test_torchao.py 28.3 KB
Newer Older
Aryan's avatar
Aryan committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
# coding=utf-8
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import gc
import tempfile
import unittest
from typing import List

import numpy as np
from transformers import AutoTokenizer, CLIPTextModel, CLIPTokenizer, T5EncoderModel

from diffusers import (
    AutoencoderKL,
    FlowMatchEulerDiscreteScheduler,
    FluxPipeline,
    FluxTransformer2DModel,
    TorchAoConfig,
)
from diffusers.models.attention_processor import Attention
from diffusers.utils.testing_utils import (
    enable_full_determinism,
    is_torch_available,
    is_torchao_available,
    nightly,
    require_torch,
    require_torch_gpu,
    require_torchao_version_greater,
    slow,
    torch_device,
)


enable_full_determinism()


if is_torch_available():
    import torch
    import torch.nn as nn

    class LoRALayer(nn.Module):
        """Wraps a linear layer with LoRA-like adapter - Used for testing purposes only

        Taken from
        https://github.com/huggingface/transformers/blob/566302686a71de14125717dea9a6a45b24d42b37/tests/quantization/bnb/test_4bit.py#L62C5-L78C77
        """

        def __init__(self, module: nn.Module, rank: int):
            super().__init__()
            self.module = module
            self.adapter = nn.Sequential(
                nn.Linear(module.in_features, rank, bias=False),
                nn.Linear(rank, module.out_features, bias=False),
            )
            small_std = (2.0 / (5 * min(module.in_features, module.out_features))) ** 0.5
            nn.init.normal_(self.adapter[0].weight, std=small_std)
            nn.init.zeros_(self.adapter[1].weight)
            self.adapter.to(module.weight.device)

        def forward(self, input, *args, **kwargs):
            return self.module(input, *args, **kwargs) + self.adapter(input)


if is_torchao_available():
    from torchao.dtypes import AffineQuantizedTensor
    from torchao.dtypes.affine_quantized_tensor import TensorCoreTiledLayoutType
    from torchao.quantization.linear_activation_quantized_tensor import LinearActivationQuantizedTensor


@require_torch
@require_torch_gpu
@require_torchao_version_greater("0.6.0")
class TorchAoConfigTest(unittest.TestCase):
    def test_to_dict(self):
        """
        Makes sure the config format is properly set
        """
        quantization_config = TorchAoConfig("int4_weight_only")
        torchao_orig_config = quantization_config.to_dict()

        for key in torchao_orig_config:
            self.assertEqual(getattr(quantization_config, key), torchao_orig_config[key])

    def test_post_init_check(self):
        """
        Test kwargs validations in TorchAoConfig
        """
        _ = TorchAoConfig("int4_weight_only")
        with self.assertRaisesRegex(ValueError, "is not supported yet"):
            _ = TorchAoConfig("uint8")

        with self.assertRaisesRegex(ValueError, "does not support the following keyword arguments"):
            _ = TorchAoConfig("int4_weight_only", group_size1=32)

    def test_repr(self):
        """
        Check that there is no error in the repr
        """
        quantization_config = TorchAoConfig("int4_weight_only", modules_to_not_convert=["conv"], group_size=8)
        expected_repr = """TorchAoConfig {
            "modules_to_not_convert": [
                "conv"
            ],
            "quant_method": "torchao",
            "quant_type": "int4_weight_only",
            "quant_type_kwargs": {
                "group_size": 8
            }
        }""".replace(" ", "").replace("\n", "")
        quantization_repr = repr(quantization_config).replace(" ", "").replace("\n", "")
        self.assertEqual(quantization_repr, expected_repr)


# Slices for these tests have been obtained on our aws-g6e-xlarge-plus runners
@require_torch
@require_torch_gpu
@require_torchao_version_greater("0.6.0")
class TorchAoTest(unittest.TestCase):
    def tearDown(self):
        gc.collect()
        torch.cuda.empty_cache()

    def get_dummy_components(self, quantization_config: TorchAoConfig):
        model_id = "hf-internal-testing/tiny-flux-pipe"
        transformer = FluxTransformer2DModel.from_pretrained(
            model_id,
            subfolder="transformer",
            quantization_config=quantization_config,
            torch_dtype=torch.bfloat16,
        )
        text_encoder = CLIPTextModel.from_pretrained(model_id, subfolder="text_encoder")
        text_encoder_2 = T5EncoderModel.from_pretrained(model_id, subfolder="text_encoder_2")
        tokenizer = CLIPTokenizer.from_pretrained(model_id, subfolder="tokenizer")
        tokenizer_2 = AutoTokenizer.from_pretrained(model_id, subfolder="tokenizer_2")
        vae = AutoencoderKL.from_pretrained(model_id, subfolder="vae")
        scheduler = FlowMatchEulerDiscreteScheduler()

        return {
            "scheduler": scheduler,
            "text_encoder": text_encoder,
            "text_encoder_2": text_encoder_2,
            "tokenizer": tokenizer,
            "tokenizer_2": tokenizer_2,
            "transformer": transformer,
            "vae": vae,
        }

    def get_dummy_inputs(self, device: torch.device, seed: int = 0):
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator().manual_seed(seed)

        inputs = {
            "prompt": "an astronaut riding a horse in space",
            "height": 32,
            "width": 32,
            "num_inference_steps": 2,
            "output_type": "np",
            "generator": generator,
        }

        return inputs

    def get_dummy_tensor_inputs(self, device=None, seed: int = 0):
        batch_size = 1
        num_latent_channels = 4
        num_image_channels = 3
        height = width = 4
        sequence_length = 48
        embedding_dim = 32

        torch.manual_seed(seed)
        hidden_states = torch.randn((batch_size, height * width, num_latent_channels)).to(device, dtype=torch.bfloat16)

        torch.manual_seed(seed)
        encoder_hidden_states = torch.randn((batch_size, sequence_length, embedding_dim)).to(
            device, dtype=torch.bfloat16
        )

        torch.manual_seed(seed)
        pooled_prompt_embeds = torch.randn((batch_size, embedding_dim)).to(device, dtype=torch.bfloat16)

        torch.manual_seed(seed)
        text_ids = torch.randn((sequence_length, num_image_channels)).to(device, dtype=torch.bfloat16)

        torch.manual_seed(seed)
        image_ids = torch.randn((height * width, num_image_channels)).to(device, dtype=torch.bfloat16)

        timestep = torch.tensor([1.0]).to(device, dtype=torch.bfloat16).expand(batch_size)

        return {
            "hidden_states": hidden_states,
            "encoder_hidden_states": encoder_hidden_states,
            "pooled_projections": pooled_prompt_embeds,
            "txt_ids": text_ids,
            "img_ids": image_ids,
            "timestep": timestep,
        }

    def _test_quant_type(self, quantization_config: TorchAoConfig, expected_slice: List[float]):
        components = self.get_dummy_components(quantization_config)
        pipe = FluxPipeline(**components)
        pipe.to(device=torch_device, dtype=torch.bfloat16)

        inputs = self.get_dummy_inputs(torch_device)
        output = pipe(**inputs)[0]
        output_slice = output[-1, -1, -3:, -3:].flatten()

        self.assertTrue(np.allclose(output_slice, expected_slice, atol=1e-3, rtol=1e-3))

    def test_quantization(self):
        # fmt: off
        QUANTIZATION_TYPES_TO_TEST = [
            ("int4wo", np.array([0.4648, 0.5234, 0.5547, 0.4219, 0.4414, 0.6445, 0.4336, 0.4531, 0.5625])),
            ("int4dq", np.array([0.4688, 0.5195, 0.5547, 0.418, 0.4414, 0.6406, 0.4336, 0.4531, 0.5625])),
            ("int8wo", np.array([0.4648, 0.5195, 0.5547, 0.4199, 0.4414, 0.6445, 0.4316, 0.4531, 0.5625])),
            ("int8dq", np.array([0.4648, 0.5195, 0.5547, 0.4199, 0.4414, 0.6445, 0.4316, 0.4531, 0.5625])),
            ("uint4wo", np.array([0.4609, 0.5234, 0.5508, 0.4199, 0.4336, 0.6406, 0.4316, 0.4531, 0.5625])),
231
            ("uint7wo", np.array([0.4648, 0.5195, 0.5547, 0.4219, 0.4414, 0.6445, 0.4316, 0.4531, 0.5625])),
Aryan's avatar
Aryan committed
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
        ]

        if TorchAoConfig._is_cuda_capability_atleast_8_9():
            QUANTIZATION_TYPES_TO_TEST.extend([
                ("float8wo_e5m2", np.array([0.4590, 0.5273, 0.5547, 0.4219, 0.4375, 0.6406, 0.4316, 0.4512, 0.5625])),
                ("float8wo_e4m3", np.array([0.4648, 0.5234, 0.5547, 0.4219, 0.4414, 0.6406, 0.4316, 0.4531, 0.5625])),
                # =====
                # The following lead to an internal torch error:
                #    RuntimeError: mat2 shape (32x4 must be divisible by 16
                # Skip these for now; TODO(aryan): investigate later
                # ("float8dq_e4m3", np.array([0, 0, 0, 0, 0, 0, 0, 0, 0])),
                # ("float8dq_e4m3_tensor", np.array([0, 0, 0, 0, 0, 0, 0, 0, 0])),
                # =====
                # Cutlass fails to initialize for below
                # ("float8dq_e4m3_row", np.array([0, 0, 0, 0, 0, 0, 0, 0, 0])),
                # =====
                ("fp4", np.array([0.4668, 0.5195, 0.5547, 0.4199, 0.4434, 0.6445, 0.4316, 0.4531, 0.5625])),
                ("fp6", np.array([0.4668, 0.5195, 0.5547, 0.4199, 0.4434, 0.6445, 0.4316, 0.4531, 0.5625])),
            ])
        # fmt: on

        for quantization_name, expected_slice in QUANTIZATION_TYPES_TO_TEST:
            quant_kwargs = {}
255
256
            if quantization_name in ["uint4wo", "uint7wo"]:
                # The dummy flux model that we use has smaller dimensions. This imposes some restrictions on group_size here
Aryan's avatar
Aryan committed
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
                quant_kwargs.update({"group_size": 16})
            quantization_config = TorchAoConfig(
                quant_type=quantization_name, modules_to_not_convert=["x_embedder"], **quant_kwargs
            )
            self._test_quant_type(quantization_config, expected_slice)

    def test_int4wo_quant_bfloat16_conversion(self):
        """
        Tests whether the dtype of model will be modified to bfloat16 for int4 weight-only quantization.
        """
        quantization_config = TorchAoConfig("int4_weight_only", group_size=64)
        quantized_model = FluxTransformer2DModel.from_pretrained(
            "hf-internal-testing/tiny-flux-pipe",
            subfolder="transformer",
            quantization_config=quantization_config,
            torch_dtype=torch.bfloat16,
        )

        weight = quantized_model.transformer_blocks[0].ff.net[2].weight
        self.assertTrue(isinstance(weight, AffineQuantizedTensor))
        self.assertEqual(weight.quant_min, 0)
        self.assertEqual(weight.quant_max, 15)
        self.assertTrue(isinstance(weight.layout_type, TensorCoreTiledLayoutType))

281
    def test_device_map(self):
Aryan's avatar
Aryan committed
282
        """
283
284
285
        Test if the quantized model int4 weight-only is working properly with "auto" and custom device maps.
        The custom device map performs cpu/disk offloading as well. Also verifies that the device map is
        correctly set (in the `hf_device_map` attribute of the model).
Aryan's avatar
Aryan committed
286
287
        """

288
        custom_device_map_dict = {
Aryan's avatar
Aryan committed
289
290
291
292
293
294
295
296
            "time_text_embed": torch_device,
            "context_embedder": torch_device,
            "x_embedder": torch_device,
            "transformer_blocks.0": "cpu",
            "single_transformer_blocks.0": "disk",
            "norm_out": torch_device,
            "proj_out": "cpu",
        }
297
        device_maps = ["auto", custom_device_map_dict]
Aryan's avatar
Aryan committed
298
299

        inputs = self.get_dummy_tensor_inputs(torch_device)
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
        expected_slice = np.array([0.3457, -0.0366, 0.0105, -0.2275, -0.4941, 0.4395, -0.166, -0.6641, 0.4375])

        for device_map in device_maps:
            device_map_to_compare = {"": 0} if device_map == "auto" else device_map

            # Test non-sharded model
            with tempfile.TemporaryDirectory() as offload_folder:
                quantization_config = TorchAoConfig("int4_weight_only", group_size=64)
                quantized_model = FluxTransformer2DModel.from_pretrained(
                    "hf-internal-testing/tiny-flux-pipe",
                    subfolder="transformer",
                    quantization_config=quantization_config,
                    device_map=device_map,
                    torch_dtype=torch.bfloat16,
                    offload_folder=offload_folder,
                )

                self.assertTrue(quantized_model.hf_device_map == device_map_to_compare)

                output = quantized_model(**inputs)[0]
                output_slice = output.flatten()[-9:].detach().float().cpu().numpy()
                self.assertTrue(np.allclose(output_slice, expected_slice, atol=1e-3, rtol=1e-3))

            # Test sharded model
            with tempfile.TemporaryDirectory() as offload_folder:
                quantization_config = TorchAoConfig("int4_weight_only", group_size=64)
                quantized_model = FluxTransformer2DModel.from_pretrained(
                    "hf-internal-testing/tiny-flux-sharded",
                    subfolder="transformer",
                    quantization_config=quantization_config,
                    device_map=device_map,
                    torch_dtype=torch.bfloat16,
                    offload_folder=offload_folder,
                )

                self.assertTrue(quantized_model.hf_device_map == device_map_to_compare)

                output = quantized_model(**inputs)[0]
                output_slice = output.flatten()[-9:].detach().float().cpu().numpy()

                self.assertTrue(np.allclose(output_slice, expected_slice, atol=1e-3, rtol=1e-3))
Aryan's avatar
Aryan committed
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648

    def test_modules_to_not_convert(self):
        quantization_config = TorchAoConfig("int8_weight_only", modules_to_not_convert=["transformer_blocks.0"])
        quantized_model = FluxTransformer2DModel.from_pretrained(
            "hf-internal-testing/tiny-flux-pipe",
            subfolder="transformer",
            quantization_config=quantization_config,
            torch_dtype=torch.bfloat16,
        )

        unquantized_layer = quantized_model.transformer_blocks[0].ff.net[2]
        self.assertTrue(isinstance(unquantized_layer, torch.nn.Linear))
        self.assertFalse(isinstance(unquantized_layer.weight, AffineQuantizedTensor))
        self.assertEqual(unquantized_layer.weight.dtype, torch.bfloat16)

        quantized_layer = quantized_model.proj_out
        self.assertTrue(isinstance(quantized_layer.weight, AffineQuantizedTensor))
        self.assertEqual(quantized_layer.weight.layout_tensor.data.dtype, torch.int8)

    def test_training(self):
        quantization_config = TorchAoConfig("int8_weight_only")
        quantized_model = FluxTransformer2DModel.from_pretrained(
            "hf-internal-testing/tiny-flux-pipe",
            subfolder="transformer",
            quantization_config=quantization_config,
            torch_dtype=torch.bfloat16,
        ).to(torch_device)

        for param in quantized_model.parameters():
            # freeze the model as only adapter layers will be trained
            param.requires_grad = False
            if param.ndim == 1:
                param.data = param.data.to(torch.float32)

        for _, module in quantized_model.named_modules():
            if isinstance(module, Attention):
                module.to_q = LoRALayer(module.to_q, rank=4)
                module.to_k = LoRALayer(module.to_k, rank=4)
                module.to_v = LoRALayer(module.to_v, rank=4)

        with torch.amp.autocast(str(torch_device), dtype=torch.bfloat16):
            inputs = self.get_dummy_tensor_inputs(torch_device)
            output = quantized_model(**inputs)[0]
            output.norm().backward()

        for module in quantized_model.modules():
            if isinstance(module, LoRALayer):
                self.assertTrue(module.adapter[1].weight.grad is not None)
                self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0)

    @nightly
    def test_torch_compile(self):
        r"""Test that verifies if torch.compile works with torchao quantization."""
        quantization_config = TorchAoConfig("int8_weight_only")
        components = self.get_dummy_components(quantization_config)
        pipe = FluxPipeline(**components)
        pipe.to(device=torch_device, dtype=torch.bfloat16)

        inputs = self.get_dummy_inputs(torch_device)
        normal_output = pipe(**inputs)[0].flatten()[-32:]

        pipe.transformer = torch.compile(pipe.transformer, mode="max-autotune", fullgraph=True, dynamic=False)
        inputs = self.get_dummy_inputs(torch_device)
        compile_output = pipe(**inputs)[0].flatten()[-32:]

        # Note: Seems to require higher tolerance
        self.assertTrue(np.allclose(normal_output, compile_output, atol=1e-2, rtol=1e-3))

    @staticmethod
    def _get_memory_footprint(module):
        quantized_param_memory = 0.0
        unquantized_param_memory = 0.0

        for param in module.parameters():
            if param.__class__.__name__ == "AffineQuantizedTensor":
                data, scale, zero_point = param.layout_tensor.get_plain()
                quantized_param_memory += data.numel() + data.element_size()
                quantized_param_memory += scale.numel() + scale.element_size()
                quantized_param_memory += zero_point.numel() + zero_point.element_size()
            else:
                unquantized_param_memory += param.data.numel() * param.data.element_size()

        total_memory = quantized_param_memory + unquantized_param_memory
        return total_memory, quantized_param_memory, unquantized_param_memory

    def test_memory_footprint(self):
        r"""
        A simple test to check if the model conversion has been done correctly by checking on the
        memory footprint of the converted model and the class type of the linear layers of the converted models
        """
        transformer_int4wo = self.get_dummy_components(TorchAoConfig("int4wo"))["transformer"]
        transformer_int4wo_gs32 = self.get_dummy_components(TorchAoConfig("int4wo", group_size=32))["transformer"]
        transformer_int8wo = self.get_dummy_components(TorchAoConfig("int8wo"))["transformer"]
        transformer_bf16 = self.get_dummy_components(None)["transformer"]

        total_int4wo, quantized_int4wo, unquantized_int4wo = self._get_memory_footprint(transformer_int4wo)
        total_int4wo_gs32, quantized_int4wo_gs32, unquantized_int4wo_gs32 = self._get_memory_footprint(
            transformer_int4wo_gs32
        )
        total_int8wo, quantized_int8wo, unquantized_int8wo = self._get_memory_footprint(transformer_int8wo)
        total_bf16, quantized_bf16, unquantized_bf16 = self._get_memory_footprint(transformer_bf16)

        self.assertTrue(quantized_bf16 == 0 and total_bf16 == unquantized_bf16)
        # int4wo_gs32 has smaller group size, so more groups -> more scales and zero points
        self.assertTrue(total_int8wo < total_bf16 < total_int4wo_gs32)
        # int4 with default group size quantized very few linear layers compared to a smaller group size of 32
        self.assertTrue(quantized_int4wo < quantized_int4wo_gs32 and unquantized_int4wo > unquantized_int4wo_gs32)
        # int8 quantizes more layers compare to int4 with default group size
        self.assertTrue(quantized_int8wo < quantized_int4wo)

    def test_wrong_config(self):
        with self.assertRaises(ValueError):
            self.get_dummy_components(TorchAoConfig("int42"))


# This class is not to be run as a test by itself. See the tests that follow this class
@require_torch
@require_torch_gpu
@require_torchao_version_greater("0.6.0")
class TorchAoSerializationTest(unittest.TestCase):
    model_name = "hf-internal-testing/tiny-flux-pipe"
    quant_method, quant_method_kwargs = None, None
    device = "cuda"

    def tearDown(self):
        gc.collect()
        torch.cuda.empty_cache()

    def get_dummy_model(self, device=None):
        quantization_config = TorchAoConfig(self.quant_method, **self.quant_method_kwargs)
        quantized_model = FluxTransformer2DModel.from_pretrained(
            self.model_name,
            subfolder="transformer",
            quantization_config=quantization_config,
            torch_dtype=torch.bfloat16,
        )
        return quantized_model.to(device)

    def get_dummy_tensor_inputs(self, device=None, seed: int = 0):
        batch_size = 1
        num_latent_channels = 4
        num_image_channels = 3
        height = width = 4
        sequence_length = 48
        embedding_dim = 32

        torch.manual_seed(seed)
        hidden_states = torch.randn((batch_size, height * width, num_latent_channels)).to(device, dtype=torch.bfloat16)
        encoder_hidden_states = torch.randn((batch_size, sequence_length, embedding_dim)).to(
            device, dtype=torch.bfloat16
        )
        pooled_prompt_embeds = torch.randn((batch_size, embedding_dim)).to(device, dtype=torch.bfloat16)
        text_ids = torch.randn((sequence_length, num_image_channels)).to(device, dtype=torch.bfloat16)
        image_ids = torch.randn((height * width, num_image_channels)).to(device, dtype=torch.bfloat16)
        timestep = torch.tensor([1.0]).to(device, dtype=torch.bfloat16).expand(batch_size)

        return {
            "hidden_states": hidden_states,
            "encoder_hidden_states": encoder_hidden_states,
            "pooled_projections": pooled_prompt_embeds,
            "txt_ids": text_ids,
            "img_ids": image_ids,
            "timestep": timestep,
        }

    def test_original_model_expected_slice(self):
        quantized_model = self.get_dummy_model(torch_device)
        inputs = self.get_dummy_tensor_inputs(torch_device)
        output = quantized_model(**inputs)[0]
        output_slice = output.flatten()[-9:].detach().float().cpu().numpy()
        self.assertTrue(np.allclose(output_slice, self.expected_slice, atol=1e-3, rtol=1e-3))

    def check_serialization_expected_slice(self, expected_slice):
        quantized_model = self.get_dummy_model(self.device)

        with tempfile.TemporaryDirectory() as tmp_dir:
            quantized_model.save_pretrained(tmp_dir, safe_serialization=False)
            loaded_quantized_model = FluxTransformer2DModel.from_pretrained(
                tmp_dir, torch_dtype=torch.bfloat16, device_map=torch_device, use_safetensors=False
            )

        inputs = self.get_dummy_tensor_inputs(torch_device)
        output = loaded_quantized_model(**inputs)[0]

        output_slice = output.flatten()[-9:].detach().float().cpu().numpy()
        self.assertTrue(
            isinstance(
                loaded_quantized_model.proj_out.weight, (AffineQuantizedTensor, LinearActivationQuantizedTensor)
            )
        )
        self.assertTrue(np.allclose(output_slice, expected_slice, atol=1e-3, rtol=1e-3))

    def test_serialization_expected_slice(self):
        self.check_serialization_expected_slice(self.serialized_expected_slice)


class TorchAoSerializationINTA8W8Test(TorchAoSerializationTest):
    quant_method, quant_method_kwargs = "int8_dynamic_activation_int8_weight", {}
    expected_slice = np.array([0.3633, -0.1357, -0.0188, -0.249, -0.4688, 0.5078, -0.1289, -0.6914, 0.4551])
    serialized_expected_slice = expected_slice
    device = "cuda"


class TorchAoSerializationINTA16W8Test(TorchAoSerializationTest):
    quant_method, quant_method_kwargs = "int8_weight_only", {}
    expected_slice = np.array([0.3613, -0.127, -0.0223, -0.2539, -0.459, 0.4961, -0.1357, -0.6992, 0.4551])
    serialized_expected_slice = expected_slice
    device = "cuda"


class TorchAoSerializationINTA8W8CPUTest(TorchAoSerializationTest):
    quant_method, quant_method_kwargs = "int8_dynamic_activation_int8_weight", {}
    expected_slice = np.array([0.3633, -0.1357, -0.0188, -0.249, -0.4688, 0.5078, -0.1289, -0.6914, 0.4551])
    serialized_expected_slice = expected_slice
    device = "cpu"


class TorchAoSerializationINTA16W8CPUTest(TorchAoSerializationTest):
    quant_method, quant_method_kwargs = "int8_weight_only", {}
    expected_slice = np.array([0.3613, -0.127, -0.0223, -0.2539, -0.459, 0.4961, -0.1357, -0.6992, 0.4551])
    serialized_expected_slice = expected_slice
    device = "cpu"


# Slices for these tests have been obtained on our aws-g6e-xlarge-plus runners
@require_torch
@require_torch_gpu
@require_torchao_version_greater("0.6.0")
@slow
@nightly
class SlowTorchAoTests(unittest.TestCase):
    def tearDown(self):
        gc.collect()
        torch.cuda.empty_cache()

    def get_dummy_components(self, quantization_config: TorchAoConfig):
        model_id = "black-forest-labs/FLUX.1-dev"
        transformer = FluxTransformer2DModel.from_pretrained(
            model_id,
            subfolder="transformer",
            quantization_config=quantization_config,
            torch_dtype=torch.bfloat16,
        )
        text_encoder = CLIPTextModel.from_pretrained(model_id, subfolder="text_encoder")
        text_encoder_2 = T5EncoderModel.from_pretrained(model_id, subfolder="text_encoder_2")
        tokenizer = CLIPTokenizer.from_pretrained(model_id, subfolder="tokenizer")
        tokenizer_2 = AutoTokenizer.from_pretrained(model_id, subfolder="tokenizer_2")
        vae = AutoencoderKL.from_pretrained(model_id, subfolder="vae")
        scheduler = FlowMatchEulerDiscreteScheduler()

        return {
            "scheduler": scheduler,
            "text_encoder": text_encoder,
            "text_encoder_2": text_encoder_2,
            "tokenizer": tokenizer,
            "tokenizer_2": tokenizer_2,
            "transformer": transformer,
            "vae": vae,
        }

    def get_dummy_inputs(self, device: torch.device, seed: int = 0):
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator().manual_seed(seed)

        inputs = {
            "prompt": "an astronaut riding a horse in space",
            "height": 512,
            "width": 512,
            "num_inference_steps": 20,
            "output_type": "np",
            "generator": generator,
        }

        return inputs

    def _test_quant_type(self, quantization_config, expected_slice):
        components = self.get_dummy_components(quantization_config)
        pipe = FluxPipeline(**components).to(dtype=torch.bfloat16)
        pipe.enable_model_cpu_offload()

        inputs = self.get_dummy_inputs(torch_device)
        output = pipe(**inputs)[0].flatten()
        output_slice = np.concatenate((output[:16], output[-16:]))

        self.assertTrue(np.allclose(output_slice, expected_slice, atol=1e-3, rtol=1e-3))

    def test_quantization(self):
        # fmt: off
        QUANTIZATION_TYPES_TO_TEST = [
            ("int8wo", np.array([0.0505, 0.0742, 0.1367, 0.0429, 0.0585, 0.1386, 0.0585, 0.0703, 0.1367, 0.0566, 0.0703, 0.1464, 0.0546, 0.0703, 0.1425, 0.0546, 0.3535, 0.7578, 0.5000, 0.4062, 0.7656, 0.5117, 0.4121, 0.7656, 0.5117, 0.3984, 0.7578, 0.5234, 0.4023, 0.7382, 0.5390, 0.4570])),
            ("int8dq", np.array([0.0546, 0.0761, 0.1386, 0.0488, 0.0644, 0.1425, 0.0605, 0.0742, 0.1406, 0.0625, 0.0722, 0.1523, 0.0625, 0.0742, 0.1503, 0.0605, 0.3886, 0.7968, 0.5507, 0.4492, 0.7890, 0.5351, 0.4316, 0.8007, 0.5390, 0.4179, 0.8281, 0.5820, 0.4531, 0.7812, 0.5703, 0.4921])),
        ]

        if TorchAoConfig._is_cuda_capability_atleast_8_9():
            QUANTIZATION_TYPES_TO_TEST.extend([
                ("float8wo_e4m3", np.array([0.0546, 0.0722, 0.1328, 0.0468, 0.0585, 0.1367, 0.0605, 0.0703, 0.1328, 0.0625, 0.0703, 0.1445, 0.0585, 0.0703, 0.1406, 0.0605, 0.3496, 0.7109, 0.4843, 0.4042, 0.7226, 0.5000, 0.4160, 0.7031, 0.4824, 0.3886, 0.6757, 0.4667, 0.3710, 0.6679, 0.4902, 0.4238])),
                ("fp5_e3m1", np.array([0.0527, 0.0742, 0.1289, 0.0449, 0.0625, 0.1308, 0.0585, 0.0742, 0.1269, 0.0585, 0.0722, 0.1328, 0.0566, 0.0742, 0.1347, 0.0585, 0.3691, 0.7578, 0.5429, 0.4355, 0.7695, 0.5546, 0.4414, 0.7578, 0.5468, 0.4179, 0.7265, 0.5273, 0.3945, 0.6992, 0.5234, 0.4316])),
            ])
        # fmt: on

        for quantization_name, expected_slice in QUANTIZATION_TYPES_TO_TEST:
            quantization_config = TorchAoConfig(quant_type=quantization_name, modules_to_not_convert=["x_embedder"])
            self._test_quant_type(quantization_config, expected_slice)
            gc.collect()
            torch.cuda.empty_cache()
            torch.cuda.synchronize()