unet_2d.py 11.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
15
from dataclasses import dataclass
from typing import Optional, Tuple, Union
Patrick von Platen's avatar
Patrick von Platen committed
16
17
18
19
20
21

import torch
import torch.nn as nn

from ..configuration_utils import ConfigMixin, register_to_config
from ..modeling_utils import ModelMixin
22
from ..utils import BaseOutput
Patrick von Platen's avatar
Patrick von Platen committed
23
from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps
24
from .unet_2d_blocks import UNetMidBlock2D, get_down_block, get_up_block
Patrick von Platen's avatar
Patrick von Platen committed
25
26


27
28
29
30
31
32
33
34
35
36
37
@dataclass
class UNet2DOutput(BaseOutput):
    """
    Args:
        sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
            Hidden states output. Output of last layer of model.
    """

    sample: torch.FloatTensor


Patrick von Platen's avatar
Patrick von Platen committed
38
class UNet2DModel(ModelMixin, ConfigMixin):
Kashif Rasul's avatar
Kashif Rasul committed
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
    r"""
    UNet2DModel is a 2D UNet model that takes in a noisy sample and a timestep and returns sample shaped output.

    This model inherits from [`ModelMixin`]. Check the superclass documentation for the generic methods the library
    implements for all the model (such as downloading or saving, etc.)

    Parameters:
        sample_size (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`, *optional*):
            Input sample size.
        in_channels (`int`, *optional*, defaults to 3): Number of channels in the input image.
        out_channels (`int`, *optional*, defaults to 3): Number of channels in the output.
        center_input_sample (`bool`, *optional*, defaults to `False`): Whether to center the input sample.
        time_embedding_type (`str`, *optional*, defaults to `"positional"`): Type of time embedding to use.
        freq_shift (`int`, *optional*, defaults to 0): Frequency shift for fourier time embedding.
        flip_sin_to_cos (`bool`, *optional*, defaults to :
54
            obj:`True`): Whether to flip sin to cos for fourier time embedding.
Kashif Rasul's avatar
Kashif Rasul committed
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
        down_block_types (`Tuple[str]`, *optional*, defaults to :
            obj:`("DownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D")`): Tuple of downsample block
            types.
        up_block_types (`Tuple[str]`, *optional*, defaults to :
            obj:`("AttnUpBlock2D", "AttnUpBlock2D", "AttnUpBlock2D", "UpBlock2D")`): Tuple of upsample block types.
        block_out_channels (`Tuple[int]`, *optional*, defaults to :
            obj:`(224, 448, 672, 896)`): Tuple of block output channels.
        layers_per_block (`int`, *optional*, defaults to `2`): The number of layers per block.
        mid_block_scale_factor (`float`, *optional*, defaults to `1`): The scale factor for the mid block.
        downsample_padding (`int`, *optional*, defaults to `1`): The padding for the downsample convolution.
        act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
        attention_head_dim (`int`, *optional*, defaults to `8`): The attention head dimension.
        norm_num_groups (`int`, *optional*, defaults to `32`): The number of groups for the normalization.
        norm_eps (`float`, *optional*, defaults to `1e-5`): The epsilon for the normalization.
    """

Patrick von Platen's avatar
Patrick von Platen committed
71
72
73
    @register_to_config
    def __init__(
        self,
Sid Sahai's avatar
Sid Sahai committed
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
        sample_size: Optional[int] = None,
        in_channels: int = 3,
        out_channels: int = 3,
        center_input_sample: bool = False,
        time_embedding_type: str = "positional",
        freq_shift: int = 0,
        flip_sin_to_cos: bool = True,
        down_block_types: Tuple[str] = ("DownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D"),
        up_block_types: Tuple[str] = ("AttnUpBlock2D", "AttnUpBlock2D", "AttnUpBlock2D", "UpBlock2D"),
        block_out_channels: Tuple[int] = (224, 448, 672, 896),
        layers_per_block: int = 2,
        mid_block_scale_factor: float = 1,
        downsample_padding: int = 1,
        act_fn: str = "silu",
        attention_head_dim: int = 8,
        norm_num_groups: int = 32,
        norm_eps: float = 1e-5,
Patrick von Platen's avatar
Patrick von Platen committed
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
    ):
        super().__init__()

        self.sample_size = sample_size
        time_embed_dim = block_out_channels[0] * 4

        # input
        self.conv_in = nn.Conv2d(in_channels, block_out_channels[0], kernel_size=3, padding=(1, 1))

        # time
        if time_embedding_type == "fourier":
            self.time_proj = GaussianFourierProjection(embedding_size=block_out_channels[0], scale=16)
            timestep_input_dim = 2 * block_out_channels[0]
        elif time_embedding_type == "positional":
            self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
            timestep_input_dim = block_out_channels[0]

        self.time_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)

        self.down_blocks = nn.ModuleList([])
        self.mid_block = None
        self.up_blocks = nn.ModuleList([])

        # down
        output_channel = block_out_channels[0]
        for i, down_block_type in enumerate(down_block_types):
            input_channel = output_channel
            output_channel = block_out_channels[i]
            is_final_block = i == len(block_out_channels) - 1

            down_block = get_down_block(
                down_block_type,
                num_layers=layers_per_block,
                in_channels=input_channel,
                out_channels=output_channel,
                temb_channels=time_embed_dim,
                add_downsample=not is_final_block,
                resnet_eps=norm_eps,
                resnet_act_fn=act_fn,
130
                resnet_groups=norm_num_groups,
Patrick von Platen's avatar
Patrick von Platen committed
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
                attn_num_head_channels=attention_head_dim,
                downsample_padding=downsample_padding,
            )
            self.down_blocks.append(down_block)

        # mid
        self.mid_block = UNetMidBlock2D(
            in_channels=block_out_channels[-1],
            temb_channels=time_embed_dim,
            resnet_eps=norm_eps,
            resnet_act_fn=act_fn,
            output_scale_factor=mid_block_scale_factor,
            resnet_time_scale_shift="default",
            attn_num_head_channels=attention_head_dim,
            resnet_groups=norm_num_groups,
        )

        # up
        reversed_block_out_channels = list(reversed(block_out_channels))
        output_channel = reversed_block_out_channels[0]
        for i, up_block_type in enumerate(up_block_types):
            prev_output_channel = output_channel
            output_channel = reversed_block_out_channels[i]
            input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]

            is_final_block = i == len(block_out_channels) - 1

            up_block = get_up_block(
                up_block_type,
                num_layers=layers_per_block + 1,
                in_channels=input_channel,
                out_channels=output_channel,
                prev_output_channel=prev_output_channel,
                temb_channels=time_embed_dim,
                add_upsample=not is_final_block,
                resnet_eps=norm_eps,
                resnet_act_fn=act_fn,
168
                resnet_groups=norm_num_groups,
Patrick von Platen's avatar
Patrick von Platen committed
169
170
171
172
173
174
175
176
177
178
179
180
                attn_num_head_channels=attention_head_dim,
            )
            self.up_blocks.append(up_block)
            prev_output_channel = output_channel

        # out
        num_groups_out = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4, 32)
        self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=num_groups_out, eps=norm_eps)
        self.conv_act = nn.SiLU()
        self.conv_out = nn.Conv2d(block_out_channels[0], out_channels, 3, padding=1)

    def forward(
181
182
183
184
185
        self,
        sample: torch.FloatTensor,
        timestep: Union[torch.Tensor, float, int],
        return_dict: bool = True,
    ) -> Union[UNet2DOutput, Tuple]:
186
        r"""
Kashif Rasul's avatar
Kashif Rasul committed
187
188
189
190
191
192
193
194
195
196
        Args:
            sample (`torch.FloatTensor`): (batch, channel, height, width) noisy inputs tensor
            timestep (`torch.FloatTensor` or `float` or `int): (batch) timesteps
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~models.unet_2d.UNet2DOutput`] instead of a plain tuple.

        Returns:
            [`~models.unet_2d.UNet2DOutput`] or `tuple`: [`~models.unet_2d.UNet2DOutput`] if `return_dict` is True,
            otherwise a `tuple`. When returning a tuple, the first element is the sample tensor.
        """
Patrick von Platen's avatar
Patrick von Platen committed
197
198
199
200
201
202
203
204
205
206
207
        # 0. center input if necessary
        if self.config.center_input_sample:
            sample = 2 * sample - 1.0

        # 1. time
        timesteps = timestep
        if not torch.is_tensor(timesteps):
            timesteps = torch.tensor([timesteps], dtype=torch.long, device=sample.device)
        elif torch.is_tensor(timesteps) and len(timesteps.shape) == 0:
            timesteps = timesteps[None].to(sample.device)

208
209
        # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
        timesteps = timesteps * torch.ones(sample.shape[0], dtype=timesteps.dtype, device=timesteps.device)
210

Patrick von Platen's avatar
Patrick von Platen committed
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
        t_emb = self.time_proj(timesteps)
        emb = self.time_embedding(t_emb)

        # 2. pre-process
        skip_sample = sample
        sample = self.conv_in(sample)

        # 3. down
        down_block_res_samples = (sample,)
        for downsample_block in self.down_blocks:
            if hasattr(downsample_block, "skip_conv"):
                sample, res_samples, skip_sample = downsample_block(
                    hidden_states=sample, temb=emb, skip_sample=skip_sample
                )
            else:
                sample, res_samples = downsample_block(hidden_states=sample, temb=emb)

            down_block_res_samples += res_samples

        # 4. mid
        sample = self.mid_block(sample, emb)

        # 5. up
        skip_sample = None
        for upsample_block in self.up_blocks:
            res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
            down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]

            if hasattr(upsample_block, "skip_conv"):
                sample, skip_sample = upsample_block(sample, res_samples, emb, skip_sample)
            else:
                sample = upsample_block(sample, res_samples, emb)

        # 6. post-process
245
246
247
        # make sure hidden states is in float32
        # when running in half-precision
        sample = self.conv_norm_out(sample.float()).type(sample.dtype)
Patrick von Platen's avatar
Patrick von Platen committed
248
249
250
251
252
253
254
255
256
257
        sample = self.conv_act(sample)
        sample = self.conv_out(sample)

        if skip_sample is not None:
            sample += skip_sample

        if self.config.time_embedding_type == "fourier":
            timesteps = timesteps.reshape((sample.shape[0], *([1] * len(sample.shape[1:]))))
            sample = sample / timesteps

258
259
        if not return_dict:
            return (sample,)
Patrick von Platen's avatar
Patrick von Platen committed
260

261
        return UNet2DOutput(sample=sample)