test_pipeline_flux.py 15.5 KB
Newer Older
Sayak Paul's avatar
Sayak Paul committed
1
2
3
4
import gc
import unittest

import numpy as np
5
import pytest
Sayak Paul's avatar
Sayak Paul committed
6
import torch
7
from huggingface_hub import hf_hub_download
Sayak Paul's avatar
Sayak Paul committed
8
9
10
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel

from diffusers import AutoencoderKL, FlowMatchEulerDiscreteScheduler, FluxPipeline, FluxTransformer2DModel
11
from diffusers.image_processor import VaeImageProcessor
Sayak Paul's avatar
Sayak Paul committed
12
13
from diffusers.utils.testing_utils import (
    numpy_cosine_similarity_distance,
14
    require_big_gpu_with_torch_cuda,
15
    require_torch_multi_gpu,
Sayak Paul's avatar
Sayak Paul committed
16
17
18
19
    slow,
    torch_device,
)

20
21
22
23
24
from ..test_pipelines_common import (
    PipelineTesterMixin,
    check_qkv_fusion_matches_attn_procs_length,
    check_qkv_fusion_processors_exist,
)
Sayak Paul's avatar
Sayak Paul committed
25
26
27
28


class FluxPipelineFastTests(unittest.TestCase, PipelineTesterMixin):
    pipeline_class = FluxPipeline
Sayak Paul's avatar
Sayak Paul committed
29
30
    params = frozenset(["prompt", "height", "width", "guidance_scale", "prompt_embeds", "pooled_prompt_embeds"])
    batch_params = frozenset(["prompt"])
Sayak Paul's avatar
Sayak Paul committed
31

32
33
34
    # there is no xformers processor for Flux
    test_xformers_attention = False

Sayak Paul's avatar
Sayak Paul committed
35
36
37
38
39
40
    def get_dummy_components(self):
        torch.manual_seed(0)
        transformer = FluxTransformer2DModel(
            patch_size=1,
            in_channels=4,
            num_layers=1,
Sayak Paul's avatar
Sayak Paul committed
41
42
43
            num_single_layers=1,
            attention_head_dim=16,
            num_attention_heads=2,
Sayak Paul's avatar
Sayak Paul committed
44
            joint_attention_dim=32,
Sayak Paul's avatar
Sayak Paul committed
45
46
            pooled_projection_dim=32,
            axes_dims_rope=[4, 4, 8],
Sayak Paul's avatar
Sayak Paul committed
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
        )
        clip_text_encoder_config = CLIPTextConfig(
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
            hidden_act="gelu",
            projection_dim=32,
        )

        torch.manual_seed(0)
        text_encoder = CLIPTextModel(clip_text_encoder_config)

        torch.manual_seed(0)
        text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")

        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
        tokenizer_2 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")

        torch.manual_seed(0)
        vae = AutoencoderKL(
            sample_size=32,
            in_channels=3,
            out_channels=3,
            block_out_channels=(4,),
            layers_per_block=1,
Sayak Paul's avatar
Sayak Paul committed
78
            latent_channels=1,
Sayak Paul's avatar
Sayak Paul committed
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
            norm_num_groups=1,
            use_quant_conv=False,
            use_post_quant_conv=False,
            shift_factor=0.0609,
            scaling_factor=1.5035,
        )

        scheduler = FlowMatchEulerDiscreteScheduler()

        return {
            "scheduler": scheduler,
            "text_encoder": text_encoder,
            "text_encoder_2": text_encoder_2,
            "tokenizer": tokenizer,
            "tokenizer_2": tokenizer_2,
            "transformer": transformer,
            "vae": vae,
        }

    def get_dummy_inputs(self, device, seed=0):
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device="cpu").manual_seed(seed)

        inputs = {
            "prompt": "A painting of a squirrel eating a burger",
            "generator": generator,
            "num_inference_steps": 2,
            "guidance_scale": 5.0,
Sayak Paul's avatar
Sayak Paul committed
109
110
111
            "height": 8,
            "width": 8,
            "max_sequence_length": 48,
Sayak Paul's avatar
Sayak Paul committed
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
            "output_type": "np",
        }
        return inputs

    def test_flux_different_prompts(self):
        pipe = self.pipeline_class(**self.get_dummy_components()).to(torch_device)

        inputs = self.get_dummy_inputs(torch_device)
        output_same_prompt = pipe(**inputs).images[0]

        inputs = self.get_dummy_inputs(torch_device)
        inputs["prompt_2"] = "a different prompt"
        output_different_prompts = pipe(**inputs).images[0]

        max_diff = np.abs(output_same_prompt - output_different_prompts).max()

        # Outputs should be different here
Sayak Paul's avatar
Sayak Paul committed
129
130
        # For some reasons, they don't show large differences
        assert max_diff > 1e-6
Sayak Paul's avatar
Sayak Paul committed
131
132
133
134
135
136
137
138
139
140

    def test_flux_prompt_embeds(self):
        pipe = self.pipeline_class(**self.get_dummy_components()).to(torch_device)
        inputs = self.get_dummy_inputs(torch_device)

        output_with_prompt = pipe(**inputs).images[0]

        inputs = self.get_dummy_inputs(torch_device)
        prompt = inputs.pop("prompt")

Sayak Paul's avatar
Sayak Paul committed
141
        (prompt_embeds, pooled_prompt_embeds, text_ids) = pipe.encode_prompt(
Sayak Paul's avatar
Sayak Paul committed
142
143
144
            prompt,
            prompt_2=None,
            device=torch_device,
Sayak Paul's avatar
Sayak Paul committed
145
            max_sequence_length=inputs["max_sequence_length"],
Sayak Paul's avatar
Sayak Paul committed
146
147
148
149
150
151
152
153
154
155
        )
        output_with_embeds = pipe(
            prompt_embeds=prompt_embeds,
            pooled_prompt_embeds=pooled_prompt_embeds,
            **inputs,
        ).images[0]

        max_diff = np.abs(output_with_prompt - output_with_embeds).max()
        assert max_diff < 1e-4

156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
    def test_fused_qkv_projections(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe = pipe.to(device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)
        image = pipe(**inputs).images
        original_image_slice = image[0, -3:, -3:, -1]

        # TODO (sayakpaul): will refactor this once `fuse_qkv_projections()` has been added
        # to the pipeline level.
        pipe.transformer.fuse_qkv_projections()
        assert check_qkv_fusion_processors_exist(
            pipe.transformer
        ), "Something wrong with the fused attention processors. Expected all the attention processors to be fused."
        assert check_qkv_fusion_matches_attn_procs_length(
            pipe.transformer, pipe.transformer.original_attn_processors
        ), "Something wrong with the attention processors concerning the fused QKV projections."

        inputs = self.get_dummy_inputs(device)
        image = pipe(**inputs).images
        image_slice_fused = image[0, -3:, -3:, -1]

        pipe.transformer.unfuse_qkv_projections()
        inputs = self.get_dummy_inputs(device)
        image = pipe(**inputs).images
        image_slice_disabled = image[0, -3:, -3:, -1]

        assert np.allclose(
            original_image_slice, image_slice_fused, atol=1e-3, rtol=1e-3
        ), "Fusion of QKV projections shouldn't affect the outputs."
        assert np.allclose(
            image_slice_fused, image_slice_disabled, atol=1e-3, rtol=1e-3
        ), "Outputs, with QKV projection fusion enabled, shouldn't change when fused QKV projections are disabled."
        assert np.allclose(
            original_image_slice, image_slice_disabled, atol=1e-2, rtol=1e-2
        ), "Original outputs should match when fused QKV projections are disabled."

Sayak Paul's avatar
Sayak Paul committed
196
197

@slow
198
199
@require_big_gpu_with_torch_cuda
@pytest.mark.big_gpu_with_torch_cuda
Sayak Paul's avatar
Sayak Paul committed
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
class FluxPipelineSlowTests(unittest.TestCase):
    pipeline_class = FluxPipeline
    repo_id = "black-forest-labs/FLUX.1-schnell"

    def setUp(self):
        super().setUp()
        gc.collect()
        torch.cuda.empty_cache()

    def tearDown(self):
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

    def get_inputs(self, device, seed=0):
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device="cpu").manual_seed(seed)

220
221
222
223
224
225
226
227
        prompt_embeds = torch.load(
            hf_hub_download(repo_id="diffusers/test-slices", repo_type="dataset", filename="flux/prompt_embeds.pt")
        )
        pooled_prompt_embeds = torch.load(
            hf_hub_download(
                repo_id="diffusers/test-slices", repo_type="dataset", filename="flux/pooled_prompt_embeds.pt"
            )
        )
Sayak Paul's avatar
Sayak Paul committed
228
        return {
229
230
            "prompt_embeds": prompt_embeds,
            "pooled_prompt_embeds": pooled_prompt_embeds,
Sayak Paul's avatar
Sayak Paul committed
231
            "num_inference_steps": 2,
232
233
            "guidance_scale": 0.0,
            "max_sequence_length": 256,
Sayak Paul's avatar
Sayak Paul committed
234
235
236
237
238
            "output_type": "np",
            "generator": generator,
        }

    def test_flux_inference(self):
239
240
241
        pipe = self.pipeline_class.from_pretrained(
            self.repo_id, torch_dtype=torch.bfloat16, text_encoder=None, text_encoder_2=None
        )
Sayak Paul's avatar
Sayak Paul committed
242
243
244
245
246
247
248
249
        pipe.enable_model_cpu_offload()

        inputs = self.get_inputs(torch_device)

        image = pipe(**inputs).images[0]
        image_slice = image[0, :10, :10]
        expected_slice = np.array(
            [
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
                0.3242,
                0.3203,
                0.3164,
                0.3164,
                0.3125,
                0.3125,
                0.3281,
                0.3242,
                0.3203,
                0.3301,
                0.3262,
                0.3242,
                0.3281,
                0.3242,
                0.3203,
                0.3262,
                0.3262,
                0.3164,
                0.3262,
                0.3281,
                0.3184,
                0.3281,
                0.3281,
                0.3203,
                0.3281,
                0.3281,
                0.3164,
                0.3320,
                0.3320,
                0.3203,
Sayak Paul's avatar
Sayak Paul committed
280
281
282
283
284
285
286
            ],
            dtype=np.float32,
        )

        max_diff = numpy_cosine_similarity_distance(expected_slice.flatten(), image_slice.flatten())

        assert max_diff < 1e-4
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455

    @require_torch_multi_gpu
    @torch.no_grad()
    def test_flux_component_sharding(self):
        """
        internal note: test was run on `audace`.
        """

        ckpt_id = "black-forest-labs/FLUX.1-dev"
        dtype = torch.bfloat16
        prompt = "a photo of a cat with tiger-like look"

        pipeline = FluxPipeline.from_pretrained(
            ckpt_id,
            transformer=None,
            vae=None,
            device_map="balanced",
            max_memory={0: "16GB", 1: "16GB"},
            torch_dtype=dtype,
        )
        prompt_embeds, pooled_prompt_embeds, _ = pipeline.encode_prompt(
            prompt=prompt, prompt_2=None, max_sequence_length=512
        )

        del pipeline.text_encoder
        del pipeline.text_encoder_2
        del pipeline.tokenizer
        del pipeline.tokenizer_2
        del pipeline

        gc.collect()
        torch.cuda.empty_cache()

        transformer = FluxTransformer2DModel.from_pretrained(
            ckpt_id, subfolder="transformer", device_map="auto", max_memory={0: "16GB", 1: "16GB"}, torch_dtype=dtype
        )
        pipeline = FluxPipeline.from_pretrained(
            ckpt_id,
            text_encoder=None,
            text_encoder_2=None,
            tokenizer=None,
            tokenizer_2=None,
            vae=None,
            transformer=transformer,
            torch_dtype=dtype,
        )

        height, width = 768, 1360
        # No need to wrap it up under `torch.no_grad()` as pipeline call method
        # is already wrapped under that.
        latents = pipeline(
            prompt_embeds=prompt_embeds,
            pooled_prompt_embeds=pooled_prompt_embeds,
            num_inference_steps=10,
            guidance_scale=3.5,
            height=height,
            width=width,
            output_type="latent",
            generator=torch.manual_seed(0),
        ).images
        latent_slice = latents[0, :3, :3].flatten().float().cpu().numpy()
        expected_slice = np.array([-0.377, -0.3008, -0.5117, -0.252, 0.0615, -0.3477, -0.1309, -0.1914, 0.1533])

        assert numpy_cosine_similarity_distance(latent_slice, expected_slice) < 1e-4

        del pipeline.transformer
        del pipeline

        gc.collect()
        torch.cuda.empty_cache()

        vae = AutoencoderKL.from_pretrained(ckpt_id, subfolder="vae", torch_dtype=dtype).to(torch_device)
        vae_scale_factor = 2 ** (len(vae.config.block_out_channels) - 1)
        image_processor = VaeImageProcessor(vae_scale_factor=vae_scale_factor)

        latents = FluxPipeline._unpack_latents(latents, height, width, vae_scale_factor)
        latents = (latents / vae.config.scaling_factor) + vae.config.shift_factor

        image = vae.decode(latents, return_dict=False)[0]
        image = image_processor.postprocess(image, output_type="np")
        image_slice = image[0, :3, :3, -1].flatten()
        expected_slice = np.array([0.127, 0.1113, 0.1055, 0.1172, 0.1172, 0.1074, 0.1191, 0.1191, 0.1152])

        assert numpy_cosine_similarity_distance(image_slice, expected_slice) < 1e-4

    @require_torch_multi_gpu
    @torch.no_grad()
    def test_flux_component_sharding_with_lora(self):
        """
        internal note: test was run on `audace`.
        """

        ckpt_id = "black-forest-labs/FLUX.1-dev"
        dtype = torch.bfloat16
        prompt = "jon snow eating pizza."

        pipeline = FluxPipeline.from_pretrained(
            ckpt_id,
            transformer=None,
            vae=None,
            device_map="balanced",
            max_memory={0: "16GB", 1: "16GB"},
            torch_dtype=dtype,
        )
        prompt_embeds, pooled_prompt_embeds, _ = pipeline.encode_prompt(
            prompt=prompt, prompt_2=None, max_sequence_length=512
        )

        del pipeline.text_encoder
        del pipeline.text_encoder_2
        del pipeline.tokenizer
        del pipeline.tokenizer_2
        del pipeline

        gc.collect()
        torch.cuda.empty_cache()

        transformer = FluxTransformer2DModel.from_pretrained(
            ckpt_id, subfolder="transformer", device_map="auto", max_memory={0: "16GB", 1: "16GB"}, torch_dtype=dtype
        )
        pipeline = FluxPipeline.from_pretrained(
            ckpt_id,
            text_encoder=None,
            text_encoder_2=None,
            tokenizer=None,
            tokenizer_2=None,
            vae=None,
            transformer=transformer,
            torch_dtype=dtype,
        )
        pipeline.load_lora_weights("TheLastBen/Jon_Snow_Flux_LoRA", weight_name="jon_snow.safetensors")

        height, width = 768, 1360
        # No need to wrap it up under `torch.no_grad()` as pipeline call method
        # is already wrapped under that.
        latents = pipeline(
            prompt_embeds=prompt_embeds,
            pooled_prompt_embeds=pooled_prompt_embeds,
            num_inference_steps=10,
            guidance_scale=3.5,
            height=height,
            width=width,
            output_type="latent",
            generator=torch.manual_seed(0),
        ).images
        latent_slice = latents[0, :3, :3].flatten().float().cpu().numpy()
        expected_slice = np.array([-0.6523, -0.4961, -0.9141, -0.5, -0.2129, -0.6914, -0.375, -0.5664, -0.1699])

        assert numpy_cosine_similarity_distance(latent_slice, expected_slice) < 1e-4

        del pipeline.transformer
        del pipeline

        gc.collect()
        torch.cuda.empty_cache()

        vae = AutoencoderKL.from_pretrained(ckpt_id, subfolder="vae", torch_dtype=dtype).to(torch_device)
        vae_scale_factor = 2 ** (len(vae.config.block_out_channels) - 1)
        image_processor = VaeImageProcessor(vae_scale_factor=vae_scale_factor)

        latents = FluxPipeline._unpack_latents(latents, height, width, vae_scale_factor)
        latents = (latents / vae.config.scaling_factor) + vae.config.shift_factor

        image = vae.decode(latents, return_dict=False)[0]
        image = image_processor.postprocess(image, output_type="np")
        image_slice = image[0, :3, :3, -1].flatten()
        expected_slice = np.array([0.1211, 0.1094, 0.1035, 0.1094, 0.1113, 0.1074, 0.1133, 0.1133, 0.1094])

        assert numpy_cosine_similarity_distance(image_slice, expected_slice) < 1e-4