unet_glide.py 26.4 KB
Newer Older
anton-l's avatar
anton-l committed
1
2
3
import math
from abc import abstractmethod

anton-l's avatar
anton-l committed
4
import torch
anton-l's avatar
anton-l committed
5
6
7
import torch.nn as nn
import torch.nn.functional as F

Patrick von Platen's avatar
Patrick von Platen committed
8
9
from ..configuration_utils import ConfigMixin
from ..modeling_utils import ModelMixin
10
from .embeddings import get_timestep_embedding
patil-suraj's avatar
patil-suraj committed
11
from .resnet import Upsample
anton-l's avatar
anton-l committed
12

anton-l's avatar
anton-l committed
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84

def convert_module_to_f16(l):
    """
    Convert primitive modules to float16.
    """
    if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Conv3d)):
        l.weight.data = l.weight.data.half()
        if l.bias is not None:
            l.bias.data = l.bias.data.half()


def convert_module_to_f32(l):
    """
    Convert primitive modules to float32, undoing convert_module_to_f16().
    """
    if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Conv3d)):
        l.weight.data = l.weight.data.float()
        if l.bias is not None:
            l.bias.data = l.bias.data.float()


def avg_pool_nd(dims, *args, **kwargs):
    """
    Create a 1D, 2D, or 3D average pooling module.
    """
    if dims == 1:
        return nn.AvgPool1d(*args, **kwargs)
    elif dims == 2:
        return nn.AvgPool2d(*args, **kwargs)
    elif dims == 3:
        return nn.AvgPool3d(*args, **kwargs)
    raise ValueError(f"unsupported dimensions: {dims}")


def conv_nd(dims, *args, **kwargs):
    """
    Create a 1D, 2D, or 3D convolution module.
    """
    if dims == 1:
        return nn.Conv1d(*args, **kwargs)
    elif dims == 2:
        return nn.Conv2d(*args, **kwargs)
    elif dims == 3:
        return nn.Conv3d(*args, **kwargs)
    raise ValueError(f"unsupported dimensions: {dims}")


def linear(*args, **kwargs):
    """
    Create a linear module.
    """
    return nn.Linear(*args, **kwargs)


class GroupNorm32(nn.GroupNorm):
    def __init__(self, num_groups, num_channels, swish, eps=1e-5):
        super().__init__(num_groups=num_groups, num_channels=num_channels, eps=eps)
        self.swish = swish

    def forward(self, x):
        y = super().forward(x.float()).to(x.dtype)
        if self.swish == 1.0:
            y = F.silu(y)
        elif self.swish:
            y = y * F.sigmoid(y * float(self.swish))
        return y


def normalization(channels, swish=0.0):
    """
    Make a standard normalization layer, with an optional swish activation.

Patrick von Platen's avatar
Patrick von Platen committed
85
    :param channels: number of input channels. :return: an nn.Module for normalization.
anton-l's avatar
anton-l committed
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
    """
    return GroupNorm32(num_channels=channels, num_groups=32, swish=swish)


def zero_module(module):
    """
    Zero out the parameters of a module and return it.
    """
    for p in module.parameters():
        p.detach().zero_()
    return module


class TimestepBlock(nn.Module):
    """
    Any module where forward() takes timestep embeddings as a second argument.
    """

    @abstractmethod
    def forward(self, x, emb):
        """
        Apply the module to `x` given `emb` timestep embeddings.
        """


class TimestepEmbedSequential(nn.Sequential, TimestepBlock):
    """
Patrick von Platen's avatar
Patrick von Platen committed
113
    A sequential module that passes timestep embeddings to the children that support it as an extra input.
anton-l's avatar
anton-l committed
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
    """

    def forward(self, x, emb, encoder_out=None):
        for layer in self:
            if isinstance(layer, TimestepBlock):
                x = layer(x, emb)
            elif isinstance(layer, AttentionBlock):
                x = layer(x, encoder_out)
            else:
                x = layer(x)
        return x


class Downsample(nn.Module):
    """
    A downsampling layer with an optional convolution.

Patrick von Platen's avatar
Patrick von Platen committed
131
132
    :param channels: channels in the inputs and outputs. :param use_conv: a bool determining if a convolution is
    applied. :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
anton-l's avatar
anton-l committed
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
                 downsampling occurs in the inner-two dimensions.
    """

    def __init__(self, channels, use_conv, dims=2, out_channels=None):
        super().__init__()
        self.channels = channels
        self.out_channels = out_channels or channels
        self.use_conv = use_conv
        self.dims = dims
        stride = 2 if dims != 3 else (1, 2, 2)
        if use_conv:
            self.op = conv_nd(dims, self.channels, self.out_channels, 3, stride=stride, padding=1)
        else:
            assert self.channels == self.out_channels
            self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride)

    def forward(self, x):
        assert x.shape[1] == self.channels
        return self.op(x)


class ResBlock(TimestepBlock):
    """
    A residual block that can optionally change the number of channels.

Patrick von Platen's avatar
Patrick von Platen committed
158
159
160
161
162
163
164
    :param channels: the number of input channels. :param emb_channels: the number of timestep embedding channels.
    :param dropout: the rate of dropout. :param out_channels: if specified, the number of out channels. :param
    use_conv: if True and out_channels is specified, use a spatial
        convolution instead of a smaller 1x1 convolution to change the channels in the skip connection.
    :param dims: determines if the signal is 1D, 2D, or 3D. :param use_checkpoint: if True, use gradient checkpointing
    on this module. :param up: if True, use this block for upsampling. :param down: if True, use this block for
    downsampling.
anton-l's avatar
anton-l committed
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
    """

    def __init__(
        self,
        channels,
        emb_channels,
        dropout,
        out_channels=None,
        use_conv=False,
        use_scale_shift_norm=False,
        dims=2,
        use_checkpoint=False,
        up=False,
        down=False,
    ):
        super().__init__()
        self.channels = channels
        self.emb_channels = emb_channels
        self.dropout = dropout
        self.out_channels = out_channels or channels
        self.use_conv = use_conv
        self.use_checkpoint = use_checkpoint
        self.use_scale_shift_norm = use_scale_shift_norm

        self.in_layers = nn.Sequential(
            normalization(channels, swish=1.0),
            nn.Identity(),
            conv_nd(dims, channels, self.out_channels, 3, padding=1),
        )

        self.updown = up or down

        if up:
patil-suraj's avatar
patil-suraj committed
198
199
            self.h_upd = Upsample(channels, use_conv=False, dims=dims)
            self.x_upd = Upsample(channels, use_conv=False, dims=dims)
anton-l's avatar
anton-l committed
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
        elif down:
            self.h_upd = Downsample(channels, False, dims)
            self.x_upd = Downsample(channels, False, dims)
        else:
            self.h_upd = self.x_upd = nn.Identity()

        self.emb_layers = nn.Sequential(
            nn.SiLU(),
            linear(
                emb_channels,
                2 * self.out_channels if use_scale_shift_norm else self.out_channels,
            ),
        )
        self.out_layers = nn.Sequential(
            normalization(self.out_channels, swish=0.0 if use_scale_shift_norm else 1.0),
            nn.SiLU() if use_scale_shift_norm else nn.Identity(),
            nn.Dropout(p=dropout),
            zero_module(conv_nd(dims, self.out_channels, self.out_channels, 3, padding=1)),
        )

        if self.out_channels == channels:
            self.skip_connection = nn.Identity()
        elif use_conv:
            self.skip_connection = conv_nd(dims, channels, self.out_channels, 3, padding=1)
        else:
            self.skip_connection = conv_nd(dims, channels, self.out_channels, 1)

    def forward(self, x, emb):
        """
        Apply the block to a Tensor, conditioned on a timestep embedding.

Patrick von Platen's avatar
Patrick von Platen committed
231
        :param x: an [N x C x ...] Tensor of features. :param emb: an [N x emb_channels] Tensor of timestep embeddings.
anton-l's avatar
anton-l committed
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
        :return: an [N x C x ...] Tensor of outputs.
        """
        if self.updown:
            in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
            h = in_rest(x)
            h = self.h_upd(h)
            x = self.x_upd(x)
            h = in_conv(h)
        else:
            h = self.in_layers(x)
        emb_out = self.emb_layers(emb).type(h.dtype)
        while len(emb_out.shape) < len(h.shape):
            emb_out = emb_out[..., None]
        if self.use_scale_shift_norm:
            out_norm, out_rest = self.out_layers[0], self.out_layers[1:]
anton-l's avatar
anton-l committed
247
            scale, shift = torch.chunk(emb_out, 2, dim=1)
anton-l's avatar
anton-l committed
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
            h = out_norm(h) * (1 + scale) + shift
            h = out_rest(h)
        else:
            h = h + emb_out
            h = self.out_layers(h)
        return self.skip_connection(x) + h


class AttentionBlock(nn.Module):
    """
    An attention block that allows spatial positions to attend to each other.

    Originally ported from here, but adapted to the N-d case.
    https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66.
    """

    def __init__(
        self,
        channels,
        num_heads=1,
        num_head_channels=-1,
        use_checkpoint=False,
        encoder_channels=None,
    ):
        super().__init__()
        self.channels = channels
        if num_head_channels == -1:
            self.num_heads = num_heads
        else:
            assert (
                channels % num_head_channels == 0
            ), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}"
            self.num_heads = channels // num_head_channels
        self.use_checkpoint = use_checkpoint
        self.norm = normalization(channels, swish=0.0)
        self.qkv = conv_nd(1, channels, channels * 3, 1)
        self.attention = QKVAttention(self.num_heads)

        if encoder_channels is not None:
            self.encoder_kv = conv_nd(1, encoder_channels, channels * 2, 1)
        self.proj_out = zero_module(conv_nd(1, channels, channels, 1))

    def forward(self, x, encoder_out=None):
        b, c, *spatial = x.shape
        qkv = self.qkv(self.norm(x).view(b, c, -1))
        if encoder_out is not None:
            encoder_out = self.encoder_kv(encoder_out)
            h = self.attention(qkv, encoder_out)
        else:
            h = self.attention(qkv)
        h = self.proj_out(h)
        return x + h.reshape(b, c, *spatial)


class QKVAttention(nn.Module):
    """
    A module which performs QKV attention. Matches legacy QKVAttention + input/ouput heads shaping
    """

    def __init__(self, n_heads):
        super().__init__()
        self.n_heads = n_heads

    def forward(self, qkv, encoder_kv=None):
        """
        Apply QKV attention.

Patrick von Platen's avatar
Patrick von Platen committed
315
316
        :param qkv: an [N x (H * 3 * C) x T] tensor of Qs, Ks, and Vs. :return: an [N x (H * C) x T] tensor after
        attention.
anton-l's avatar
anton-l committed
317
318
319
320
321
322
323
324
        """
        bs, width, length = qkv.shape
        assert width % (3 * self.n_heads) == 0
        ch = width // (3 * self.n_heads)
        q, k, v = qkv.reshape(bs * self.n_heads, ch * 3, length).split(ch, dim=1)
        if encoder_kv is not None:
            assert encoder_kv.shape[1] == self.n_heads * ch * 2
            ek, ev = encoder_kv.reshape(bs * self.n_heads, ch * 2, -1).split(ch, dim=1)
anton-l's avatar
anton-l committed
325
326
            k = torch.cat([ek, k], dim=-1)
            v = torch.cat([ev, v], dim=-1)
anton-l's avatar
anton-l committed
327
        scale = 1 / math.sqrt(math.sqrt(ch))
anton-l's avatar
anton-l committed
328
329
330
        weight = torch.einsum("bct,bcs->bts", q * scale, k * scale)  # More stable with f16 than dividing afterwards
        weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype)
        a = torch.einsum("bts,bcs->bct", weight, v)
anton-l's avatar
anton-l committed
331
332
333
        return a.reshape(bs, -1, length)


Patrick von Platen's avatar
Patrick von Platen committed
334
class GlideUNetModel(ModelMixin, ConfigMixin):
anton-l's avatar
anton-l committed
335
336
337
    """
    The full UNet model with attention and timestep embedding.

Patrick von Platen's avatar
Patrick von Platen committed
338
339
    :param in_channels: channels in the input Tensor. :param model_channels: base channel count for the model. :param
    out_channels: channels in the output Tensor. :param num_res_blocks: number of residual blocks per downsample.
anton-l's avatar
anton-l committed
340
    :param attention_resolutions: a collection of downsample rates at which
Patrick von Platen's avatar
Patrick von Platen committed
341
342
343
344
        attention will take place. May be a set, list, or tuple. For example, if this contains 4, then at 4x
        downsampling, attention will be used.
    :param dropout: the dropout probability. :param channel_mult: channel multiplier for each level of the UNet. :param
    conv_resample: if True, use learned convolutions for upsampling and
anton-l's avatar
anton-l committed
345
        downsampling.
Patrick von Platen's avatar
Patrick von Platen committed
346
347
    :param dims: determines if the signal is 1D, 2D, or 3D. :param num_classes: if specified (as an int), then this
    model will be
anton-l's avatar
anton-l committed
348
        class-conditional with `num_classes` classes.
Patrick von Platen's avatar
Patrick von Platen committed
349
350
    :param use_checkpoint: use gradient checkpointing to reduce memory usage. :param num_heads: the number of attention
    heads in each attention layer. :param num_heads_channels: if specified, ignore num_heads and instead use
anton-l's avatar
anton-l committed
351
352
353
                               a fixed channel width per attention head.
    :param num_heads_upsample: works with num_heads to set a different number
                               of heads for upsampling. Deprecated.
Patrick von Platen's avatar
Patrick von Platen committed
354
355
    :param use_scale_shift_norm: use a FiLM-like conditioning mechanism. :param resblock_updown: use residual blocks
    for up/downsampling.
anton-l's avatar
anton-l committed
356
357
358
359
    """

    def __init__(
        self,
360
        in_channels=3,
anton-l's avatar
anton-l committed
361
        resolution=64,
362
363
364
365
        model_channels=192,
        out_channels=6,
        num_res_blocks=3,
        attention_resolutions=(2, 4, 8),
anton-l's avatar
anton-l committed
366
367
368
369
370
371
372
373
374
375
376
        dropout=0,
        channel_mult=(1, 2, 4, 8),
        conv_resample=True,
        dims=2,
        use_checkpoint=False,
        use_fp16=False,
        num_heads=1,
        num_head_channels=-1,
        num_heads_upsample=-1,
        use_scale_shift_norm=False,
        resblock_updown=False,
anton-l's avatar
anton-l committed
377
        transformer_dim=None,
anton-l's avatar
anton-l committed
378
379
380
381
382
383
384
    ):
        super().__init__()

        if num_heads_upsample == -1:
            num_heads_upsample = num_heads

        self.in_channels = in_channels
anton-l's avatar
anton-l committed
385
        self.resolution = resolution
anton-l's avatar
anton-l committed
386
387
388
389
390
391
392
393
        self.model_channels = model_channels
        self.out_channels = out_channels
        self.num_res_blocks = num_res_blocks
        self.attention_resolutions = attention_resolutions
        self.dropout = dropout
        self.channel_mult = channel_mult
        self.conv_resample = conv_resample
        self.use_checkpoint = use_checkpoint
anton-l's avatar
Style  
anton-l committed
394
        # self.dtype = torch.float16 if use_fp16 else torch.float32
anton-l's avatar
anton-l committed
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
        self.num_heads = num_heads
        self.num_head_channels = num_head_channels
        self.num_heads_upsample = num_heads_upsample

        time_embed_dim = model_channels * 4
        self.time_embed = nn.Sequential(
            linear(model_channels, time_embed_dim),
            nn.SiLU(),
            linear(time_embed_dim, time_embed_dim),
        )

        ch = input_ch = int(channel_mult[0] * model_channels)
        self.input_blocks = nn.ModuleList([TimestepEmbedSequential(conv_nd(dims, in_channels, ch, 3, padding=1))])
        self._feature_size = ch
        input_block_chans = [ch]
        ds = 1
        for level, mult in enumerate(channel_mult):
            for _ in range(num_res_blocks):
                layers = [
                    ResBlock(
                        ch,
                        time_embed_dim,
                        dropout,
                        out_channels=int(mult * model_channels),
                        dims=dims,
                        use_checkpoint=use_checkpoint,
                        use_scale_shift_norm=use_scale_shift_norm,
                    )
                ]
                ch = int(mult * model_channels)
                if ds in attention_resolutions:
                    layers.append(
                        AttentionBlock(
                            ch,
                            use_checkpoint=use_checkpoint,
                            num_heads=num_heads,
                            num_head_channels=num_head_channels,
anton-l's avatar
anton-l committed
432
                            encoder_channels=transformer_dim,
anton-l's avatar
anton-l committed
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
                        )
                    )
                self.input_blocks.append(TimestepEmbedSequential(*layers))
                self._feature_size += ch
                input_block_chans.append(ch)
            if level != len(channel_mult) - 1:
                out_ch = ch
                self.input_blocks.append(
                    TimestepEmbedSequential(
                        ResBlock(
                            ch,
                            time_embed_dim,
                            dropout,
                            out_channels=out_ch,
                            dims=dims,
                            use_checkpoint=use_checkpoint,
                            use_scale_shift_norm=use_scale_shift_norm,
                            down=True,
                        )
                        if resblock_updown
                        else Downsample(ch, conv_resample, dims=dims, out_channels=out_ch)
                    )
                )
                ch = out_ch
                input_block_chans.append(ch)
                ds *= 2
                self._feature_size += ch

        self.middle_block = TimestepEmbedSequential(
            ResBlock(
                ch,
                time_embed_dim,
                dropout,
                dims=dims,
                use_checkpoint=use_checkpoint,
                use_scale_shift_norm=use_scale_shift_norm,
            ),
            AttentionBlock(
                ch,
                use_checkpoint=use_checkpoint,
                num_heads=num_heads,
                num_head_channels=num_head_channels,
anton-l's avatar
anton-l committed
475
                encoder_channels=transformer_dim,
anton-l's avatar
anton-l committed
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
            ),
            ResBlock(
                ch,
                time_embed_dim,
                dropout,
                dims=dims,
                use_checkpoint=use_checkpoint,
                use_scale_shift_norm=use_scale_shift_norm,
            ),
        )
        self._feature_size += ch

        self.output_blocks = nn.ModuleList([])
        for level, mult in list(enumerate(channel_mult))[::-1]:
            for i in range(num_res_blocks + 1):
                ich = input_block_chans.pop()
                layers = [
                    ResBlock(
                        ch + ich,
                        time_embed_dim,
                        dropout,
                        out_channels=int(model_channels * mult),
                        dims=dims,
                        use_checkpoint=use_checkpoint,
                        use_scale_shift_norm=use_scale_shift_norm,
                    )
                ]
                ch = int(model_channels * mult)
                if ds in attention_resolutions:
                    layers.append(
                        AttentionBlock(
                            ch,
                            use_checkpoint=use_checkpoint,
                            num_heads=num_heads_upsample,
                            num_head_channels=num_head_channels,
anton-l's avatar
anton-l committed
511
                            encoder_channels=transformer_dim,
anton-l's avatar
anton-l committed
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
                        )
                    )
                if level and i == num_res_blocks:
                    out_ch = ch
                    layers.append(
                        ResBlock(
                            ch,
                            time_embed_dim,
                            dropout,
                            out_channels=out_ch,
                            dims=dims,
                            use_checkpoint=use_checkpoint,
                            use_scale_shift_norm=use_scale_shift_norm,
                            up=True,
                        )
                        if resblock_updown
patil-suraj's avatar
patil-suraj committed
528
                        else Upsample(ch, use_conv=conv_resample, dims=dims, out_channels=out_ch)
anton-l's avatar
anton-l committed
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
                    )
                    ds //= 2
                self.output_blocks.append(TimestepEmbedSequential(*layers))
                self._feature_size += ch

        self.out = nn.Sequential(
            normalization(ch, swish=1.0),
            nn.Identity(),
            zero_module(conv_nd(dims, input_ch, out_channels, 3, padding=1)),
        )
        self.use_fp16 = use_fp16

    def convert_to_fp16(self):
        """
        Convert the torso of the model to float16.
        """
        self.input_blocks.apply(convert_module_to_f16)
        self.middle_block.apply(convert_module_to_f16)
        self.output_blocks.apply(convert_module_to_f16)

    def convert_to_fp32(self):
        """
        Convert the torso of the model to float32.
        """
        self.input_blocks.apply(convert_module_to_f32)
        self.middle_block.apply(convert_module_to_f32)
        self.output_blocks.apply(convert_module_to_f32)

557
    def forward(self, x, timesteps):
anton-l's avatar
anton-l committed
558
559
560
        """
        Apply the model to an input batch.

Patrick von Platen's avatar
Patrick von Platen committed
561
562
        :param x: an [N x C x ...] Tensor of inputs. :param timesteps: a 1-D batch of timesteps. :param y: an [N]
        Tensor of labels, if class-conditional. :return: an [N x C x ...] Tensor of outputs.
anton-l's avatar
anton-l committed
563
        """
anton-l's avatar
anton-l committed
564
565

        hs = []
566
567
568
        emb = self.time_embed(
            get_timestep_embedding(timesteps, self.model_channels, flip_sin_to_cos=True, downscale_freq_shift=0)
        )
anton-l's avatar
anton-l committed
569
570
571
572
573
574
575
576
577
578
579
580
581

        h = x.type(self.dtype)
        for module in self.input_blocks:
            h = module(h, emb)
            hs.append(h)
        h = self.middle_block(h, emb)
        for module in self.output_blocks:
            h = torch.cat([h, hs.pop()], dim=1)
            h = module(h, emb)
        h = h.type(x.dtype)
        return self.out(h)


Patrick von Platen's avatar
Patrick von Platen committed
582
class GlideTextToImageUNetModel(GlideUNetModel):
anton-l's avatar
anton-l committed
583
584
585
586
587
588
    """
    A UNetModel that performs super-resolution.

    Expects an extra kwarg `low_res` to condition on a low-resolution image.
    """

589
    def __init__(
Patrick von Platen's avatar
Patrick von Platen committed
590
591
        self,
        in_channels=3,
anton-l's avatar
anton-l committed
592
        resolution=64,
Patrick von Platen's avatar
Patrick von Platen committed
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
        model_channels=192,
        out_channels=6,
        num_res_blocks=3,
        attention_resolutions=(2, 4, 8),
        dropout=0,
        channel_mult=(1, 2, 4, 8),
        conv_resample=True,
        dims=2,
        use_checkpoint=False,
        use_fp16=False,
        num_heads=1,
        num_head_channels=-1,
        num_heads_upsample=-1,
        use_scale_shift_norm=False,
        resblock_updown=False,
        transformer_dim=512,
609
610
611
    ):
        super().__init__(
            in_channels=in_channels,
anton-l's avatar
anton-l committed
612
            resolution=resolution,
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
            model_channels=model_channels,
            out_channels=out_channels,
            num_res_blocks=num_res_blocks,
            attention_resolutions=attention_resolutions,
            dropout=dropout,
            channel_mult=channel_mult,
            conv_resample=conv_resample,
            dims=dims,
            use_checkpoint=use_checkpoint,
            use_fp16=use_fp16,
            num_heads=num_heads,
            num_head_channels=num_head_channels,
            num_heads_upsample=num_heads_upsample,
            use_scale_shift_norm=use_scale_shift_norm,
            resblock_updown=resblock_updown,
Patrick von Platen's avatar
Patrick von Platen committed
628
            transformer_dim=transformer_dim,
629
        )
630
        self.register_to_config(
631
            in_channels=in_channels,
anton-l's avatar
anton-l committed
632
            resolution=resolution,
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
            model_channels=model_channels,
            out_channels=out_channels,
            num_res_blocks=num_res_blocks,
            attention_resolutions=attention_resolutions,
            dropout=dropout,
            channel_mult=channel_mult,
            conv_resample=conv_resample,
            dims=dims,
            use_checkpoint=use_checkpoint,
            use_fp16=use_fp16,
            num_heads=num_heads,
            num_head_channels=num_head_channels,
            num_heads_upsample=num_heads_upsample,
            use_scale_shift_norm=use_scale_shift_norm,
            resblock_updown=resblock_updown,
Patrick von Platen's avatar
Patrick von Platen committed
648
            transformer_dim=transformer_dim,
649
        )
anton-l's avatar
anton-l committed
650

651
        self.transformer_proj = nn.Linear(transformer_dim, self.model_channels * 4)
anton-l's avatar
anton-l committed
652
653

    def forward(self, x, timesteps, transformer_out=None):
anton-l's avatar
anton-l committed
654
        hs = []
655
656
657
        emb = self.time_embed(
            get_timestep_embedding(timesteps, self.model_channels, flip_sin_to_cos=True, downscale_freq_shift=0)
        )
anton-l's avatar
anton-l committed
658
659
660
661
662

        # project the last token
        transformer_proj = self.transformer_proj(transformer_out[:, -1])
        transformer_out = transformer_out.permute(0, 2, 1)  # NLC -> NCL

663
664
        emb = emb + transformer_proj.to(emb)

anton-l's avatar
anton-l committed
665
        h = x
anton-l's avatar
anton-l committed
666
        for module in self.input_blocks:
667
            h = module(h, emb, transformer_out)
anton-l's avatar
anton-l committed
668
            hs.append(h)
669
        h = self.middle_block(h, emb, transformer_out)
anton-l's avatar
anton-l committed
670
        for module in self.output_blocks:
anton-l's avatar
anton-l committed
671
672
            other = hs.pop()
            h = torch.cat([h, other], dim=1)
673
            h = module(h, emb, transformer_out)
anton-l's avatar
anton-l committed
674
        return self.out(h)
anton-l's avatar
anton-l committed
675
676


Patrick von Platen's avatar
Patrick von Platen committed
677
class GlideSuperResUNetModel(GlideUNetModel):
anton-l's avatar
anton-l committed
678
679
680
681
682
683
    """
    A UNetModel that performs super-resolution.

    Expects an extra kwarg `low_res` to condition on a low-resolution image.
    """

684
    def __init__(
Patrick von Platen's avatar
Patrick von Platen committed
685
686
        self,
        in_channels=3,
anton-l's avatar
anton-l committed
687
        resolution=256,
Patrick von Platen's avatar
Patrick von Platen committed
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
        model_channels=192,
        out_channels=6,
        num_res_blocks=3,
        attention_resolutions=(2, 4, 8),
        dropout=0,
        channel_mult=(1, 2, 4, 8),
        conv_resample=True,
        dims=2,
        use_checkpoint=False,
        use_fp16=False,
        num_heads=1,
        num_head_channels=-1,
        num_heads_upsample=-1,
        use_scale_shift_norm=False,
        resblock_updown=False,
703
704
705
    ):
        super().__init__(
            in_channels=in_channels,
anton-l's avatar
anton-l committed
706
            resolution=resolution,
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
            model_channels=model_channels,
            out_channels=out_channels,
            num_res_blocks=num_res_blocks,
            attention_resolutions=attention_resolutions,
            dropout=dropout,
            channel_mult=channel_mult,
            conv_resample=conv_resample,
            dims=dims,
            use_checkpoint=use_checkpoint,
            use_fp16=use_fp16,
            num_heads=num_heads,
            num_head_channels=num_head_channels,
            num_heads_upsample=num_heads_upsample,
            use_scale_shift_norm=use_scale_shift_norm,
            resblock_updown=resblock_updown,
        )
723
        self.register_to_config(
724
            in_channels=in_channels,
anton-l's avatar
anton-l committed
725
            resolution=resolution,
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
            model_channels=model_channels,
            out_channels=out_channels,
            num_res_blocks=num_res_blocks,
            attention_resolutions=attention_resolutions,
            dropout=dropout,
            channel_mult=channel_mult,
            conv_resample=conv_resample,
            dims=dims,
            use_checkpoint=use_checkpoint,
            use_fp16=use_fp16,
            num_heads=num_heads,
            num_head_channels=num_head_channels,
            num_heads_upsample=num_heads_upsample,
            use_scale_shift_norm=use_scale_shift_norm,
            resblock_updown=resblock_updown,
        )
anton-l's avatar
anton-l committed
742

743
    def forward(self, x, timesteps, low_res=None):
anton-l's avatar
anton-l committed
744
745
746
        _, _, new_height, new_width = x.shape
        upsampled = F.interpolate(low_res, (new_height, new_width), mode="bilinear")
        x = torch.cat([x, upsampled], dim=1)
747
748

        hs = []
749
750
751
        emb = self.time_embed(
            get_timestep_embedding(timesteps, self.model_channels, flip_sin_to_cos=True, downscale_freq_shift=0)
        )
752
753
754
755
756
757
758
759
760
761

        h = x
        for module in self.input_blocks:
            h = module(h, emb)
            hs.append(h)
        h = self.middle_block(h, emb)
        for module in self.output_blocks:
            h = torch.cat([h, hs.pop()], dim=1)
            h = module(h, emb)

Patrick von Platen's avatar
Patrick von Platen committed
762
        return self.out(h)