vae.py 18.8 KB
Newer Older
patil-suraj's avatar
patil-suraj committed
1
2
3
4
5
6
7
import numpy as np
import torch
import torch.nn as nn

from ..configuration_utils import ConfigMixin
from ..modeling_utils import ModelMixin
from .attention import AttentionBlock
8
from .resnet import Downsample, ResnetBlock, Upsample
patil-suraj's avatar
patil-suraj committed
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471


def nonlinearity(x):
    # swish
    return x * torch.sigmoid(x)


def Normalize(in_channels):
    return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)


class Encoder(nn.Module):
    def __init__(
        self,
        *,
        ch,
        ch_mult=(1, 2, 4, 8),
        num_res_blocks,
        attn_resolutions,
        dropout=0.0,
        resamp_with_conv=True,
        in_channels,
        resolution,
        z_channels,
        double_z=True,
        **ignore_kwargs,
    ):
        super().__init__()
        self.ch = ch
        self.temb_ch = 0
        self.num_resolutions = len(ch_mult)
        self.num_res_blocks = num_res_blocks
        self.resolution = resolution
        self.in_channels = in_channels

        # downsampling
        self.conv_in = torch.nn.Conv2d(in_channels, self.ch, kernel_size=3, stride=1, padding=1)

        curr_res = resolution
        in_ch_mult = (1,) + tuple(ch_mult)
        self.down = nn.ModuleList()
        for i_level in range(self.num_resolutions):
            block = nn.ModuleList()
            attn = nn.ModuleList()
            block_in = ch * in_ch_mult[i_level]
            block_out = ch * ch_mult[i_level]
            for i_block in range(self.num_res_blocks):
                block.append(
                    ResnetBlock(
                        in_channels=block_in, out_channels=block_out, temb_channels=self.temb_ch, dropout=dropout
                    )
                )
                block_in = block_out
                if curr_res in attn_resolutions:
                    attn.append(AttentionBlock(block_in, overwrite_qkv=True))
            down = nn.Module()
            down.block = block
            down.attn = attn
            if i_level != self.num_resolutions - 1:
                down.downsample = Downsample(block_in, use_conv=resamp_with_conv, padding=0)
                curr_res = curr_res // 2
            self.down.append(down)

        # middle
        self.mid = nn.Module()
        self.mid.block_1 = ResnetBlock(
            in_channels=block_in, out_channels=block_in, temb_channels=self.temb_ch, dropout=dropout
        )
        self.mid.attn_1 = AttentionBlock(block_in, overwrite_qkv=True)
        self.mid.block_2 = ResnetBlock(
            in_channels=block_in, out_channels=block_in, temb_channels=self.temb_ch, dropout=dropout
        )

        # end
        self.norm_out = Normalize(block_in)
        self.conv_out = torch.nn.Conv2d(
            block_in, 2 * z_channels if double_z else z_channels, kernel_size=3, stride=1, padding=1
        )

    def forward(self, x):
        # assert x.shape[2] == x.shape[3] == self.resolution, "{}, {}, {}".format(x.shape[2], x.shape[3], self.resolution)

        # timestep embedding
        temb = None

        # downsampling
        hs = [self.conv_in(x)]
        for i_level in range(self.num_resolutions):
            for i_block in range(self.num_res_blocks):
                h = self.down[i_level].block[i_block](hs[-1], temb)
                if len(self.down[i_level].attn) > 0:
                    h = self.down[i_level].attn[i_block](h)
                hs.append(h)
            if i_level != self.num_resolutions - 1:
                hs.append(self.down[i_level].downsample(hs[-1]))

        # middle
        h = hs[-1]
        h = self.mid.block_1(h, temb)
        h = self.mid.attn_1(h)
        h = self.mid.block_2(h, temb)

        # end
        h = self.norm_out(h)
        h = nonlinearity(h)
        h = self.conv_out(h)
        return h


class Decoder(nn.Module):
    def __init__(
        self,
        *,
        ch,
        out_ch,
        ch_mult=(1, 2, 4, 8),
        num_res_blocks,
        attn_resolutions,
        dropout=0.0,
        resamp_with_conv=True,
        in_channels,
        resolution,
        z_channels,
        give_pre_end=False,
        **ignorekwargs,
    ):
        super().__init__()
        self.ch = ch
        self.temb_ch = 0
        self.num_resolutions = len(ch_mult)
        self.num_res_blocks = num_res_blocks
        self.resolution = resolution
        self.in_channels = in_channels
        self.give_pre_end = give_pre_end

        # compute in_ch_mult, block_in and curr_res at lowest res
        block_in = ch * ch_mult[self.num_resolutions - 1]
        curr_res = resolution // 2 ** (self.num_resolutions - 1)
        self.z_shape = (1, z_channels, curr_res, curr_res)
        print("Working with z of shape {} = {} dimensions.".format(self.z_shape, np.prod(self.z_shape)))

        # z to block_in
        self.conv_in = torch.nn.Conv2d(z_channels, block_in, kernel_size=3, stride=1, padding=1)

        # middle
        self.mid = nn.Module()
        self.mid.block_1 = ResnetBlock(
            in_channels=block_in, out_channels=block_in, temb_channels=self.temb_ch, dropout=dropout
        )
        self.mid.attn_1 = AttentionBlock(block_in, overwrite_qkv=True)
        self.mid.block_2 = ResnetBlock(
            in_channels=block_in, out_channels=block_in, temb_channels=self.temb_ch, dropout=dropout
        )

        # upsampling
        self.up = nn.ModuleList()
        for i_level in reversed(range(self.num_resolutions)):
            block = nn.ModuleList()
            attn = nn.ModuleList()
            block_out = ch * ch_mult[i_level]
            for i_block in range(self.num_res_blocks + 1):
                block.append(
                    ResnetBlock(
                        in_channels=block_in, out_channels=block_out, temb_channels=self.temb_ch, dropout=dropout
                    )
                )
                block_in = block_out
                if curr_res in attn_resolutions:
                    attn.append(AttentionBlock(block_in, overwrite_qkv=True))
            up = nn.Module()
            up.block = block
            up.attn = attn
            if i_level != 0:
                up.upsample = Upsample(block_in, use_conv=resamp_with_conv)
                curr_res = curr_res * 2
            self.up.insert(0, up)  # prepend to get consistent order

        # end
        self.norm_out = Normalize(block_in)
        self.conv_out = torch.nn.Conv2d(block_in, out_ch, kernel_size=3, stride=1, padding=1)

    def forward(self, z):
        # assert z.shape[1:] == self.z_shape[1:]
        self.last_z_shape = z.shape

        # timestep embedding
        temb = None

        # z to block_in
        h = self.conv_in(z)

        # middle
        h = self.mid.block_1(h, temb)
        h = self.mid.attn_1(h)
        h = self.mid.block_2(h, temb)

        # upsampling
        for i_level in reversed(range(self.num_resolutions)):
            for i_block in range(self.num_res_blocks + 1):
                h = self.up[i_level].block[i_block](h, temb)
                if len(self.up[i_level].attn) > 0:
                    h = self.up[i_level].attn[i_block](h)
            if i_level != 0:
                h = self.up[i_level].upsample(h)

        # end
        if self.give_pre_end:
            return h

        h = self.norm_out(h)
        h = nonlinearity(h)
        h = self.conv_out(h)
        return h


class VectorQuantizer(nn.Module):
    """
    Improved version over VectorQuantizer, can be used as a drop-in replacement. Mostly avoids costly matrix
    multiplications and allows for post-hoc remapping of indices.
    """

    # NOTE: due to a bug the beta term was applied to the wrong term. for
    # backwards compatibility we use the buggy version by default, but you can
    # specify legacy=False to fix it.
    def __init__(self, n_e, e_dim, beta, remap=None, unknown_index="random", sane_index_shape=False, legacy=True):
        super().__init__()
        self.n_e = n_e
        self.e_dim = e_dim
        self.beta = beta
        self.legacy = legacy

        self.embedding = nn.Embedding(self.n_e, self.e_dim)
        self.embedding.weight.data.uniform_(-1.0 / self.n_e, 1.0 / self.n_e)

        self.remap = remap
        if self.remap is not None:
            self.register_buffer("used", torch.tensor(np.load(self.remap)))
            self.re_embed = self.used.shape[0]
            self.unknown_index = unknown_index  # "random" or "extra" or integer
            if self.unknown_index == "extra":
                self.unknown_index = self.re_embed
                self.re_embed = self.re_embed + 1
            print(
                f"Remapping {self.n_e} indices to {self.re_embed} indices. "
                f"Using {self.unknown_index} for unknown indices."
            )
        else:
            self.re_embed = n_e

        self.sane_index_shape = sane_index_shape

    def remap_to_used(self, inds):
        ishape = inds.shape
        assert len(ishape) > 1
        inds = inds.reshape(ishape[0], -1)
        used = self.used.to(inds)
        match = (inds[:, :, None] == used[None, None, ...]).long()
        new = match.argmax(-1)
        unknown = match.sum(2) < 1
        if self.unknown_index == "random":
            new[unknown] = torch.randint(0, self.re_embed, size=new[unknown].shape).to(device=new.device)
        else:
            new[unknown] = self.unknown_index
        return new.reshape(ishape)

    def unmap_to_all(self, inds):
        ishape = inds.shape
        assert len(ishape) > 1
        inds = inds.reshape(ishape[0], -1)
        used = self.used.to(inds)
        if self.re_embed > self.used.shape[0]:  # extra token
            inds[inds >= self.used.shape[0]] = 0  # simply set to zero
        back = torch.gather(used[None, :][inds.shape[0] * [0], :], 1, inds)
        return back.reshape(ishape)

    def forward(self, z):
        # reshape z -> (batch, height, width, channel) and flatten
        z = z.permute(0, 2, 3, 1).contiguous()
        z_flattened = z.view(-1, self.e_dim)
        # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z

        d = (
            torch.sum(z_flattened**2, dim=1, keepdim=True)
            + torch.sum(self.embedding.weight**2, dim=1)
            - 2 * torch.einsum("bd,dn->bn", z_flattened, self.embedding.weight.t())
        )

        min_encoding_indices = torch.argmin(d, dim=1)
        z_q = self.embedding(min_encoding_indices).view(z.shape)
        perplexity = None
        min_encodings = None

        # compute loss for embedding
        if not self.legacy:
            loss = self.beta * torch.mean((z_q.detach() - z) ** 2) + torch.mean((z_q - z.detach()) ** 2)
        else:
            loss = torch.mean((z_q.detach() - z) ** 2) + self.beta * torch.mean((z_q - z.detach()) ** 2)

        # preserve gradients
        z_q = z + (z_q - z).detach()

        # reshape back to match original input shape
        z_q = z_q.permute(0, 3, 1, 2).contiguous()

        if self.remap is not None:
            min_encoding_indices = min_encoding_indices.reshape(z.shape[0], -1)  # add batch axis
            min_encoding_indices = self.remap_to_used(min_encoding_indices)
            min_encoding_indices = min_encoding_indices.reshape(-1, 1)  # flatten

        if self.sane_index_shape:
            min_encoding_indices = min_encoding_indices.reshape(z_q.shape[0], z_q.shape[2], z_q.shape[3])

        return z_q, loss, (perplexity, min_encodings, min_encoding_indices)

    def get_codebook_entry(self, indices, shape):
        # shape specifying (batch, height, width, channel)
        if self.remap is not None:
            indices = indices.reshape(shape[0], -1)  # add batch axis
            indices = self.unmap_to_all(indices)
            indices = indices.reshape(-1)  # flatten again

        # get quantized latent vectors
        z_q = self.embedding(indices)

        if shape is not None:
            z_q = z_q.view(shape)
            # reshape back to match original input shape
            z_q = z_q.permute(0, 3, 1, 2).contiguous()

        return z_q


class DiagonalGaussianDistribution(object):
    def __init__(self, parameters, deterministic=False):
        self.parameters = parameters
        self.mean, self.logvar = torch.chunk(parameters, 2, dim=1)
        self.logvar = torch.clamp(self.logvar, -30.0, 20.0)
        self.deterministic = deterministic
        self.std = torch.exp(0.5 * self.logvar)
        self.var = torch.exp(self.logvar)
        if self.deterministic:
            self.var = self.std = torch.zeros_like(self.mean).to(device=self.parameters.device)

    def sample(self):
        x = self.mean + self.std * torch.randn(self.mean.shape).to(device=self.parameters.device)
        return x

    def kl(self, other=None):
        if self.deterministic:
            return torch.Tensor([0.0])
        else:
            if other is None:
                return 0.5 * torch.sum(torch.pow(self.mean, 2) + self.var - 1.0 - self.logvar, dim=[1, 2, 3])
            else:
                return 0.5 * torch.sum(
                    torch.pow(self.mean - other.mean, 2) / other.var
                    + self.var / other.var
                    - 1.0
                    - self.logvar
                    + other.logvar,
                    dim=[1, 2, 3],
                )

    def nll(self, sample, dims=[1, 2, 3]):
        if self.deterministic:
            return torch.Tensor([0.0])
        logtwopi = np.log(2.0 * np.pi)
        return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean, 2) / self.var, dim=dims)

    def mode(self):
        return self.mean


class VQModel(ModelMixin, ConfigMixin):
    def __init__(
        self,
        ch,
        out_ch,
        num_res_blocks,
        attn_resolutions,
        in_channels,
        resolution,
        z_channels,
        n_embed,
        embed_dim,
        remap=None,
        sane_index_shape=False,  # tell vector quantizer to return indices as bhw
        ch_mult=(1, 2, 4, 8),
        dropout=0.0,
        double_z=True,
        resamp_with_conv=True,
        give_pre_end=False,
    ):
        super().__init__()

        # register all __init__ params with self.register
        self.register_to_config(
            ch=ch,
            out_ch=out_ch,
            num_res_blocks=num_res_blocks,
            attn_resolutions=attn_resolutions,
            in_channels=in_channels,
            resolution=resolution,
            z_channels=z_channels,
            n_embed=n_embed,
            embed_dim=embed_dim,
            remap=remap,
            sane_index_shape=sane_index_shape,
            ch_mult=ch_mult,
            dropout=dropout,
            double_z=double_z,
            resamp_with_conv=resamp_with_conv,
            give_pre_end=give_pre_end,
        )

        # pass init params to Encoder
        self.encoder = Encoder(
            ch=ch,
            num_res_blocks=num_res_blocks,
            attn_resolutions=attn_resolutions,
            in_channels=in_channels,
            resolution=resolution,
            z_channels=z_channels,
            ch_mult=ch_mult,
            dropout=dropout,
            resamp_with_conv=resamp_with_conv,
            double_z=double_z,
            give_pre_end=give_pre_end,
        )

        self.quant_conv = torch.nn.Conv2d(z_channels, embed_dim, 1)
        self.quantize = VectorQuantizer(n_embed, embed_dim, beta=0.25, remap=remap, sane_index_shape=sane_index_shape)
        self.post_quant_conv = torch.nn.Conv2d(embed_dim, z_channels, 1)

        # pass init params to Decoder
        self.decoder = Decoder(
            ch=ch,
            out_ch=out_ch,
            num_res_blocks=num_res_blocks,
            attn_resolutions=attn_resolutions,
            in_channels=in_channels,
            resolution=resolution,
            z_channels=z_channels,
            ch_mult=ch_mult,
            dropout=dropout,
            resamp_with_conv=resamp_with_conv,
            give_pre_end=give_pre_end,
        )

    def encode(self, x):
        h = self.encoder(x)
        h = self.quant_conv(h)
        return h

    def decode(self, h, force_not_quantize=False):
        # also go through quantization layer
        if not force_not_quantize:
            quant, emb_loss, info = self.quantize(h)
        else:
            quant = h
        quant = self.post_quant_conv(quant)
        dec = self.decoder(quant)
        return dec
patil-suraj's avatar
style  
patil-suraj committed
472

patil-suraj's avatar
patil-suraj committed
473
474
475
476
    def forward(self, x):
        h = self.encode(x)
        dec = self.decode(h)
        return dec
patil-suraj's avatar
patil-suraj committed
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563


class AutoencoderKL(ModelMixin, ConfigMixin):
    def __init__(
        self,
        ch,
        out_ch,
        num_res_blocks,
        attn_resolutions,
        in_channels,
        resolution,
        z_channels,
        embed_dim,
        remap=None,
        sane_index_shape=False,  # tell vector quantizer to return indices as bhw
        ch_mult=(1, 2, 4, 8),
        dropout=0.0,
        double_z=True,
        resamp_with_conv=True,
        give_pre_end=False,
    ):
        super().__init__()

        # register all __init__ params with self.register
        self.register_to_config(
            ch=ch,
            out_ch=out_ch,
            num_res_blocks=num_res_blocks,
            attn_resolutions=attn_resolutions,
            in_channels=in_channels,
            resolution=resolution,
            z_channels=z_channels,
            embed_dim=embed_dim,
            remap=remap,
            sane_index_shape=sane_index_shape,
            ch_mult=ch_mult,
            dropout=dropout,
            double_z=double_z,
            resamp_with_conv=resamp_with_conv,
            give_pre_end=give_pre_end,
        )

        # pass init params to Encoder
        self.encoder = Encoder(
            ch=ch,
            out_ch=out_ch,
            num_res_blocks=num_res_blocks,
            attn_resolutions=attn_resolutions,
            in_channels=in_channels,
            resolution=resolution,
            z_channels=z_channels,
            ch_mult=ch_mult,
            dropout=dropout,
            resamp_with_conv=resamp_with_conv,
            double_z=double_z,
            give_pre_end=give_pre_end,
        )

        # pass init params to Decoder
        self.decoder = Decoder(
            ch=ch,
            out_ch=out_ch,
            num_res_blocks=num_res_blocks,
            attn_resolutions=attn_resolutions,
            in_channels=in_channels,
            resolution=resolution,
            z_channels=z_channels,
            ch_mult=ch_mult,
            dropout=dropout,
            resamp_with_conv=resamp_with_conv,
            give_pre_end=give_pre_end,
        )

        self.quant_conv = torch.nn.Conv2d(2 * z_channels, 2 * embed_dim, 1)
        self.post_quant_conv = torch.nn.Conv2d(embed_dim, z_channels, 1)

    def encode(self, x):
        h = self.encoder(x)
        moments = self.quant_conv(h)
        posterior = DiagonalGaussianDistribution(moments)
        return posterior

    def decode(self, z):
        z = self.post_quant_conv(z)
        dec = self.decoder(z)
        return dec

patil-suraj's avatar
patil-suraj committed
564
565
    def forward(self, x, sample_posterior=False):
        posterior = self.encode(x)
patil-suraj's avatar
patil-suraj committed
566
567
568
569
570
        if sample_posterior:
            z = posterior.sample()
        else:
            z = posterior.mode()
        dec = self.decode(z)
patil-suraj's avatar
patil-suraj committed
571
        return dec