test_cycle_diffusion.py 8.96 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import gc
import random
import unittest

import numpy as np
import torch
22
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
23

24
from diffusers import AutoencoderKL, CycleDiffusionPipeline, DDIMScheduler, UNet2DConditionModel
25
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
26
from diffusers.utils.testing_utils import require_torch_gpu, skip_mps
27
28
29
30
31
32
33
34

from ...test_pipelines_common import PipelineTesterMixin


torch.backends.cuda.matmul.allow_tf32 = False


class CycleDiffusionPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
35
    pipeline_class = CycleDiffusionPipeline
36

37
    def get_dummy_components(self):
38
        torch.manual_seed(0)
39
        unet = UNet2DConditionModel(
40
41
42
43
44
45
46
47
48
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=4,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
        )
49
50
51
52
53
54
55
        scheduler = DDIMScheduler(
            beta_start=0.00085,
            beta_end=0.012,
            beta_schedule="scaled_linear",
            num_train_timesteps=1000,
            clip_sample=False,
            set_alpha_to_one=False,
56
57
        )
        torch.manual_seed(0)
58
        vae = AutoencoderKL(
59
60
61
62
63
64
65
66
            block_out_channels=[32, 64],
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=4,
        )
        torch.manual_seed(0)
67
        text_encoder_config = CLIPTextConfig(
68
69
70
71
72
73
74
75
76
77
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
        )
78
79
        text_encoder = CLIPTextModel(text_encoder_config)
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
80

81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
        components = {
            "unet": unet,
            "scheduler": scheduler,
            "vae": vae,
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
            "safety_checker": None,
            "feature_extractor": None,
        }
        return components

    def get_dummy_inputs(self, device, seed=0):
        image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device)
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)
        inputs = {
            "prompt": "An astronaut riding an elephant",
            "source_prompt": "An astronaut riding a horse",
            "image": image,
            "generator": generator,
            "num_inference_steps": 2,
            "eta": 0.1,
            "strength": 0.8,
            "guidance_scale": 3,
            "source_guidance_scale": 1,
            "output_type": "numpy",
        }
        return inputs
111
112
113
114

    def test_stable_diffusion_cycle(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator

115
116
117
118
        components = self.get_dummy_components()
        pipe = CycleDiffusionPipeline(**components)
        pipe = pipe.to(device)
        pipe.set_progress_bar_config(disable=None)
119

120
121
        inputs = self.get_dummy_inputs(device)
        output = pipe(**inputs)
122
123
124
125
126
127
128
129
130
131
132
        images = output.images

        image_slice = images[0, -3:, -3:, -1]

        assert images.shape == (1, 32, 32, 3)
        expected_slice = np.array([0.4459, 0.4943, 0.4544, 0.6643, 0.5474, 0.4327, 0.5701, 0.5959, 0.5179])

        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    @unittest.skipIf(torch_device != "cuda", "This test requires a GPU")
    def test_stable_diffusion_cycle_fp16(self):
133
134
135
136
137
138
139
140
141
142
        components = self.get_dummy_components()
        for name, module in components.items():
            if hasattr(module, "half"):
                components[name] = module.half()
        pipe = CycleDiffusionPipeline(**components)
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)
        output = pipe(**inputs)
143
144
145
146
147
148
149
150
151
        images = output.images

        image_slice = images[0, -3:, -3:, -1]

        assert images.shape == (1, 32, 32, 3)
        expected_slice = np.array([0.3506, 0.4543, 0.446, 0.4575, 0.5195, 0.4155, 0.5273, 0.518, 0.4116])

        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
    @skip_mps
    def test_save_load_local(self):
        return super().test_save_load_local()

    @unittest.skip("non-deterministic pipeline")
    def test_inference_batch_single_identical(self):
        return super().test_inference_batch_single_identical()

    @skip_mps
    def test_dict_tuple_outputs_equivalent(self):
        return super().test_dict_tuple_outputs_equivalent()

    @skip_mps
    def test_save_load_optional_components(self):
        return super().test_save_load_optional_components()

    @skip_mps
    def test_attention_slicing_forward_pass(self):
        return super().test_attention_slicing_forward_pass()

172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192

@slow
@require_torch_gpu
class CycleDiffusionPipelineIntegrationTests(unittest.TestCase):
    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

    def test_cycle_diffusion_pipeline_fp16(self):
        init_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
            "/cycle-diffusion/black_colored_car.png"
        )
        expected_image = load_numpy(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car_fp16.npy"
        )
        init_image = init_image.resize((512, 512))

        model_id = "CompVis/stable-diffusion-v1-4"
193
        scheduler = DDIMScheduler.from_pretrained(model_id, subfolder="scheduler")
194
195
196
197
198
199
200
201
202
203
204
        pipe = CycleDiffusionPipeline.from_pretrained(
            model_id, scheduler=scheduler, safety_checker=None, torch_dtype=torch.float16, revision="fp16"
        )

        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

        source_prompt = "A black colored car"
        prompt = "A blue colored car"

205
        generator = torch.manual_seed(0)
206
207
208
        output = pipe(
            prompt=prompt,
            source_prompt=source_prompt,
209
            image=init_image,
210
211
212
213
214
            num_inference_steps=100,
            eta=0.1,
            strength=0.85,
            guidance_scale=3,
            source_guidance_scale=1,
Patrick von Platen's avatar
Patrick von Platen committed
215
            generator=generator,
216
217
218
219
220
            output_type="np",
        )
        image = output.images

        # the values aren't exactly equal, but the images look the same visually
Patrick von Platen's avatar
Patrick von Platen committed
221
        assert np.abs(image - expected_image).max() < 5e-1
222
223
224
225
226
227
228
229
230
231
232
233

    def test_cycle_diffusion_pipeline(self):
        init_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
            "/cycle-diffusion/black_colored_car.png"
        )
        expected_image = load_numpy(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car.npy"
        )
        init_image = init_image.resize((512, 512))

        model_id = "CompVis/stable-diffusion-v1-4"
234
        scheduler = DDIMScheduler.from_pretrained(model_id, subfolder="scheduler")
235
236
237
238
239
240
241
242
243
        pipe = CycleDiffusionPipeline.from_pretrained(model_id, scheduler=scheduler, safety_checker=None)

        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

        source_prompt = "A black colored car"
        prompt = "A blue colored car"

244
        generator = torch.manual_seed(0)
245
246
247
        output = pipe(
            prompt=prompt,
            source_prompt=source_prompt,
248
            image=init_image,
249
250
251
252
253
            num_inference_steps=100,
            eta=0.1,
            strength=0.85,
            guidance_scale=3,
            source_guidance_scale=1,
Patrick von Platen's avatar
Patrick von Platen committed
254
            generator=generator,
255
256
257
258
259
            output_type="np",
        )
        image = output.images

        assert np.abs(image - expected_image).max() < 1e-2