gaussian.py 10.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
import torch.nn.functional as F
from torch import nn
from inspect import isfunction
from tqdm import tqdm

from ..configuration_utils import Config
SAMPLING_CONFIG_NAME = "sampler_config.json"


def exists(x):
    return x is not None


def default(val, d):
    if exists(val):
        return val
    return d() if isfunction(d) else d


def cycle(dl):
    while True:
        for data_dl in dl:
            yield data_dl


def num_to_groups(num, divisor):
    groups = num // divisor
    remainder = num % divisor
    arr = [divisor] * groups
    if remainder > 0:
        arr.append(remainder)
    return arr


def normalize_to_neg_one_to_one(img):
    return img * 2 - 1


def unnormalize_to_zero_to_one(t):
    return (t + 1) * 0.5


# small helper modules


class EMA:
    def __init__(self, beta):
        super().__init__()
        self.beta = beta

    def update_model_average(self, ma_model, current_model):
        for current_params, ma_params in zip(current_model.parameters(), ma_model.parameters()):
            old_weight, up_weight = ma_params.data, current_params.data
            ma_params.data = self.update_average(old_weight, up_weight)

    def update_average(self, old, new):
        if old is None:
            return new
        return old * self.beta + (1 - self.beta) * new


# gaussian diffusion trainer class


def extract(a, t, x_shape):
    b, *_ = t.shape
    out = a.gather(-1, t)
    return out.reshape(b, *((1,) * (len(x_shape) - 1)))


def noise_like(shape, device, repeat=False):
    def repeat_noise():
        return torch.randn((1, *shape[1:]), device=device).repeat(shape[0], *((1,) * (len(shape) - 1)))

    def noise():
        return torch.randn(shape, device=device)

    return repeat_noise() if repeat else noise()


def linear_beta_schedule(timesteps):
    scale = 1000 / timesteps
    beta_start = scale * 0.0001
    beta_end = scale * 0.02
    return torch.linspace(beta_start, beta_end, timesteps, dtype=torch.float64)


def cosine_beta_schedule(timesteps, s=0.008):
    """
    cosine schedule
    as proposed in https://openreview.net/forum?id=-NEXDKk8gZ
    """
    steps = timesteps + 1
    x = torch.linspace(0, timesteps, steps, dtype=torch.float64)
    alphas_cumprod = torch.cos(((x / timesteps) + s) / (1 + s) * torch.pi * 0.5) ** 2
    alphas_cumprod = alphas_cumprod / alphas_cumprod[0]
    betas = 1 - (alphas_cumprod[1:] / alphas_cumprod[:-1])
    return torch.clip(betas, 0, 0.999)


class GaussianDiffusion(nn.Module, Config):

    config_name = SAMPLING_CONFIG_NAME

    def __init__(
        self,
        image_size,
        channels=3,
        timesteps=1000,
        loss_type="l1",
        objective="pred_noise",
        beta_schedule="cosine",
    ):
        super().__init__()
        self.register(
            image_size=image_size,
            channels=channels,
            timesteps=timesteps,
            loss_type=loss_type,
            objective=objective,
            beta_schedule=beta_schedule,
        )

        self.channels = channels
        self.image_size = image_size
        self.objective = objective

        if beta_schedule == "linear":
            betas = linear_beta_schedule(timesteps)
        elif beta_schedule == "cosine":
            betas = cosine_beta_schedule(timesteps)
        else:
            raise ValueError(f"unknown beta schedule {beta_schedule}")

        alphas = 1.0 - betas
        alphas_cumprod = torch.cumprod(alphas, axis=0)
        alphas_cumprod_prev = F.pad(alphas_cumprod[:-1], (1, 0), value=1.0)

        (timesteps,) = betas.shape
        self.num_timesteps = int(timesteps)
        self.loss_type = loss_type

        # helper function to register buffer from float64 to float32

        def register_buffer(name, val):
            self.register_buffer(name, val.to(torch.float32))

        register_buffer("betas", betas)
        register_buffer("alphas_cumprod", alphas_cumprod)
        register_buffer("alphas_cumprod_prev", alphas_cumprod_prev)

        # calculations for diffusion q(x_t | x_{t-1}) and others

        register_buffer("sqrt_alphas_cumprod", torch.sqrt(alphas_cumprod))
        register_buffer("sqrt_one_minus_alphas_cumprod", torch.sqrt(1.0 - alphas_cumprod))
        register_buffer("log_one_minus_alphas_cumprod", torch.log(1.0 - alphas_cumprod))
        register_buffer("sqrt_recip_alphas_cumprod", torch.sqrt(1.0 / alphas_cumprod))
        register_buffer("sqrt_recipm1_alphas_cumprod", torch.sqrt(1.0 / alphas_cumprod - 1))

        # calculations for posterior q(x_{t-1} | x_t, x_0)

        posterior_variance = betas * (1.0 - alphas_cumprod_prev) / (1.0 - alphas_cumprod)

        # above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t)

        register_buffer("posterior_variance", posterior_variance)

        # below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain

        register_buffer("posterior_log_variance_clipped", torch.log(posterior_variance.clamp(min=1e-20)))
        register_buffer("posterior_mean_coef1", betas * torch.sqrt(alphas_cumprod_prev) / (1.0 - alphas_cumprod))
        register_buffer(
            "posterior_mean_coef2", (1.0 - alphas_cumprod_prev) * torch.sqrt(alphas) / (1.0 - alphas_cumprod)
        )

    def predict_start_from_noise(self, x_t, t, noise):
        return (
            extract(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t
            - extract(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * noise
        )

    def q_posterior(self, x_start, x_t, t):
        posterior_mean = (
            extract(self.posterior_mean_coef1, t, x_t.shape) * x_start
            + extract(self.posterior_mean_coef2, t, x_t.shape) * x_t
        )
        posterior_variance = extract(self.posterior_variance, t, x_t.shape)
        posterior_log_variance_clipped = extract(self.posterior_log_variance_clipped, t, x_t.shape)
        return posterior_mean, posterior_variance, posterior_log_variance_clipped

    def p_mean_variance(self, model, x, t, clip_denoised: bool):
        model_output = model(x, t)

        if self.objective == "pred_noise":
            x_start = self.predict_start_from_noise(x, t=t, noise=model_output)
        elif self.objective == "pred_x0":
            x_start = model_output
        else:
            raise ValueError(f"unknown objective {self.objective}")

        if clip_denoised:
            x_start.clamp_(-1.0, 1.0)

        model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_start, x_t=x, t=t)
        return model_mean, posterior_variance, posterior_log_variance

    @torch.no_grad()
222
    def p_sample(self, model, x, t, noise=None, clip_denoised=True, repeat_noise=False):
223
224
        b, *_, device = *x.shape, x.device
        model_mean, _, model_log_variance = self.p_mean_variance(model=model, x=x, t=t, clip_denoised=clip_denoised)
225
226
        if noise is None:
            noise = noise_like(x.shape, device, repeat_noise)
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
        # no noise when t == 0
        nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
        result = model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
        return result

    @torch.no_grad()
    def p_sample_loop(self, model, shape):
        device = self.betas.device

        b = shape[0]
        img = torch.randn(shape, device=device)

        for i in tqdm(
            reversed(range(0, self.num_timesteps)), desc="sampling loop time step", total=self.num_timesteps
        ):
            img = self.p_sample(model, img, torch.full((b,), i, device=device, dtype=torch.long))

        img = unnormalize_to_zero_to_one(img)
        return img

    @torch.no_grad()
    def sample(self, model, batch_size=16):
        image_size = self.image_size
        channels = self.channels
        return self.p_sample_loop(model, (batch_size, channels, image_size, image_size))

    @torch.no_grad()
    def interpolate(self, model, x1, x2, t=None, lam=0.5):
        b, *_, device = *x1.shape, x1.device
        t = default(t, self.num_timesteps - 1)

        assert x1.shape == x2.shape

        t_batched = torch.stack([torch.tensor(t, device=device)] * b)
        xt1, xt2 = map(lambda x: self.q_sample(x, t=t_batched), (x1, x2))

        img = (1 - lam) * xt1 + lam * xt2
        for i in tqdm(reversed(range(0, t)), desc="interpolation sample time step", total=t):
            img = self.p_sample(model, img, torch.full((b,), i, device=device, dtype=torch.long))

        return img

    def q_sample(self, x_start, t, noise=None):
        noise = default(noise, lambda: torch.randn_like(x_start))

        return (
            extract(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start
            + extract(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise
        )

    @property
    def loss_fn(self):
        if self.loss_type == "l1":
            return F.l1_loss
        elif self.loss_type == "l2":
            return F.mse_loss
        else:
            raise ValueError(f"invalid loss type {self.loss_type}")

    def p_losses(self, model, x_start, t, noise=None):
        b, c, h, w = x_start.shape
        noise = default(noise, lambda: torch.randn_like(x_start))

        x = self.q_sample(x_start=x_start, t=t, noise=noise)
        model_out = model(x, t)

        if self.objective == "pred_noise":
            target = noise
        elif self.objective == "pred_x0":
            target = x_start
        else:
            raise ValueError(f"unknown objective {self.objective}")

        loss = self.loss_fn(model_out, target)
        return loss

    def forward(self, model, img, *args, **kwargs):
        b, _, h, w, device, img_size, = (
            *img.shape,
            img.device,
            self.image_size,
        )
        assert h == img_size and w == img_size, f"height and width of image must be {img_size}"
        t = torch.randint(0, self.num_timesteps, (b,), device=device).long()

        img = normalize_to_neg_one_to_one(img)
        return self.p_losses(model, img, t, *args, **kwargs)