64)
    omega /= embed_dim / 2.0
    omega = 1.0 / 10000**omega  # (D/2,)

    pos = pos.reshape(-1)  # (M,)
    out = np.einsum("m,d->md", pos, omega)  # (M, D/2), outer product

    emb_sin = np.sin(out)  # (M, D/2)
    emb_cos = np.cos(out)  # (M, D/2)

    emb = np.concatenate([emb_sin, emb_cos], axis=1)  # (M, D)
    return emb


class PatchEmbed(nn.Module):
Dhruv Nair's avatar
Dhruv Nair committed
137
    """2D Image to Patch Embedding with support for SD3 cropping."""
Kashif Rasul's avatar
Kashif Rasul committed
138
139
140
141
142
143
144
145
146
147
148

    def __init__(
        self,
        height=224,
        width=224,
        patch_size=16,
        in_channels=3,
        embed_dim=768,
        layer_norm=False,
        flatten=True,
        bias=True,
Sayak Paul's avatar
Sayak Paul committed
149
        interpolation_scale=1,
150
        pos_embed_type="sincos",
Dhruv Nair's avatar
Dhruv Nair committed
151
        pos_embed_max_size=None,  # For SD3 cropping
Kashif Rasul's avatar
Kashif Rasul committed
152
153
154
155
156
157
    ):
        super().__init__()

        num_patches = (height // patch_size) * (width // patch_size)
        self.flatten = flatten
        self.layer_norm = layer_norm
Dhruv Nair's avatar
Dhruv Nair committed
158
        self.pos_embed_max_size = pos_embed_max_size
Kashif Rasul's avatar
Kashif Rasul committed
159
160
161
162
163
164
165
166
167

        self.proj = nn.Conv2d(
            in_channels, embed_dim, kernel_size=(patch_size, patch_size), stride=patch_size, bias=bias
        )
        if layer_norm:
            self.norm = nn.LayerNorm(embed_dim, elementwise_affine=False, eps=1e-6)
        else:
            self.norm = None

Sayak Paul's avatar
Sayak Paul committed
168
169
170
171
        self.patch_size = patch_size
        self.height, self.width = height // patch_size, width // patch_size
        self.base_size = height // patch_size
        self.interpolation_scale = interpolation_scale
Dhruv Nair's avatar
Dhruv Nair committed
172
173
174
175
176
177
178

        # Calculate positional embeddings based on max size or default
        if pos_embed_max_size:
            grid_size = pos_embed_max_size
        else:
            grid_size = int(num_patches**0.5)

179
180
181
182
        if pos_embed_type is None:
            self.pos_embed = None
        elif pos_embed_type == "sincos":
            pos_embed = get_2d_sincos_pos_embed(
Dhruv Nair's avatar
Dhruv Nair committed
183
                embed_dim, grid_size, base_size=self.base_size, interpolation_scale=self.interpolation_scale
184
            )
Dhruv Nair's avatar
Dhruv Nair committed
185
186
            persistent = True if pos_embed_max_size else False
            self.register_buffer("pos_embed", torch.from_numpy(pos_embed).float().unsqueeze(0), persistent=persistent)
187
188
        else:
            raise ValueError(f"Unsupported pos_embed_type: {pos_embed_type}")
Kashif Rasul's avatar
Kashif Rasul committed
189

Dhruv Nair's avatar
Dhruv Nair committed
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
    def cropped_pos_embed(self, height, width):
        """Crops positional embeddings for SD3 compatibility."""
        if self.pos_embed_max_size is None:
            raise ValueError("`pos_embed_max_size` must be set for cropping.")

        height = height // self.patch_size
        width = width // self.patch_size
        if height > self.pos_embed_max_size:
            raise ValueError(
                f"Height ({height}) cannot be greater than `pos_embed_max_size`: {self.pos_embed_max_size}."
            )
        if width > self.pos_embed_max_size:
            raise ValueError(
                f"Width ({width}) cannot be greater than `pos_embed_max_size`: {self.pos_embed_max_size}."
            )

        top = (self.pos_embed_max_size - height) // 2
        left = (self.pos_embed_max_size - width) // 2
        spatial_pos_embed = self.pos_embed.reshape(1, self.pos_embed_max_size, self.pos_embed_max_size, -1)
        spatial_pos_embed = spatial_pos_embed[:, top : top + height, left : left + width, :]
        spatial_pos_embed = spatial_pos_embed.reshape(1, -1, spatial_pos_embed.shape[-1])
        return spatial_pos_embed

Kashif Rasul's avatar
Kashif Rasul committed
213
    def forward(self, latent):
Dhruv Nair's avatar
Dhruv Nair committed
214
215
216
217
        if self.pos_embed_max_size is not None:
            height, width = latent.shape[-2:]
        else:
            height, width = latent.shape[-2] // self.patch_size, latent.shape[-1] // self.patch_size
Sayak Paul's avatar
Sayak Paul committed
218

Kashif Rasul's avatar
Kashif Rasul committed
219
220
221
222
223
        latent = self.proj(latent)
        if self.flatten:
            latent = latent.flatten(2).transpose(1, 2)  # BCHW -> BNC
        if self.layer_norm:
            latent = self.norm(latent)
224
225
        if self.pos_embed is None:
            return latent.to(latent.dtype)
Dhruv Nair's avatar
Dhruv Nair committed
226
227
228
        # Interpolate or crop positional embeddings as needed
        if self.pos_embed_max_size:
            pos_embed = self.cropped_pos_embed(height, width)
Sayak Paul's avatar
Sayak Paul committed
229
        else:
Dhruv Nair's avatar
Dhruv Nair committed
230
231
232
233
234
235
236
237
238
239
            if self.height != height or self.width != width:
                pos_embed = get_2d_sincos_pos_embed(
                    embed_dim=self.pos_embed.shape[-1],
                    grid_size=(height, width),
                    base_size=self.base_size,
                    interpolation_scale=self.interpolation_scale,
                )
                pos_embed = torch.from_numpy(pos_embed).float().unsqueeze(0).to(latent.device)
            else:
                pos_embed = self.pos_embed
Sayak Paul's avatar
Sayak Paul committed
240
241

        return (latent + pos_embed).to(latent.dtype)
Kashif Rasul's avatar
Kashif Rasul committed
242
243


244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
class LuminaPatchEmbed(nn.Module):
    """2D Image to Patch Embedding with support for Lumina-T2X"""

    def __init__(self, patch_size=2, in_channels=4, embed_dim=768, bias=True):
        super().__init__()
        self.patch_size = patch_size
        self.proj = nn.Linear(
            in_features=patch_size * patch_size * in_channels,
            out_features=embed_dim,
            bias=bias,
        )

    def forward(self, x, freqs_cis):
        """
        Patchifies and embeds the input tensor(s).

        Args:
            x (List[torch.Tensor] | torch.Tensor): The input tensor(s) to be patchified and embedded.

        Returns:
            Tuple[torch.Tensor, torch.Tensor, List[Tuple[int, int]], torch.Tensor]: A tuple containing the patchified
            and embedded tensor(s), the mask indicating the valid patches, the original image size(s), and the
            frequency tensor(s).
        """
        freqs_cis = freqs_cis.to(x[0].device)
        patch_height = patch_width = self.patch_size
        batch_size, channel, height, width = x.size()
        height_tokens, width_tokens = height // patch_height, width // patch_width

        x = x.view(batch_size, channel, height_tokens, patch_height, width_tokens, patch_width).permute(
            0, 2, 4, 1, 3, 5
        )
        x = x.flatten(3)
        x = self.proj(x)
        x = x.flatten(1, 2)

        mask = torch.ones(x.shape[0], x.shape[1], dtype=torch.int32, device=x.device)

        return (
            x,
            mask,
            [(height, width)] * batch_size,
            freqs_cis[:height_tokens, :width_tokens].flatten(0, 1).unsqueeze(0),
        )


290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
def get_2d_rotary_pos_embed(embed_dim, crops_coords, grid_size, use_real=True):
    """
    RoPE for image tokens with 2d structure.

    Args:
    embed_dim: (`int`):
        The embedding dimension size
    crops_coords (`Tuple[int]`)
        The top-left and bottom-right coordinates of the crop.
    grid_size (`Tuple[int]`):
        The grid size of the positional embedding.
    use_real (`bool`):
        If True, return real part and imaginary part separately. Otherwise, return complex numbers.

    Returns:
        `torch.Tensor`: positional embdding with shape `( grid_size * grid_size, embed_dim/2)`.
    """
    start, stop = crops_coords
    grid_h = np.linspace(start[0], stop[0], grid_size[0], endpoint=False, dtype=np.float32)
    grid_w = np.linspace(start[1], stop[1], grid_size[1], endpoint=False, dtype=np.float32)
    grid = np.meshgrid(grid_w, grid_h)  # here w goes first
    grid = np.stack(grid, axis=0)  # [2, W, H]

    grid = grid.reshape([2, 1, *grid.shape[1:]])
    pos_embed = get_2d_rotary_pos_embed_from_grid(embed_dim, grid, use_real=use_real)
    return pos_embed


def get_2d_rotary_pos_embed_from_grid(embed_dim, grid, use_real=False):
    assert embed_dim % 4 == 0

    # use half of dimensions to encode grid_h
322
323
324
325
326
327
    emb_h = get_1d_rotary_pos_embed(
        embed_dim // 2, grid[0].reshape(-1), use_real=use_real
    )  # (H*W, D/2) if use_real else (H*W, D/4)
    emb_w = get_1d_rotary_pos_embed(
        embed_dim // 2, grid[1].reshape(-1), use_real=use_real
    )  # (H*W, D/2) if use_real else (H*W, D/4)
328
329

    if use_real:
330
331
        cos = torch.cat([emb_h[0], emb_w[0]], dim=1)  # (H*W, D)
        sin = torch.cat([emb_h[1], emb_w[1]], dim=1)  # (H*W, D)
332
333
334
335
336
337
        return cos, sin
    else:
        emb = torch.cat([emb_h, emb_w], dim=1)  # (H*W, D/2)
        return emb


338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
def get_2d_rotary_pos_embed_lumina(embed_dim, len_h, len_w, linear_factor=1.0, ntk_factor=1.0):
    assert embed_dim % 4 == 0

    emb_h = get_1d_rotary_pos_embed(
        embed_dim // 2, len_h, linear_factor=linear_factor, ntk_factor=ntk_factor
    )  # (H, D/4)
    emb_w = get_1d_rotary_pos_embed(
        embed_dim // 2, len_w, linear_factor=linear_factor, ntk_factor=ntk_factor
    )  # (W, D/4)
    emb_h = emb_h.view(len_h, 1, embed_dim // 4, 1).repeat(1, len_w, 1, 1)  # (H, W, D/4, 1)
    emb_w = emb_w.view(1, len_w, embed_dim // 4, 1).repeat(len_h, 1, 1, 1)  # (H, W, D/4, 1)

    emb = torch.cat([emb_h, emb_w], dim=-1).flatten(2)  # (H, W, D/2)
    return emb


def get_1d_rotary_pos_embed(
    dim: int, pos: Union[np.ndarray, int], theta: float = 10000.0, use_real=False, linear_factor=1.0, ntk_factor=1.0
):
357
358
359
360
361
362
363
364
365
366
367
368
369
370
    """
    Precompute the frequency tensor for complex exponentials (cis) with given dimensions.

    This function calculates a frequency tensor with complex exponentials using the given dimension 'dim' and the end
    index 'end'. The 'theta' parameter scales the frequencies. The returned tensor contains complex values in complex64
    data type.

    Args:
        dim (`int`): Dimension of the frequency tensor.
        pos (`np.ndarray` or `int`): Position indices for the frequency tensor. [S] or scalar
        theta (`float`, *optional*, defaults to 10000.0):
            Scaling factor for frequency computation. Defaults to 10000.0.
        use_real (`bool`, *optional*):
            If True, return real part and imaginary part separately. Otherwise, return complex numbers.
371
372
373
374
        linear_factor (`float`, *optional*, defaults to 1.0):
            Scaling factor for the context extrapolation. Defaults to 1.0.
        ntk_factor (`float`, *optional*, defaults to 1.0):
            Scaling factor for the NTK-Aware RoPE. Defaults to 1.0.
375
376
377
    Returns:
        `torch.Tensor`: Precomputed frequency tensor with complex exponentials. [S, D/2]
    """
378
379
    assert dim % 2 == 0

380
381
    if isinstance(pos, int):
        pos = np.arange(pos)
382
383
    theta = theta * ntk_factor
    freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim)) / linear_factor  # [D/2]
384
385
386
387
388
389
390
391
392
393
394
395
396
397
    t = torch.from_numpy(pos).to(freqs.device)  # type: ignore  # [S]
    freqs = torch.outer(t, freqs).float()  # type: ignore   # [S, D/2]
    if use_real:
        freqs_cos = freqs.cos().repeat_interleave(2, dim=1)  # [S, D]
        freqs_sin = freqs.sin().repeat_interleave(2, dim=1)  # [S, D]
        return freqs_cos, freqs_sin
    else:
        freqs_cis = torch.polar(torch.ones_like(freqs), freqs)  # complex64     # [S, D/2]
        return freqs_cis


def apply_rotary_emb(
    x: torch.Tensor,
    freqs_cis: Union[torch.Tensor, Tuple[torch.Tensor]],
398
    use_real: bool = True,
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
) -> Tuple[torch.Tensor, torch.Tensor]:
    """
    Apply rotary embeddings to input tensors using the given frequency tensor. This function applies rotary embeddings
    to the given query or key 'x' tensors using the provided frequency tensor 'freqs_cis'. The input tensors are
    reshaped as complex numbers, and the frequency tensor is reshaped for broadcasting compatibility. The resulting
    tensors contain rotary embeddings and are returned as real tensors.

    Args:
        x (`torch.Tensor`):
            Query or key tensor to apply rotary embeddings. [B, H, S, D] xk (torch.Tensor): Key tensor to apply
        freqs_cis (`Tuple[torch.Tensor]`): Precomputed frequency tensor for complex exponentials. ([S, D], [S, D],)

    Returns:
        Tuple[torch.Tensor, torch.Tensor]: Tuple of modified query tensor and key tensor with rotary embeddings.
    """
414
415
416
417
418
    if use_real:
        cos, sin = freqs_cis  # [S, D]
        cos = cos[None, None]
        sin = sin[None, None]
        cos, sin = cos.to(x.device), sin.to(x.device)
419

420
421
422
        x_real, x_imag = x.reshape(*x.shape[:-1], -1, 2).unbind(-1)  # [B, S, H, D//2]
        x_rotated = torch.stack([-x_imag, x_real], dim=-1).flatten(3)
        out = (x.float() * cos + x_rotated.float() * sin).to(x.dtype)
423

424
425
426
427
428
429
430
        return out
    else:
        x_rotated = torch.view_as_complex(x.float().reshape(*x.shape[:-1], -1, 2))
        freqs_cis = freqs_cis.unsqueeze(2)
        x_out = torch.view_as_real(x_rotated * freqs_cis).flatten(3)

        return x_out.type_as(x)
431
432


433
class TimestepEmbedding(nn.Module):
434
435
436
437
438
439
440
441
    def __init__(
        self,
        in_channels: int,
        time_embed_dim: int,
        act_fn: str = "silu",
        out_dim: int = None,
        post_act_fn: Optional[str] = None,
        cond_proj_dim=None,
Will Berman's avatar
Will Berman committed
442
        sample_proj_bias=True,
443
    ):
444
445
        super().__init__()

446
        self.linear_1 = nn.Linear(in_channels, time_embed_dim, sample_proj_bias)
447
448
449
450
451
452

        if cond_proj_dim is not None:
            self.cond_proj = nn.Linear(cond_proj_dim, in_channels, bias=False)
        else:
            self.cond_proj = None

453
        self.act = get_activation(act_fn)
454
455
456
457
458

        if out_dim is not None:
            time_embed_dim_out = out_dim
        else:
            time_embed_dim_out = time_embed_dim
459
        self.linear_2 = nn.Linear(time_embed_dim, time_embed_dim_out, sample_proj_bias)
460

461
462
463
        if post_act_fn is None:
            self.post_act = None
        else:
464
            self.post_act = get_activation(post_act_fn)
465
466
467
468

    def forward(self, sample, condition=None):
        if condition is not None:
            sample = sample + self.cond_proj(condition)
469
470
471
472
473
474
        sample = self.linear_1(sample)

        if self.act is not None:
            sample = self.act(sample)

        sample = self.linear_2(sample)
475
476
477

        if self.post_act is not None:
            sample = self.post_act(sample)
478
479
480
481
        return sample


class Timesteps(nn.Module):
Sayak Paul's avatar
Sayak Paul committed
482
    def __init__(self, num_channels: int, flip_sin_to_cos: bool, downscale_freq_shift: float, scale: int = 1):
483
484
485
486
        super().__init__()
        self.num_channels = num_channels
        self.flip_sin_to_cos = flip_sin_to_cos
        self.downscale_freq_shift = downscale_freq_shift
Sayak Paul's avatar
Sayak Paul committed
487
        self.scale = scale
488
489
490
491
492
493
494

    def forward(self, timesteps):
        t_emb = get_timestep_embedding(
            timesteps,
            self.num_channels,
            flip_sin_to_cos=self.flip_sin_to_cos,
            downscale_freq_shift=self.downscale_freq_shift,
Sayak Paul's avatar
Sayak Paul committed
495
            scale=self.scale,
496
497
498
499
        )
        return t_emb


500
501
class GaussianFourierProjection(nn.Module):
    """Gaussian Fourier embeddings for noise levels."""
Patrick von Platen's avatar
Patrick von Platen committed
502

503
504
505
    def __init__(
        self, embedding_size: int = 256, scale: float = 1.0, set_W_to_weight=True, log=True, flip_sin_to_cos=False
    ):
506
        super().__init__()
507
        self.weight = nn.Parameter(torch.randn(embedding_size) * scale, requires_grad=False)
508
509
        self.log = log
        self.flip_sin_to_cos = flip_sin_to_cos
510

511
512
        if set_W_to_weight:
            # to delete later
513
            del self.weight
514
515
            self.W = nn.Parameter(torch.randn(embedding_size) * scale, requires_grad=False)
            self.weight = self.W
516
            del self.W
517

518
    def forward(self, x):
519
520
521
        if self.log:
            x = torch.log(x)

522
        x_proj = x[:, None] * self.weight[None, :] * 2 * np.pi
523
524
525
526
527

        if self.flip_sin_to_cos:
            out = torch.cat([torch.cos(x_proj), torch.sin(x_proj)], dim=-1)
        else:
            out = torch.cat([torch.sin(x_proj), torch.cos(x_proj)], dim=-1)
528
        return out
Will Berman's avatar
Will Berman committed
529
530


Dhruv Nair's avatar
Dhruv Nair committed
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
class SinusoidalPositionalEmbedding(nn.Module):
    """Apply positional information to a sequence of embeddings.

    Takes in a sequence of embeddings with shape (batch_size, seq_length, embed_dim) and adds positional embeddings to
    them

    Args:
        embed_dim: (int): Dimension of the positional embedding.
        max_seq_length: Maximum sequence length to apply positional embeddings

    """

    def __init__(self, embed_dim: int, max_seq_length: int = 32):
        super().__init__()
        position = torch.arange(max_seq_length).unsqueeze(1)
        div_term = torch.exp(torch.arange(0, embed_dim, 2) * (-math.log(10000.0) / embed_dim))
        pe = torch.zeros(1, max_seq_length, embed_dim)
        pe[0, :, 0::2] = torch.sin(position * div_term)
        pe[0, :, 1::2] = torch.cos(position * div_term)
        self.register_buffer("pe", pe)

    def forward(self, x):
        _, seq_length, _ = x.shape
        x = x + self.pe[:, :seq_length]
        return x


Will Berman's avatar
Will Berman committed
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
class ImagePositionalEmbeddings(nn.Module):
    """
    Converts latent image classes into vector embeddings. Sums the vector embeddings with positional embeddings for the
    height and width of the latent space.

    For more details, see figure 10 of the dall-e paper: https://arxiv.org/abs/2102.12092

    For VQ-diffusion:

    Output vector embeddings are used as input for the transformer.

    Note that the vector embeddings for the transformer are different than the vector embeddings from the VQVAE.

    Args:
        num_embed (`int`):
            Number of embeddings for the latent pixels embeddings.
        height (`int`):
            Height of the latent image i.e. the number of height embeddings.
        width (`int`):
            Width of the latent image i.e. the number of width embeddings.
        embed_dim (`int`):
            Dimension of the produced vector embeddings. Used for the latent pixel, height, and width embeddings.
    """

    def __init__(
        self,
        num_embed: int,
        height: int,
        width: int,
        embed_dim: int,
    ):
        super().__init__()

        self.height = height
        self.width = width
        self.num_embed = num_embed
        self.embed_dim = embed_dim

        self.emb = nn.Embedding(self.num_embed, embed_dim)
        self.height_emb = nn.Embedding(self.height, embed_dim)
        self.width_emb = nn.Embedding(self.width, embed_dim)

    def forward(self, index):
        emb = self.emb(index)

        height_emb = self.height_emb(torch.arange(self.height, device=index.device).view(1, self.height))

        # 1 x H x D -> 1 x H x 1 x D
        height_emb = height_emb.unsqueeze(2)

        width_emb = self.width_emb(torch.arange(self.width, device=index.device).view(1, self.width))

        # 1 x W x D -> 1 x 1 x W x D
        width_emb = width_emb.unsqueeze(1)

        pos_emb = height_emb + width_emb

        # 1 x H x W x D -> 1 x L xD
        pos_emb = pos_emb.view(1, self.height * self.width, -1)

        emb = emb + pos_emb[:, : emb.shape[1], :]

        return emb
Kashif Rasul's avatar
Kashif Rasul committed
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650


class LabelEmbedding(nn.Module):
    """
    Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance.

    Args:
        num_classes (`int`): The number of classes.
        hidden_size (`int`): The size of the vector embeddings.
        dropout_prob (`float`): The probability of dropping a label.
    """

    def __init__(self, num_classes, hidden_size, dropout_prob):
        super().__init__()
        use_cfg_embedding = dropout_prob > 0
        self.embedding_table = nn.Embedding(num_classes + use_cfg_embedding, hidden_size)
        self.num_classes = num_classes
        self.dropout_prob = dropout_prob

    def token_drop(self, labels, force_drop_ids=None):
        """
        Drops labels to enable classifier-free guidance.
        """
        if force_drop_ids is None:
            drop_ids = torch.rand(labels.shape[0], device=labels.device) < self.dropout_prob
        else:
            drop_ids = torch.tensor(force_drop_ids == 1)
        labels = torch.where(drop_ids, self.num_classes, labels)
        return labels

651
    def forward(self, labels: torch.LongTensor, force_drop_ids=None):
Kashif Rasul's avatar
Kashif Rasul committed
652
653
654
655
656
657
658
        use_dropout = self.dropout_prob > 0
        if (self.training and use_dropout) or (force_drop_ids is not None):
            labels = self.token_drop(labels, force_drop_ids)
        embeddings = self.embedding_table(labels)
        return embeddings


YiYi Xu's avatar
YiYi Xu committed
659
660
661
662
663
664
665
666
667
668
669
670
671
672
class TextImageProjection(nn.Module):
    def __init__(
        self,
        text_embed_dim: int = 1024,
        image_embed_dim: int = 768,
        cross_attention_dim: int = 768,
        num_image_text_embeds: int = 10,
    ):
        super().__init__()

        self.num_image_text_embeds = num_image_text_embeds
        self.image_embeds = nn.Linear(image_embed_dim, self.num_image_text_embeds * cross_attention_dim)
        self.text_proj = nn.Linear(text_embed_dim, cross_attention_dim)

673
    def forward(self, text_embeds: torch.Tensor, image_embeds: torch.Tensor):
YiYi Xu's avatar
YiYi Xu committed
674
675
676
677
678
679
680
681
682
683
684
685
        batch_size = text_embeds.shape[0]

        # image
        image_text_embeds = self.image_embeds(image_embeds)
        image_text_embeds = image_text_embeds.reshape(batch_size, self.num_image_text_embeds, -1)

        # text
        text_embeds = self.text_proj(text_embeds)

        return torch.cat([image_text_embeds, text_embeds], dim=1)


YiYi Xu's avatar
YiYi Xu committed
686
687
688
689
690
691
692
693
694
695
696
697
698
class ImageProjection(nn.Module):
    def __init__(
        self,
        image_embed_dim: int = 768,
        cross_attention_dim: int = 768,
        num_image_text_embeds: int = 32,
    ):
        super().__init__()

        self.num_image_text_embeds = num_image_text_embeds
        self.image_embeds = nn.Linear(image_embed_dim, self.num_image_text_embeds * cross_attention_dim)
        self.norm = nn.LayerNorm(cross_attention_dim)

699
    def forward(self, image_embeds: torch.Tensor):
YiYi Xu's avatar
YiYi Xu committed
700
701
702
703
704
705
706
707
708
        batch_size = image_embeds.shape[0]

        # image
        image_embeds = self.image_embeds(image_embeds)
        image_embeds = image_embeds.reshape(batch_size, self.num_image_text_embeds, -1)
        image_embeds = self.norm(image_embeds)
        return image_embeds


709
class IPAdapterFullImageProjection(nn.Module):
710
711
712
713
714
715
716
    def __init__(self, image_embed_dim=1024, cross_attention_dim=1024):
        super().__init__()
        from .attention import FeedForward

        self.ff = FeedForward(image_embed_dim, cross_attention_dim, mult=1, activation_fn="gelu")
        self.norm = nn.LayerNorm(cross_attention_dim)

717
    def forward(self, image_embeds: torch.Tensor):
718
719
720
        return self.norm(self.ff(image_embeds))


721
722
723
724
725
726
727
728
729
730
class IPAdapterFaceIDImageProjection(nn.Module):
    def __init__(self, image_embed_dim=1024, cross_attention_dim=1024, mult=1, num_tokens=1):
        super().__init__()
        from .attention import FeedForward

        self.num_tokens = num_tokens
        self.cross_attention_dim = cross_attention_dim
        self.ff = FeedForward(image_embed_dim, cross_attention_dim * num_tokens, mult=mult, activation_fn="gelu")
        self.norm = nn.LayerNorm(cross_attention_dim)

731
    def forward(self, image_embeds: torch.Tensor):
732
733
734
735
736
        x = self.ff(image_embeds)
        x = x.reshape(-1, self.num_tokens, self.cross_attention_dim)
        return self.norm(x)


Kashif Rasul's avatar
Kashif Rasul committed
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
class CombinedTimestepLabelEmbeddings(nn.Module):
    def __init__(self, num_classes, embedding_dim, class_dropout_prob=0.1):
        super().__init__()

        self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=1)
        self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim)
        self.class_embedder = LabelEmbedding(num_classes, embedding_dim, class_dropout_prob)

    def forward(self, timestep, class_labels, hidden_dtype=None):
        timesteps_proj = self.time_proj(timestep)
        timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=hidden_dtype))  # (N, D)

        class_labels = self.class_embedder(class_labels)  # (N, D)

        conditioning = timesteps_emb + class_labels  # (N, D)

        return conditioning
Patrick von Platen's avatar
Patrick von Platen committed
754
755


Dhruv Nair's avatar
Dhruv Nair committed
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
class CombinedTimestepTextProjEmbeddings(nn.Module):
    def __init__(self, embedding_dim, pooled_projection_dim):
        super().__init__()

        self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0)
        self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim)
        self.text_embedder = PixArtAlphaTextProjection(pooled_projection_dim, embedding_dim, act_fn="silu")

    def forward(self, timestep, pooled_projection):
        timesteps_proj = self.time_proj(timestep)
        timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=pooled_projection.dtype))  # (N, D)

        pooled_projections = self.text_embedder(pooled_projection)

        conditioning = timesteps_emb + pooled_projections

        return conditioning


775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
class HunyuanDiTAttentionPool(nn.Module):
    # Copied from https://github.com/Tencent/HunyuanDiT/blob/cb709308d92e6c7e8d59d0dff41b74d35088db6a/hydit/modules/poolers.py#L6

    def __init__(self, spacial_dim: int, embed_dim: int, num_heads: int, output_dim: int = None):
        super().__init__()
        self.positional_embedding = nn.Parameter(torch.randn(spacial_dim + 1, embed_dim) / embed_dim**0.5)
        self.k_proj = nn.Linear(embed_dim, embed_dim)
        self.q_proj = nn.Linear(embed_dim, embed_dim)
        self.v_proj = nn.Linear(embed_dim, embed_dim)
        self.c_proj = nn.Linear(embed_dim, output_dim or embed_dim)
        self.num_heads = num_heads

    def forward(self, x):
        x = x.permute(1, 0, 2)  # NLC -> LNC
        x = torch.cat([x.mean(dim=0, keepdim=True), x], dim=0)  # (L+1)NC
        x = x + self.positional_embedding[:, None, :].to(x.dtype)  # (L+1)NC
        x, _ = F.multi_head_attention_forward(
            query=x[:1],
            key=x,
            value=x,
            embed_dim_to_check=x.shape[-1],
            num_heads=self.num_heads,
            q_proj_weight=self.q_proj.weight,
            k_proj_weight=self.k_proj.weight,
            v_proj_weight=self.v_proj.weight,
            in_proj_weight=None,
            in_proj_bias=torch.cat([self.q_proj.bias, self.k_proj.bias, self.v_proj.bias]),
            bias_k=None,
            bias_v=None,
            add_zero_attn=False,
            dropout_p=0,
            out_proj_weight=self.c_proj.weight,
            out_proj_bias=self.c_proj.bias,
            use_separate_proj_weight=True,
            training=self.training,
            need_weights=False,
        )
        return x.squeeze(0)


class HunyuanCombinedTimestepTextSizeStyleEmbedding(nn.Module):
816
817
818
819
820
821
822
823
    def __init__(
        self,
        embedding_dim,
        pooled_projection_dim=1024,
        seq_len=256,
        cross_attention_dim=2048,
        use_style_cond_and_image_meta_size=True,
    ):
824
825
826
827
828
        super().__init__()

        self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0)
        self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim)

829
830
        self.size_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0)

831
832
833
        self.pooler = HunyuanDiTAttentionPool(
            seq_len, cross_attention_dim, num_heads=8, output_dim=pooled_projection_dim
        )
834

835
        # Here we use a default learned embedder layer for future extension.
836
837
838
839
840
841
842
        self.use_style_cond_and_image_meta_size = use_style_cond_and_image_meta_size
        if use_style_cond_and_image_meta_size:
            self.style_embedder = nn.Embedding(1, embedding_dim)
            extra_in_dim = 256 * 6 + embedding_dim + pooled_projection_dim
        else:
            extra_in_dim = pooled_projection_dim

843
844
845
846
847
848
849
850
851
852
853
854
855
856
        self.extra_embedder = PixArtAlphaTextProjection(
            in_features=extra_in_dim,
            hidden_size=embedding_dim * 4,
            out_features=embedding_dim,
            act_fn="silu_fp32",
        )

    def forward(self, timestep, encoder_hidden_states, image_meta_size, style, hidden_dtype=None):
        timesteps_proj = self.time_proj(timestep)
        timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=hidden_dtype))  # (N, 256)

        # extra condition1: text
        pooled_projections = self.pooler(encoder_hidden_states)  # (N, 1024)

857
858
        if self.use_style_cond_and_image_meta_size:
            # extra condition2: image meta size embdding
859
            image_meta_size = self.size_proj(image_meta_size.view(-1))
860
861
            image_meta_size = image_meta_size.to(dtype=hidden_dtype)
            image_meta_size = image_meta_size.view(-1, 6 * 256)  # (N, 1536)
862

863
864
865
866
867
868
869
            # extra condition3: style embedding
            style_embedding = self.style_embedder(style)  # (N, embedding_dim)

            # Concatenate all extra vectors
            extra_cond = torch.cat([pooled_projections, image_meta_size, style_embedding], dim=1)
        else:
            extra_cond = torch.cat([pooled_projections], dim=1)
870
871
872
873
874
875

        conditioning = timesteps_emb + self.extra_embedder(extra_cond)  # [B, D]

        return conditioning


876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
class LuminaCombinedTimestepCaptionEmbedding(nn.Module):
    def __init__(self, hidden_size=4096, cross_attention_dim=2048, frequency_embedding_size=256):
        super().__init__()
        self.time_proj = Timesteps(
            num_channels=frequency_embedding_size, flip_sin_to_cos=True, downscale_freq_shift=0.0
        )

        self.timestep_embedder = TimestepEmbedding(in_channels=frequency_embedding_size, time_embed_dim=hidden_size)

        self.caption_embedder = nn.Sequential(
            nn.LayerNorm(cross_attention_dim),
            nn.Linear(
                cross_attention_dim,
                hidden_size,
                bias=True,
            ),
        )

    def forward(self, timestep, caption_feat, caption_mask):
        # timestep embedding:
        time_freq = self.time_proj(timestep)
        time_embed = self.timestep_embedder(time_freq.to(dtype=self.timestep_embedder.linear_1.weight.dtype))

        # caption condition embedding:
        caption_mask_float = caption_mask.float().unsqueeze(-1)
        caption_feats_pool = (caption_feat * caption_mask_float).sum(dim=1) / caption_mask_float.sum(dim=1)
        caption_feats_pool = caption_feats_pool.to(caption_feat)
        caption_embed = self.caption_embedder(caption_feats_pool)

        conditioning = time_embed + caption_embed

        return conditioning


Patrick von Platen's avatar
Patrick von Platen committed
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
class TextTimeEmbedding(nn.Module):
    def __init__(self, encoder_dim: int, time_embed_dim: int, num_heads: int = 64):
        super().__init__()
        self.norm1 = nn.LayerNorm(encoder_dim)
        self.pool = AttentionPooling(num_heads, encoder_dim)
        self.proj = nn.Linear(encoder_dim, time_embed_dim)
        self.norm2 = nn.LayerNorm(time_embed_dim)

    def forward(self, hidden_states):
        hidden_states = self.norm1(hidden_states)
        hidden_states = self.pool(hidden_states)
        hidden_states = self.proj(hidden_states)
        hidden_states = self.norm2(hidden_states)
        return hidden_states


YiYi Xu's avatar
YiYi Xu committed
926
927
928
929
930
931
932
class TextImageTimeEmbedding(nn.Module):
    def __init__(self, text_embed_dim: int = 768, image_embed_dim: int = 768, time_embed_dim: int = 1536):
        super().__init__()
        self.text_proj = nn.Linear(text_embed_dim, time_embed_dim)
        self.text_norm = nn.LayerNorm(time_embed_dim)
        self.image_proj = nn.Linear(image_embed_dim, time_embed_dim)

933
    def forward(self, text_embeds: torch.Tensor, image_embeds: torch.Tensor):
YiYi Xu's avatar
YiYi Xu committed
934
935
936
937
938
939
940
941
942
943
        # text
        time_text_embeds = self.text_proj(text_embeds)
        time_text_embeds = self.text_norm(time_text_embeds)

        # image
        time_image_embeds = self.image_proj(image_embeds)

        return time_image_embeds + time_text_embeds


YiYi Xu's avatar
YiYi Xu committed
944
945
946
947
948
949
class ImageTimeEmbedding(nn.Module):
    def __init__(self, image_embed_dim: int = 768, time_embed_dim: int = 1536):
        super().__init__()
        self.image_proj = nn.Linear(image_embed_dim, time_embed_dim)
        self.image_norm = nn.LayerNorm(time_embed_dim)

950
    def forward(self, image_embeds: torch.Tensor):
YiYi Xu's avatar
YiYi Xu committed
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
        # image
        time_image_embeds = self.image_proj(image_embeds)
        time_image_embeds = self.image_norm(time_image_embeds)
        return time_image_embeds


class ImageHintTimeEmbedding(nn.Module):
    def __init__(self, image_embed_dim: int = 768, time_embed_dim: int = 1536):
        super().__init__()
        self.image_proj = nn.Linear(image_embed_dim, time_embed_dim)
        self.image_norm = nn.LayerNorm(time_embed_dim)
        self.input_hint_block = nn.Sequential(
            nn.Conv2d(3, 16, 3, padding=1),
            nn.SiLU(),
            nn.Conv2d(16, 16, 3, padding=1),
            nn.SiLU(),
            nn.Conv2d(16, 32, 3, padding=1, stride=2),
            nn.SiLU(),
            nn.Conv2d(32, 32, 3, padding=1),
            nn.SiLU(),
            nn.Conv2d(32, 96, 3, padding=1, stride=2),
            nn.SiLU(),
            nn.Conv2d(96, 96, 3, padding=1),
            nn.SiLU(),
            nn.Conv2d(96, 256, 3, padding=1, stride=2),
            nn.SiLU(),
            nn.Conv2d(256, 4, 3, padding=1),
        )

980
    def forward(self, image_embeds: torch.Tensor, hint: torch.Tensor):
YiYi Xu's avatar
YiYi Xu committed
981
982
983
984
985
986
987
        # image
        time_image_embeds = self.image_proj(image_embeds)
        time_image_embeds = self.image_norm(time_image_embeds)
        hint = self.input_hint_block(hint)
        return time_image_embeds, hint


Patrick von Platen's avatar
Patrick von Platen committed
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
class AttentionPooling(nn.Module):
    # Copied from https://github.com/deep-floyd/IF/blob/2f91391f27dd3c468bf174be5805b4cc92980c0b/deepfloyd_if/model/nn.py#L54

    def __init__(self, num_heads, embed_dim, dtype=None):
        super().__init__()
        self.dtype = dtype
        self.positional_embedding = nn.Parameter(torch.randn(1, embed_dim) / embed_dim**0.5)
        self.k_proj = nn.Linear(embed_dim, embed_dim, dtype=self.dtype)
        self.q_proj = nn.Linear(embed_dim, embed_dim, dtype=self.dtype)
        self.v_proj = nn.Linear(embed_dim, embed_dim, dtype=self.dtype)
        self.num_heads = num_heads
        self.dim_per_head = embed_dim // self.num_heads

    def forward(self, x):
        bs, length, width = x.size()

        def shape(x):
            # (bs, length, width) --> (bs, length, n_heads, dim_per_head)
            x = x.view(bs, -1, self.num_heads, self.dim_per_head)
            # (bs, length, n_heads, dim_per_head) --> (bs, n_heads, length, dim_per_head)
            x = x.transpose(1, 2)
            # (bs, n_heads, length, dim_per_head) --> (bs*n_heads, length, dim_per_head)
            x = x.reshape(bs * self.num_heads, -1, self.dim_per_head)
            # (bs*n_heads, length, dim_per_head) --> (bs*n_heads, dim_per_head, length)
            x = x.transpose(1, 2)
            return x

        class_token = x.mean(dim=1, keepdim=True) + self.positional_embedding.to(x.dtype)
        x = torch.cat([class_token, x], dim=1)  # (bs, length+1, width)

        # (bs*n_heads, class_token_length, dim_per_head)
        q = shape(self.q_proj(class_token))
        # (bs*n_heads, length+class_token_length, dim_per_head)
        k = shape(self.k_proj(x))
        v = shape(self.v_proj(x))

        # (bs*n_heads, class_token_length, length+class_token_length):
        scale = 1 / math.sqrt(math.sqrt(self.dim_per_head))
        weight = torch.einsum("bct,bcs->bts", q * scale, k * scale)  # More stable with f16 than dividing afterwards
        weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype)

        # (bs*n_heads, dim_per_head, class_token_length)
        a = torch.einsum("bts,bcs->bct", weight, v)

        # (bs, length+1, width)
        a = a.reshape(bs, -1, 1).transpose(1, 2)

        return a[:, 0, :]  # cls_token
1036
1037


1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
def get_fourier_embeds_from_boundingbox(embed_dim, box):
    """
    Args:
        embed_dim: int
        box: a 3-D tensor [B x N x 4] representing the bounding boxes for GLIGEN pipeline
    Returns:
        [B x N x embed_dim] tensor of positional embeddings
    """

    batch_size, num_boxes = box.shape[:2]
1048

1049
1050
1051
    emb = 100 ** (torch.arange(embed_dim) / embed_dim)
    emb = emb[None, None, None].to(device=box.device, dtype=box.dtype)
    emb = emb * box.unsqueeze(-1)
1052

1053
1054
    emb = torch.stack((emb.sin(), emb.cos()), dim=-1)
    emb = emb.permute(0, 1, 3, 4, 2).reshape(batch_size, num_boxes, embed_dim * 2 * 4)
1055

1056
    return emb
1057
1058


1059
class GLIGENTextBoundingboxProjection(nn.Module):
1060
    def __init__(self, positive_len, out_dim, feature_type="text-only", fourier_freqs=8):
1061
1062
1063
1064
        super().__init__()
        self.positive_len = positive_len
        self.out_dim = out_dim

1065
        self.fourier_embedder_dim = fourier_freqs
1066
1067
1068
1069
1070
        self.position_dim = fourier_freqs * 2 * 4  # 2: sin/cos, 4: xyxy

        if isinstance(out_dim, tuple):
            out_dim = out_dim[0]

1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
        if feature_type == "text-only":
            self.linears = nn.Sequential(
                nn.Linear(self.positive_len + self.position_dim, 512),
                nn.SiLU(),
                nn.Linear(512, 512),
                nn.SiLU(),
                nn.Linear(512, out_dim),
            )
            self.null_positive_feature = torch.nn.Parameter(torch.zeros([self.positive_len]))

        elif feature_type == "text-image":
            self.linears_text = nn.Sequential(
                nn.Linear(self.positive_len + self.position_dim, 512),
                nn.SiLU(),
                nn.Linear(512, 512),
                nn.SiLU(),
                nn.Linear(512, out_dim),
            )
            self.linears_image = nn.Sequential(
                nn.Linear(self.positive_len + self.position_dim, 512),
                nn.SiLU(),
                nn.Linear(512, 512),
                nn.SiLU(),
                nn.Linear(512, out_dim),
            )
            self.null_text_feature = torch.nn.Parameter(torch.zeros([self.positive_len]))
            self.null_image_feature = torch.nn.Parameter(torch.zeros([self.positive_len]))

1099
1100
        self.null_position_feature = torch.nn.Parameter(torch.zeros([self.position_dim]))

1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
    def forward(
        self,
        boxes,
        masks,
        positive_embeddings=None,
        phrases_masks=None,
        image_masks=None,
        phrases_embeddings=None,
        image_embeddings=None,
    ):
1111
1112
1113
        masks = masks.unsqueeze(-1)

        # embedding position (it may includes padding as placeholder)
1114
        xyxy_embedding = get_fourier_embeds_from_boundingbox(self.fourier_embedder_dim, boxes)  # B*N*4 -> B*N*C
1115
1116
1117
1118
1119
1120
1121

        # learnable null embedding
        xyxy_null = self.null_position_feature.view(1, 1, -1)

        # replace padding with learnable null embedding
        xyxy_embedding = xyxy_embedding * masks + (1 - masks) * xyxy_null

1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
        # positionet with text only information
        if positive_embeddings is not None:
            # learnable null embedding
            positive_null = self.null_positive_feature.view(1, 1, -1)

            # replace padding with learnable null embedding
            positive_embeddings = positive_embeddings * masks + (1 - masks) * positive_null

            objs = self.linears(torch.cat([positive_embeddings, xyxy_embedding], dim=-1))

1132
        # positionet with text and image information
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
        else:
            phrases_masks = phrases_masks.unsqueeze(-1)
            image_masks = image_masks.unsqueeze(-1)

            # learnable null embedding
            text_null = self.null_text_feature.view(1, 1, -1)
            image_null = self.null_image_feature.view(1, 1, -1)

            # replace padding with learnable null embedding
            phrases_embeddings = phrases_embeddings * phrases_masks + (1 - phrases_masks) * text_null
            image_embeddings = image_embeddings * image_masks + (1 - image_masks) * image_null

            objs_text = self.linears_text(torch.cat([phrases_embeddings, xyxy_embedding], dim=-1))
            objs_image = self.linears_image(torch.cat([image_embeddings, xyxy_embedding], dim=-1))
            objs = torch.cat([objs_text, objs_image], dim=1)

1149
        return objs
Sayak Paul's avatar
Sayak Paul committed
1150
1151


1152
class PixArtAlphaCombinedTimestepSizeEmbeddings(nn.Module):
Sayak Paul's avatar
Sayak Paul committed
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
    """
    For PixArt-Alpha.

    Reference:
    https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L164C9-L168C29
    """

    def __init__(self, embedding_dim, size_emb_dim, use_additional_conditions: bool = False):
        super().__init__()

        self.outdim = size_emb_dim
        self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0)
        self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim)

        self.use_additional_conditions = use_additional_conditions
        if use_additional_conditions:
            self.additional_condition_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0)
            self.resolution_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=size_emb_dim)
            self.aspect_ratio_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=size_emb_dim)

    def forward(self, timestep, resolution, aspect_ratio, batch_size, hidden_dtype):
        timesteps_proj = self.time_proj(timestep)
        timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=hidden_dtype))  # (N, D)

        if self.use_additional_conditions:
1178
1179
1180
1181
1182
            resolution_emb = self.additional_condition_proj(resolution.flatten()).to(hidden_dtype)
            resolution_emb = self.resolution_embedder(resolution_emb).reshape(batch_size, -1)
            aspect_ratio_emb = self.additional_condition_proj(aspect_ratio.flatten()).to(hidden_dtype)
            aspect_ratio_emb = self.aspect_ratio_embedder(aspect_ratio_emb).reshape(batch_size, -1)
            conditioning = timesteps_emb + torch.cat([resolution_emb, aspect_ratio_emb], dim=1)
Sayak Paul's avatar
Sayak Paul committed
1183
1184
1185
1186
1187
1188
        else:
            conditioning = timesteps_emb

        return conditioning


1189
class PixArtAlphaTextProjection(nn.Module):
Sayak Paul's avatar
Sayak Paul committed
1190
1191
1192
1193
1194
1195
    """
    Projects caption embeddings. Also handles dropout for classifier-free guidance.

    Adapted from https://github.com/PixArt-alpha/PixArt-alpha/blob/master/diffusion/model/nets/PixArt_blocks.py
    """

1196
    def __init__(self, in_features, hidden_size, out_features=None, act_fn="gelu_tanh"):
Sayak Paul's avatar
Sayak Paul committed
1197
        super().__init__()
1198
1199
        if out_features is None:
            out_features = hidden_size
Sayak Paul's avatar
Sayak Paul committed
1200
        self.linear_1 = nn.Linear(in_features=in_features, out_features=hidden_size, bias=True)
1201
1202
        if act_fn == "gelu_tanh":
            self.act_1 = nn.GELU(approximate="tanh")
Dhruv Nair's avatar
Dhruv Nair committed
1203
1204
        elif act_fn == "silu":
            self.act_1 = nn.SiLU()
1205
1206
1207
1208
1209
        elif act_fn == "silu_fp32":
            self.act_1 = FP32SiLU()
        else:
            raise ValueError(f"Unknown activation function: {act_fn}")
        self.linear_2 = nn.Linear(in_features=hidden_size, out_features=out_features, bias=True)
Sayak Paul's avatar
Sayak Paul committed
1210

1211
    def forward(self, caption):
Sayak Paul's avatar
Sayak Paul committed
1212
1213
1214
1215
        hidden_states = self.linear_1(caption)
        hidden_states = self.act_1(hidden_states)
        hidden_states = self.linear_2(hidden_states)
        return hidden_states
1216
1217


1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
class IPAdapterPlusImageProjectionBlock(nn.Module):
    def __init__(
        self,
        embed_dims: int = 768,
        dim_head: int = 64,
        heads: int = 16,
        ffn_ratio: float = 4,
    ) -> None:
        super().__init__()
        from .attention import FeedForward

        self.ln0 = nn.LayerNorm(embed_dims)
        self.ln1 = nn.LayerNorm(embed_dims)
        self.attn = Attention(
            query_dim=embed_dims,
            dim_head=dim_head,
            heads=heads,
            out_bias=False,
        )
        self.ff = nn.Sequential(
            nn.LayerNorm(embed_dims),
            FeedForward(embed_dims, embed_dims, activation_fn="gelu", mult=ffn_ratio, bias=False),
        )

    def forward(self, x, latents, residual):
        encoder_hidden_states = self.ln0(x)
        latents = self.ln1(latents)
        encoder_hidden_states = torch.cat([encoder_hidden_states, latents], dim=-2)
        latents = self.attn(latents, encoder_hidden_states) + residual
        latents = self.ff(latents) + latents
        return latents


1251
class IPAdapterPlusImageProjection(nn.Module):
1252
1253
1254
    """Resampler of IP-Adapter Plus.

    Args:
1255
1256
1257
        embed_dims (int): The feature dimension. Defaults to 768. output_dims (int): The number of output channels,
        that is the same
            number of the channels in the `unet.config.cross_attention_dim`. Defaults to 1024.
1258
1259
        hidden_dims (int):
            The number of hidden channels. Defaults to 1280. depth (int): The number of blocks. Defaults
1260
        to 8. dim_head (int): The number of head channels. Defaults to 64. heads (int): Parallel attention heads.
1261
1262
        Defaults to 16. num_queries (int):
            The number of queries. Defaults to 8. ffn_ratio (float): The expansion ratio
1263
        of feedforward network hidden
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
            layer channels. Defaults to 4.
    """

    def __init__(
        self,
        embed_dims: int = 768,
        output_dims: int = 1024,
        hidden_dims: int = 1280,
        depth: int = 4,
        dim_head: int = 64,
        heads: int = 16,
        num_queries: int = 8,
        ffn_ratio: float = 4,
    ) -> None:
        super().__init__()
        self.latents = nn.Parameter(torch.randn(1, num_queries, hidden_dims) / hidden_dims**0.5)

        self.proj_in = nn.Linear(embed_dims, hidden_dims)

        self.proj_out = nn.Linear(hidden_dims, output_dims)
        self.norm_out = nn.LayerNorm(output_dims)

1286
1287
1288
        self.layers = nn.ModuleList(
            [IPAdapterPlusImageProjectionBlock(hidden_dims, dim_head, heads, ffn_ratio) for _ in range(depth)]
        )
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        """Forward pass.

        Args:
            x (torch.Tensor): Input Tensor.
        Returns:
            torch.Tensor: Output Tensor.
        """
        latents = self.latents.repeat(x.size(0), 1, 1)

        x = self.proj_in(x)

1302
        for block in self.layers:
1303
            residual = latents
1304
            latents = block(x, latents, residual)
1305
1306
1307

        latents = self.proj_out(latents)
        return self.norm_out(latents)
1308
1309


1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
class IPAdapterFaceIDPlusImageProjection(nn.Module):
    """FacePerceiverResampler of IP-Adapter Plus.

    Args:
        embed_dims (int): The feature dimension. Defaults to 768. output_dims (int): The number of output channels,
        that is the same
            number of the channels in the `unet.config.cross_attention_dim`. Defaults to 1024.
        hidden_dims (int):
            The number of hidden channels. Defaults to 1280. depth (int): The number of blocks. Defaults
        to 8. dim_head (int): The number of head channels. Defaults to 64. heads (int): Parallel attention heads.
        Defaults to 16. num_tokens (int): Number of tokens num_queries (int): The number of queries. Defaults to 8.
        ffn_ratio (float): The expansion ratio of feedforward network hidden
            layer channels. Defaults to 4.
        ffproj_ratio (float): The expansion ratio of feedforward network hidden
            layer channels (for ID embeddings). Defaults to 4.
    """

    def __init__(
        self,
        embed_dims: int = 768,
        output_dims: int = 768,
        hidden_dims: int = 1280,
        id_embeddings_dim: int = 512,
        depth: int = 4,
        dim_head: int = 64,
        heads: int = 16,
        num_tokens: int = 4,
        num_queries: int = 8,
        ffn_ratio: float = 4,
        ffproj_ratio: int = 2,
    ) -> None:
        super().__init__()
        from .attention import FeedForward

        self.num_tokens = num_tokens
        self.embed_dim = embed_dims
        self.clip_embeds = None
        self.shortcut = False
        self.shortcut_scale = 1.0

        self.proj = FeedForward(id_embeddings_dim, embed_dims * num_tokens, activation_fn="gelu", mult=ffproj_ratio)
        self.norm = nn.LayerNorm(embed_dims)

        self.proj_in = nn.Linear(hidden_dims, embed_dims)

        self.proj_out = nn.Linear(embed_dims, output_dims)
        self.norm_out = nn.LayerNorm(output_dims)

        self.layers = nn.ModuleList(
            [IPAdapterPlusImageProjectionBlock(embed_dims, dim_head, heads, ffn_ratio) for _ in range(depth)]
        )

    def forward(self, id_embeds: torch.Tensor) -> torch.Tensor:
        """Forward pass.

        Args:
            id_embeds (torch.Tensor): Input Tensor (ID embeds).
        Returns:
            torch.Tensor: Output Tensor.
        """
        id_embeds = id_embeds.to(self.clip_embeds.dtype)
        id_embeds = self.proj(id_embeds)
        id_embeds = id_embeds.reshape(-1, self.num_tokens, self.embed_dim)
        id_embeds = self.norm(id_embeds)
        latents = id_embeds

        clip_embeds = self.proj_in(self.clip_embeds)
        x = clip_embeds.reshape(-1, clip_embeds.shape[2], clip_embeds.shape[3])

        for block in self.layers:
            residual = latents
            latents = block(x, latents, residual)

        latents = self.proj_out(latents)
        out = self.norm_out(latents)
        if self.shortcut:
            out = id_embeds + self.shortcut_scale * out
        return out


1390
1391
1392
1393
1394
class MultiIPAdapterImageProjection(nn.Module):
    def __init__(self, IPAdapterImageProjectionLayers: Union[List[nn.Module], Tuple[nn.Module]]):
        super().__init__()
        self.image_projection_layers = nn.ModuleList(IPAdapterImageProjectionLayers)

1395
    def forward(self, image_embeds: List[torch.Tensor]):
1396
1397
1398
1399
1400
1401
1402
1403
        projected_image_embeds = []

        # currently, we accept `image_embeds` as
        #  1. a tensor (deprecated) with shape [batch_size, embed_dim] or [batch_size, sequence_length, embed_dim]
        #  2. list of `n` tensors where `n` is number of ip-adapters, each tensor can hae shape [batch_size, num_images, embed_dim] or [batch_size, num_images, sequence_length, embed_dim]
        if not isinstance(image_embeds, list):
            deprecation_message = (
                "You have passed a tensor as `image_embeds`.This is deprecated and will be removed in a future release."
1404
                " Please make sure to update your script to pass `image_embeds` as a list of tensors to suppress this warning."
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
            )
            deprecate("image_embeds not a list", "1.0.0", deprecation_message, standard_warn=False)
            image_embeds = [image_embeds.unsqueeze(1)]

        if len(image_embeds) != len(self.image_projection_layers):
            raise ValueError(
                f"image_embeds must have the same length as image_projection_layers, got {len(image_embeds)} and {len(self.image_projection_layers)}"
            )

        for image_embed, image_projection_layer in zip(image_embeds, self.image_projection_layers):
            batch_size, num_images = image_embed.shape[0], image_embed.shape[1]
            image_embed = image_embed.reshape((batch_size * num_images,) + image_embed.shape[2:])
            image_embed = image_projection_layer(image_embed)
            image_embed = image_embed.reshape((batch_size, num_images) + image_embed.shape[1:])

            projected_image_embeds.append(image_embed)

        return projected_image_embeds