embeddings.py 46.2 KB
Newer Older
1
# Copyright 2024 The HuggingFace Team. All rights reserved.
Patrick von Platen's avatar
Patrick von Platen committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
import math
15
from typing import List, Optional, Tuple, Union
Patrick von Platen's avatar
Patrick von Platen committed
16

17
18
import numpy as np
import torch
19
import torch.nn.functional as F
20
from torch import nn
Patrick von Platen's avatar
Patrick von Platen committed
21

22
from ..utils import deprecate
23
from .activations import FP32SiLU, get_activation
24
from .attention_processor import Attention
25

26

27
def get_timestep_embedding(
Kashif Rasul's avatar
Kashif Rasul committed
28
29
30
31
32
33
    timesteps: torch.Tensor,
    embedding_dim: int,
    flip_sin_to_cos: bool = False,
    downscale_freq_shift: float = 1,
    scale: float = 1,
    max_period: int = 10000,
34
):
Patrick von Platen's avatar
Patrick von Platen committed
35
    """
Patrick von Platen's avatar
Patrick von Platen committed
36
    This matches the implementation in Denoising Diffusion Probabilistic Models: Create sinusoidal timestep embeddings.
37
38
39

    :param timesteps: a 1-D Tensor of N indices, one per batch element.
                      These may be fractional.
Patrick von Platen's avatar
Patrick von Platen committed
40
41
    :param embedding_dim: the dimension of the output. :param max_period: controls the minimum frequency of the
    embeddings. :return: an [N x dim] Tensor of positional embeddings.
Patrick von Platen's avatar
Patrick von Platen committed
42
    """
43
    assert len(timesteps.shape) == 1, "Timesteps should be a 1d-array"
Patrick von Platen's avatar
Patrick von Platen committed
44
45

    half_dim = embedding_dim // 2
46
47
48
    exponent = -math.log(max_period) * torch.arange(
        start=0, end=half_dim, dtype=torch.float32, device=timesteps.device
    )
49
    exponent = exponent / (half_dim - downscale_freq_shift)
50

51
    emb = torch.exp(exponent)
52
53
    emb = timesteps[:, None].float() * emb[None, :]

54
55
56
    # scale embeddings
    emb = scale * emb

57
    # concat sine and cosine embeddings
58
    emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=-1)
59

60
    # flip sine and cosine embeddings
61
62
63
64
65
    if flip_sin_to_cos:
        emb = torch.cat([emb[:, half_dim:], emb[:, :half_dim]], dim=-1)

    # zero pad
    if embedding_dim % 2 == 1:
Patrick von Platen's avatar
Patrick von Platen committed
66
67
68
69
        emb = torch.nn.functional.pad(emb, (0, 1, 0, 0))
    return emb


Sayak Paul's avatar
Sayak Paul committed
70
71
72
def get_2d_sincos_pos_embed(
    embed_dim, grid_size, cls_token=False, extra_tokens=0, interpolation_scale=1.0, base_size=16
):
Kashif Rasul's avatar
Kashif Rasul committed
73
74
75
76
    """
    grid_size: int of the grid height and width return: pos_embed: [grid_size*grid_size, embed_dim] or
    [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token)
    """
Sayak Paul's avatar
Sayak Paul committed
77
78
79
80
81
    if isinstance(grid_size, int):
        grid_size = (grid_size, grid_size)

    grid_h = np.arange(grid_size[0], dtype=np.float32) / (grid_size[0] / base_size) / interpolation_scale
    grid_w = np.arange(grid_size[1], dtype=np.float32) / (grid_size[1] / base_size) / interpolation_scale
Kashif Rasul's avatar
Kashif Rasul committed
82
83
84
    grid = np.meshgrid(grid_w, grid_h)  # here w goes first
    grid = np.stack(grid, axis=0)

Sayak Paul's avatar
Sayak Paul committed
85
    grid = grid.reshape([2, 1, grid_size[1], grid_size[0]])
Kashif Rasul's avatar
Kashif Rasul committed
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
    pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
    if cls_token and extra_tokens > 0:
        pos_embed = np.concatenate([np.zeros([extra_tokens, embed_dim]), pos_embed], axis=0)
    return pos_embed


def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
    if embed_dim % 2 != 0:
        raise ValueError("embed_dim must be divisible by 2")

    # use half of dimensions to encode grid_h
    emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0])  # (H*W, D/2)
    emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1])  # (H*W, D/2)

    emb = np.concatenate([emb_h, emb_w], axis=1)  # (H*W, D)
    return emb


def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
    """
    embed_dim: output dimension for each position pos: a list of positions to be encoded: size (M,) out: (M, D)
    """
    if embed_dim % 2 != 0:
        raise ValueError("embed_dim must be divisible by 2")

    omega = np.arange(embed_dim // 2, dtype=np.float64)
    omega /= embed_dim / 2.0
    omega = 1.0 / 10000**omega  # (D/2,)

    pos = pos.reshape(-1)  # (M,)
    out = np.einsum("m,d->md", pos, omega)  # (M, D/2), outer product

    emb_sin = np.sin(out)  # (M, D/2)
    emb_cos = np.cos(out)  # (M, D/2)

    emb = np.concatenate([emb_sin, emb_cos], axis=1)  # (M, D)
    return emb


class PatchEmbed(nn.Module):
    """2D Image to Patch Embedding"""

    def __init__(
        self,
        height=224,
        width=224,
        patch_size=16,
        in_channels=3,
        embed_dim=768,
        layer_norm=False,
        flatten=True,
        bias=True,
Sayak Paul's avatar
Sayak Paul committed
138
        interpolation_scale=1,
139
        pos_embed_type="sincos",
Kashif Rasul's avatar
Kashif Rasul committed
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
    ):
        super().__init__()

        num_patches = (height // patch_size) * (width // patch_size)
        self.flatten = flatten
        self.layer_norm = layer_norm

        self.proj = nn.Conv2d(
            in_channels, embed_dim, kernel_size=(patch_size, patch_size), stride=patch_size, bias=bias
        )
        if layer_norm:
            self.norm = nn.LayerNorm(embed_dim, elementwise_affine=False, eps=1e-6)
        else:
            self.norm = None

Sayak Paul's avatar
Sayak Paul committed
155
156
157
158
159
160
        self.patch_size = patch_size
        # See:
        # https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L161
        self.height, self.width = height // patch_size, width // patch_size
        self.base_size = height // patch_size
        self.interpolation_scale = interpolation_scale
161
162
163
164
165
166
167
168
169
170
171
172
        if pos_embed_type is None:
            self.pos_embed = None
        elif pos_embed_type == "sincos":
            pos_embed = get_2d_sincos_pos_embed(
                embed_dim,
                int(num_patches**0.5),
                base_size=self.base_size,
                interpolation_scale=self.interpolation_scale,
            )
            self.register_buffer("pos_embed", torch.from_numpy(pos_embed).float().unsqueeze(0), persistent=False)
        else:
            raise ValueError(f"Unsupported pos_embed_type: {pos_embed_type}")
Kashif Rasul's avatar
Kashif Rasul committed
173
174

    def forward(self, latent):
Sayak Paul's avatar
Sayak Paul committed
175
176
        height, width = latent.shape[-2] // self.patch_size, latent.shape[-1] // self.patch_size

Kashif Rasul's avatar
Kashif Rasul committed
177
178
179
180
181
        latent = self.proj(latent)
        if self.flatten:
            latent = latent.flatten(2).transpose(1, 2)  # BCHW -> BNC
        if self.layer_norm:
            latent = self.norm(latent)
182
183
        if self.pos_embed is None:
            return latent.to(latent.dtype)
Sayak Paul's avatar
Sayak Paul committed
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199

        # Interpolate positional embeddings if needed.
        # (For PixArt-Alpha: https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L162C151-L162C160)
        if self.height != height or self.width != width:
            pos_embed = get_2d_sincos_pos_embed(
                embed_dim=self.pos_embed.shape[-1],
                grid_size=(height, width),
                base_size=self.base_size,
                interpolation_scale=self.interpolation_scale,
            )
            pos_embed = torch.from_numpy(pos_embed)
            pos_embed = pos_embed.float().unsqueeze(0).to(latent.device)
        else:
            pos_embed = self.pos_embed

        return (latent + pos_embed).to(latent.dtype)
Kashif Rasul's avatar
Kashif Rasul committed
200
201


202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
def get_2d_rotary_pos_embed(embed_dim, crops_coords, grid_size, use_real=True):
    """
    RoPE for image tokens with 2d structure.

    Args:
    embed_dim: (`int`):
        The embedding dimension size
    crops_coords (`Tuple[int]`)
        The top-left and bottom-right coordinates of the crop.
    grid_size (`Tuple[int]`):
        The grid size of the positional embedding.
    use_real (`bool`):
        If True, return real part and imaginary part separately. Otherwise, return complex numbers.

    Returns:
        `torch.Tensor`: positional embdding with shape `( grid_size * grid_size, embed_dim/2)`.
    """
    start, stop = crops_coords
    grid_h = np.linspace(start[0], stop[0], grid_size[0], endpoint=False, dtype=np.float32)
    grid_w = np.linspace(start[1], stop[1], grid_size[1], endpoint=False, dtype=np.float32)
    grid = np.meshgrid(grid_w, grid_h)  # here w goes first
    grid = np.stack(grid, axis=0)  # [2, W, H]

    grid = grid.reshape([2, 1, *grid.shape[1:]])
    pos_embed = get_2d_rotary_pos_embed_from_grid(embed_dim, grid, use_real=use_real)
    return pos_embed


def get_2d_rotary_pos_embed_from_grid(embed_dim, grid, use_real=False):
    assert embed_dim % 4 == 0

    # use half of dimensions to encode grid_h
    emb_h = get_1d_rotary_pos_embed(embed_dim // 2, grid[0].reshape(-1), use_real=use_real)  # (H*W, D/4)
    emb_w = get_1d_rotary_pos_embed(embed_dim // 2, grid[1].reshape(-1), use_real=use_real)  # (H*W, D/4)

    if use_real:
        cos = torch.cat([emb_h[0], emb_w[0]], dim=1)  # (H*W, D/2)
        sin = torch.cat([emb_h[1], emb_w[1]], dim=1)  # (H*W, D/2)
        return cos, sin
    else:
        emb = torch.cat([emb_h, emb_w], dim=1)  # (H*W, D/2)
        return emb


def get_1d_rotary_pos_embed(dim: int, pos: Union[np.ndarray, int], theta: float = 10000.0, use_real=False):
    """
    Precompute the frequency tensor for complex exponentials (cis) with given dimensions.

    This function calculates a frequency tensor with complex exponentials using the given dimension 'dim' and the end
    index 'end'. The 'theta' parameter scales the frequencies. The returned tensor contains complex values in complex64
    data type.

    Args:
        dim (`int`): Dimension of the frequency tensor.
        pos (`np.ndarray` or `int`): Position indices for the frequency tensor. [S] or scalar
        theta (`float`, *optional*, defaults to 10000.0):
            Scaling factor for frequency computation. Defaults to 10000.0.
        use_real (`bool`, *optional*):
            If True, return real part and imaginary part separately. Otherwise, return complex numbers.

    Returns:
        `torch.Tensor`: Precomputed frequency tensor with complex exponentials. [S, D/2]
    """
    if isinstance(pos, int):
        pos = np.arange(pos)
    freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim))  # [D/2]
    t = torch.from_numpy(pos).to(freqs.device)  # type: ignore  # [S]
    freqs = torch.outer(t, freqs).float()  # type: ignore   # [S, D/2]
    if use_real:
        freqs_cos = freqs.cos().repeat_interleave(2, dim=1)  # [S, D]
        freqs_sin = freqs.sin().repeat_interleave(2, dim=1)  # [S, D]
        return freqs_cos, freqs_sin
    else:
        freqs_cis = torch.polar(torch.ones_like(freqs), freqs)  # complex64     # [S, D/2]
        return freqs_cis


def apply_rotary_emb(
    x: torch.Tensor,
    freqs_cis: Union[torch.Tensor, Tuple[torch.Tensor]],
) -> Tuple[torch.Tensor, torch.Tensor]:
    """
    Apply rotary embeddings to input tensors using the given frequency tensor. This function applies rotary embeddings
    to the given query or key 'x' tensors using the provided frequency tensor 'freqs_cis'. The input tensors are
    reshaped as complex numbers, and the frequency tensor is reshaped for broadcasting compatibility. The resulting
    tensors contain rotary embeddings and are returned as real tensors.

    Args:
        x (`torch.Tensor`):
            Query or key tensor to apply rotary embeddings. [B, H, S, D] xk (torch.Tensor): Key tensor to apply
        freqs_cis (`Tuple[torch.Tensor]`): Precomputed frequency tensor for complex exponentials. ([S, D], [S, D],)

    Returns:
        Tuple[torch.Tensor, torch.Tensor]: Tuple of modified query tensor and key tensor with rotary embeddings.
    """
    cos, sin = freqs_cis  # [S, D]
    cos = cos[None, None]
    sin = sin[None, None]
    cos, sin = cos.to(x.device), sin.to(x.device)

    x_real, x_imag = x.reshape(*x.shape[:-1], -1, 2).unbind(-1)  # [B, S, H, D//2]
    x_rotated = torch.stack([-x_imag, x_real], dim=-1).flatten(3)
    out = (x.float() * cos + x_rotated.float() * sin).to(x.dtype)

    return out


309
class TimestepEmbedding(nn.Module):
310
311
312
313
314
315
316
317
    def __init__(
        self,
        in_channels: int,
        time_embed_dim: int,
        act_fn: str = "silu",
        out_dim: int = None,
        post_act_fn: Optional[str] = None,
        cond_proj_dim=None,
Will Berman's avatar
Will Berman committed
318
        sample_proj_bias=True,
319
    ):
320
321
        super().__init__()

322
        self.linear_1 = nn.Linear(in_channels, time_embed_dim, sample_proj_bias)
323
324
325
326
327
328

        if cond_proj_dim is not None:
            self.cond_proj = nn.Linear(cond_proj_dim, in_channels, bias=False)
        else:
            self.cond_proj = None

329
        self.act = get_activation(act_fn)
330
331
332
333
334

        if out_dim is not None:
            time_embed_dim_out = out_dim
        else:
            time_embed_dim_out = time_embed_dim
335
        self.linear_2 = nn.Linear(time_embed_dim, time_embed_dim_out, sample_proj_bias)
336

337
338
339
        if post_act_fn is None:
            self.post_act = None
        else:
340
            self.post_act = get_activation(post_act_fn)
341
342
343
344

    def forward(self, sample, condition=None):
        if condition is not None:
            sample = sample + self.cond_proj(condition)
345
346
347
348
349
350
        sample = self.linear_1(sample)

        if self.act is not None:
            sample = self.act(sample)

        sample = self.linear_2(sample)
351
352
353

        if self.post_act is not None:
            sample = self.post_act(sample)
354
355
356
357
        return sample


class Timesteps(nn.Module):
Kashif Rasul's avatar
Kashif Rasul committed
358
    def __init__(self, num_channels: int, flip_sin_to_cos: bool, downscale_freq_shift: float):
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
        super().__init__()
        self.num_channels = num_channels
        self.flip_sin_to_cos = flip_sin_to_cos
        self.downscale_freq_shift = downscale_freq_shift

    def forward(self, timesteps):
        t_emb = get_timestep_embedding(
            timesteps,
            self.num_channels,
            flip_sin_to_cos=self.flip_sin_to_cos,
            downscale_freq_shift=self.downscale_freq_shift,
        )
        return t_emb


374
375
class GaussianFourierProjection(nn.Module):
    """Gaussian Fourier embeddings for noise levels."""
Patrick von Platen's avatar
Patrick von Platen committed
376

377
378
379
    def __init__(
        self, embedding_size: int = 256, scale: float = 1.0, set_W_to_weight=True, log=True, flip_sin_to_cos=False
    ):
380
        super().__init__()
381
        self.weight = nn.Parameter(torch.randn(embedding_size) * scale, requires_grad=False)
382
383
        self.log = log
        self.flip_sin_to_cos = flip_sin_to_cos
384

385
386
387
        if set_W_to_weight:
            # to delete later
            self.W = nn.Parameter(torch.randn(embedding_size) * scale, requires_grad=False)
388

389
            self.weight = self.W
390

391
    def forward(self, x):
392
393
394
        if self.log:
            x = torch.log(x)

395
        x_proj = x[:, None] * self.weight[None, :] * 2 * np.pi
396
397
398
399
400

        if self.flip_sin_to_cos:
            out = torch.cat([torch.cos(x_proj), torch.sin(x_proj)], dim=-1)
        else:
            out = torch.cat([torch.sin(x_proj), torch.cos(x_proj)], dim=-1)
401
        return out
Will Berman's avatar
Will Berman committed
402
403


Dhruv Nair's avatar
Dhruv Nair committed
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
class SinusoidalPositionalEmbedding(nn.Module):
    """Apply positional information to a sequence of embeddings.

    Takes in a sequence of embeddings with shape (batch_size, seq_length, embed_dim) and adds positional embeddings to
    them

    Args:
        embed_dim: (int): Dimension of the positional embedding.
        max_seq_length: Maximum sequence length to apply positional embeddings

    """

    def __init__(self, embed_dim: int, max_seq_length: int = 32):
        super().__init__()
        position = torch.arange(max_seq_length).unsqueeze(1)
        div_term = torch.exp(torch.arange(0, embed_dim, 2) * (-math.log(10000.0) / embed_dim))
        pe = torch.zeros(1, max_seq_length, embed_dim)
        pe[0, :, 0::2] = torch.sin(position * div_term)
        pe[0, :, 1::2] = torch.cos(position * div_term)
        self.register_buffer("pe", pe)

    def forward(self, x):
        _, seq_length, _ = x.shape
        x = x + self.pe[:, :seq_length]
        return x


Will Berman's avatar
Will Berman committed
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
class ImagePositionalEmbeddings(nn.Module):
    """
    Converts latent image classes into vector embeddings. Sums the vector embeddings with positional embeddings for the
    height and width of the latent space.

    For more details, see figure 10 of the dall-e paper: https://arxiv.org/abs/2102.12092

    For VQ-diffusion:

    Output vector embeddings are used as input for the transformer.

    Note that the vector embeddings for the transformer are different than the vector embeddings from the VQVAE.

    Args:
        num_embed (`int`):
            Number of embeddings for the latent pixels embeddings.
        height (`int`):
            Height of the latent image i.e. the number of height embeddings.
        width (`int`):
            Width of the latent image i.e. the number of width embeddings.
        embed_dim (`int`):
            Dimension of the produced vector embeddings. Used for the latent pixel, height, and width embeddings.
    """

    def __init__(
        self,
        num_embed: int,
        height: int,
        width: int,
        embed_dim: int,
    ):
        super().__init__()

        self.height = height
        self.width = width
        self.num_embed = num_embed
        self.embed_dim = embed_dim

        self.emb = nn.Embedding(self.num_embed, embed_dim)
        self.height_emb = nn.Embedding(self.height, embed_dim)
        self.width_emb = nn.Embedding(self.width, embed_dim)

    def forward(self, index):
        emb = self.emb(index)

        height_emb = self.height_emb(torch.arange(self.height, device=index.device).view(1, self.height))

        # 1 x H x D -> 1 x H x 1 x D
        height_emb = height_emb.unsqueeze(2)

        width_emb = self.width_emb(torch.arange(self.width, device=index.device).view(1, self.width))

        # 1 x W x D -> 1 x 1 x W x D
        width_emb = width_emb.unsqueeze(1)

        pos_emb = height_emb + width_emb

        # 1 x H x W x D -> 1 x L xD
        pos_emb = pos_emb.view(1, self.height * self.width, -1)

        emb = emb + pos_emb[:, : emb.shape[1], :]

        return emb
Kashif Rasul's avatar
Kashif Rasul committed
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523


class LabelEmbedding(nn.Module):
    """
    Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance.

    Args:
        num_classes (`int`): The number of classes.
        hidden_size (`int`): The size of the vector embeddings.
        dropout_prob (`float`): The probability of dropping a label.
    """

    def __init__(self, num_classes, hidden_size, dropout_prob):
        super().__init__()
        use_cfg_embedding = dropout_prob > 0
        self.embedding_table = nn.Embedding(num_classes + use_cfg_embedding, hidden_size)
        self.num_classes = num_classes
        self.dropout_prob = dropout_prob

    def token_drop(self, labels, force_drop_ids=None):
        """
        Drops labels to enable classifier-free guidance.
        """
        if force_drop_ids is None:
            drop_ids = torch.rand(labels.shape[0], device=labels.device) < self.dropout_prob
        else:
            drop_ids = torch.tensor(force_drop_ids == 1)
        labels = torch.where(drop_ids, self.num_classes, labels)
        return labels

524
    def forward(self, labels: torch.LongTensor, force_drop_ids=None):
Kashif Rasul's avatar
Kashif Rasul committed
525
526
527
528
529
530
531
        use_dropout = self.dropout_prob > 0
        if (self.training and use_dropout) or (force_drop_ids is not None):
            labels = self.token_drop(labels, force_drop_ids)
        embeddings = self.embedding_table(labels)
        return embeddings


YiYi Xu's avatar
YiYi Xu committed
532
533
534
535
536
537
538
539
540
541
542
543
544
545
class TextImageProjection(nn.Module):
    def __init__(
        self,
        text_embed_dim: int = 1024,
        image_embed_dim: int = 768,
        cross_attention_dim: int = 768,
        num_image_text_embeds: int = 10,
    ):
        super().__init__()

        self.num_image_text_embeds = num_image_text_embeds
        self.image_embeds = nn.Linear(image_embed_dim, self.num_image_text_embeds * cross_attention_dim)
        self.text_proj = nn.Linear(text_embed_dim, cross_attention_dim)

546
    def forward(self, text_embeds: torch.Tensor, image_embeds: torch.Tensor):
YiYi Xu's avatar
YiYi Xu committed
547
548
549
550
551
552
553
554
555
556
557
558
        batch_size = text_embeds.shape[0]

        # image
        image_text_embeds = self.image_embeds(image_embeds)
        image_text_embeds = image_text_embeds.reshape(batch_size, self.num_image_text_embeds, -1)

        # text
        text_embeds = self.text_proj(text_embeds)

        return torch.cat([image_text_embeds, text_embeds], dim=1)


YiYi Xu's avatar
YiYi Xu committed
559
560
561
562
563
564
565
566
567
568
569
570
571
class ImageProjection(nn.Module):
    def __init__(
        self,
        image_embed_dim: int = 768,
        cross_attention_dim: int = 768,
        num_image_text_embeds: int = 32,
    ):
        super().__init__()

        self.num_image_text_embeds = num_image_text_embeds
        self.image_embeds = nn.Linear(image_embed_dim, self.num_image_text_embeds * cross_attention_dim)
        self.norm = nn.LayerNorm(cross_attention_dim)

572
    def forward(self, image_embeds: torch.Tensor):
YiYi Xu's avatar
YiYi Xu committed
573
574
575
576
577
578
579
580
581
        batch_size = image_embeds.shape[0]

        # image
        image_embeds = self.image_embeds(image_embeds)
        image_embeds = image_embeds.reshape(batch_size, self.num_image_text_embeds, -1)
        image_embeds = self.norm(image_embeds)
        return image_embeds


582
class IPAdapterFullImageProjection(nn.Module):
583
584
585
586
587
588
589
    def __init__(self, image_embed_dim=1024, cross_attention_dim=1024):
        super().__init__()
        from .attention import FeedForward

        self.ff = FeedForward(image_embed_dim, cross_attention_dim, mult=1, activation_fn="gelu")
        self.norm = nn.LayerNorm(cross_attention_dim)

590
    def forward(self, image_embeds: torch.Tensor):
591
592
593
        return self.norm(self.ff(image_embeds))


594
595
596
597
598
599
600
601
602
603
class IPAdapterFaceIDImageProjection(nn.Module):
    def __init__(self, image_embed_dim=1024, cross_attention_dim=1024, mult=1, num_tokens=1):
        super().__init__()
        from .attention import FeedForward

        self.num_tokens = num_tokens
        self.cross_attention_dim = cross_attention_dim
        self.ff = FeedForward(image_embed_dim, cross_attention_dim * num_tokens, mult=mult, activation_fn="gelu")
        self.norm = nn.LayerNorm(cross_attention_dim)

604
    def forward(self, image_embeds: torch.Tensor):
605
606
607
608
609
        x = self.ff(image_embeds)
        x = x.reshape(-1, self.num_tokens, self.cross_attention_dim)
        return self.norm(x)


Kashif Rasul's avatar
Kashif Rasul committed
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
class CombinedTimestepLabelEmbeddings(nn.Module):
    def __init__(self, num_classes, embedding_dim, class_dropout_prob=0.1):
        super().__init__()

        self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=1)
        self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim)
        self.class_embedder = LabelEmbedding(num_classes, embedding_dim, class_dropout_prob)

    def forward(self, timestep, class_labels, hidden_dtype=None):
        timesteps_proj = self.time_proj(timestep)
        timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=hidden_dtype))  # (N, D)

        class_labels = self.class_embedder(class_labels)  # (N, D)

        conditioning = timesteps_emb + class_labels  # (N, D)

        return conditioning
Patrick von Platen's avatar
Patrick von Platen committed
627
628


629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
class HunyuanDiTAttentionPool(nn.Module):
    # Copied from https://github.com/Tencent/HunyuanDiT/blob/cb709308d92e6c7e8d59d0dff41b74d35088db6a/hydit/modules/poolers.py#L6

    def __init__(self, spacial_dim: int, embed_dim: int, num_heads: int, output_dim: int = None):
        super().__init__()
        self.positional_embedding = nn.Parameter(torch.randn(spacial_dim + 1, embed_dim) / embed_dim**0.5)
        self.k_proj = nn.Linear(embed_dim, embed_dim)
        self.q_proj = nn.Linear(embed_dim, embed_dim)
        self.v_proj = nn.Linear(embed_dim, embed_dim)
        self.c_proj = nn.Linear(embed_dim, output_dim or embed_dim)
        self.num_heads = num_heads

    def forward(self, x):
        x = x.permute(1, 0, 2)  # NLC -> LNC
        x = torch.cat([x.mean(dim=0, keepdim=True), x], dim=0)  # (L+1)NC
        x = x + self.positional_embedding[:, None, :].to(x.dtype)  # (L+1)NC
        x, _ = F.multi_head_attention_forward(
            query=x[:1],
            key=x,
            value=x,
            embed_dim_to_check=x.shape[-1],
            num_heads=self.num_heads,
            q_proj_weight=self.q_proj.weight,
            k_proj_weight=self.k_proj.weight,
            v_proj_weight=self.v_proj.weight,
            in_proj_weight=None,
            in_proj_bias=torch.cat([self.q_proj.bias, self.k_proj.bias, self.v_proj.bias]),
            bias_k=None,
            bias_v=None,
            add_zero_attn=False,
            dropout_p=0,
            out_proj_weight=self.c_proj.weight,
            out_proj_bias=self.c_proj.bias,
            use_separate_proj_weight=True,
            training=self.training,
            need_weights=False,
        )
        return x.squeeze(0)


class HunyuanCombinedTimestepTextSizeStyleEmbedding(nn.Module):
    def __init__(self, embedding_dim, pooled_projection_dim=1024, seq_len=256, cross_attention_dim=2048):
        super().__init__()

        self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0)
        self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim)

        self.pooler = HunyuanDiTAttentionPool(
            seq_len, cross_attention_dim, num_heads=8, output_dim=pooled_projection_dim
        )
        # Here we use a default learned embedder layer for future extension.
        self.style_embedder = nn.Embedding(1, embedding_dim)
        extra_in_dim = 256 * 6 + embedding_dim + pooled_projection_dim
        self.extra_embedder = PixArtAlphaTextProjection(
            in_features=extra_in_dim,
            hidden_size=embedding_dim * 4,
            out_features=embedding_dim,
            act_fn="silu_fp32",
        )

    def forward(self, timestep, encoder_hidden_states, image_meta_size, style, hidden_dtype=None):
        timesteps_proj = self.time_proj(timestep)
        timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=hidden_dtype))  # (N, 256)

        # extra condition1: text
        pooled_projections = self.pooler(encoder_hidden_states)  # (N, 1024)

        # extra condition2: image meta size embdding
        image_meta_size = get_timestep_embedding(image_meta_size.view(-1), 256, True, 0)
        image_meta_size = image_meta_size.to(dtype=hidden_dtype)
        image_meta_size = image_meta_size.view(-1, 6 * 256)  # (N, 1536)

        # extra condition3: style embedding
        style_embedding = self.style_embedder(style)  # (N, embedding_dim)

        # Concatenate all extra vectors
        extra_cond = torch.cat([pooled_projections, image_meta_size, style_embedding], dim=1)
        conditioning = timesteps_emb + self.extra_embedder(extra_cond)  # [B, D]

        return conditioning


Patrick von Platen's avatar
Patrick von Platen committed
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
class TextTimeEmbedding(nn.Module):
    def __init__(self, encoder_dim: int, time_embed_dim: int, num_heads: int = 64):
        super().__init__()
        self.norm1 = nn.LayerNorm(encoder_dim)
        self.pool = AttentionPooling(num_heads, encoder_dim)
        self.proj = nn.Linear(encoder_dim, time_embed_dim)
        self.norm2 = nn.LayerNorm(time_embed_dim)

    def forward(self, hidden_states):
        hidden_states = self.norm1(hidden_states)
        hidden_states = self.pool(hidden_states)
        hidden_states = self.proj(hidden_states)
        hidden_states = self.norm2(hidden_states)
        return hidden_states


YiYi Xu's avatar
YiYi Xu committed
727
728
729
730
731
732
733
class TextImageTimeEmbedding(nn.Module):
    def __init__(self, text_embed_dim: int = 768, image_embed_dim: int = 768, time_embed_dim: int = 1536):
        super().__init__()
        self.text_proj = nn.Linear(text_embed_dim, time_embed_dim)
        self.text_norm = nn.LayerNorm(time_embed_dim)
        self.image_proj = nn.Linear(image_embed_dim, time_embed_dim)

734
    def forward(self, text_embeds: torch.Tensor, image_embeds: torch.Tensor):
YiYi Xu's avatar
YiYi Xu committed
735
736
737
738
739
740
741
742
743
744
        # text
        time_text_embeds = self.text_proj(text_embeds)
        time_text_embeds = self.text_norm(time_text_embeds)

        # image
        time_image_embeds = self.image_proj(image_embeds)

        return time_image_embeds + time_text_embeds


YiYi Xu's avatar
YiYi Xu committed
745
746
747
748
749
750
class ImageTimeEmbedding(nn.Module):
    def __init__(self, image_embed_dim: int = 768, time_embed_dim: int = 1536):
        super().__init__()
        self.image_proj = nn.Linear(image_embed_dim, time_embed_dim)
        self.image_norm = nn.LayerNorm(time_embed_dim)

751
    def forward(self, image_embeds: torch.Tensor):
YiYi Xu's avatar
YiYi Xu committed
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
        # image
        time_image_embeds = self.image_proj(image_embeds)
        time_image_embeds = self.image_norm(time_image_embeds)
        return time_image_embeds


class ImageHintTimeEmbedding(nn.Module):
    def __init__(self, image_embed_dim: int = 768, time_embed_dim: int = 1536):
        super().__init__()
        self.image_proj = nn.Linear(image_embed_dim, time_embed_dim)
        self.image_norm = nn.LayerNorm(time_embed_dim)
        self.input_hint_block = nn.Sequential(
            nn.Conv2d(3, 16, 3, padding=1),
            nn.SiLU(),
            nn.Conv2d(16, 16, 3, padding=1),
            nn.SiLU(),
            nn.Conv2d(16, 32, 3, padding=1, stride=2),
            nn.SiLU(),
            nn.Conv2d(32, 32, 3, padding=1),
            nn.SiLU(),
            nn.Conv2d(32, 96, 3, padding=1, stride=2),
            nn.SiLU(),
            nn.Conv2d(96, 96, 3, padding=1),
            nn.SiLU(),
            nn.Conv2d(96, 256, 3, padding=1, stride=2),
            nn.SiLU(),
            nn.Conv2d(256, 4, 3, padding=1),
        )

781
    def forward(self, image_embeds: torch.Tensor, hint: torch.Tensor):
YiYi Xu's avatar
YiYi Xu committed
782
783
784
785
786
787
788
        # image
        time_image_embeds = self.image_proj(image_embeds)
        time_image_embeds = self.image_norm(time_image_embeds)
        hint = self.input_hint_block(hint)
        return time_image_embeds, hint


Patrick von Platen's avatar
Patrick von Platen committed
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
class AttentionPooling(nn.Module):
    # Copied from https://github.com/deep-floyd/IF/blob/2f91391f27dd3c468bf174be5805b4cc92980c0b/deepfloyd_if/model/nn.py#L54

    def __init__(self, num_heads, embed_dim, dtype=None):
        super().__init__()
        self.dtype = dtype
        self.positional_embedding = nn.Parameter(torch.randn(1, embed_dim) / embed_dim**0.5)
        self.k_proj = nn.Linear(embed_dim, embed_dim, dtype=self.dtype)
        self.q_proj = nn.Linear(embed_dim, embed_dim, dtype=self.dtype)
        self.v_proj = nn.Linear(embed_dim, embed_dim, dtype=self.dtype)
        self.num_heads = num_heads
        self.dim_per_head = embed_dim // self.num_heads

    def forward(self, x):
        bs, length, width = x.size()

        def shape(x):
            # (bs, length, width) --> (bs, length, n_heads, dim_per_head)
            x = x.view(bs, -1, self.num_heads, self.dim_per_head)
            # (bs, length, n_heads, dim_per_head) --> (bs, n_heads, length, dim_per_head)
            x = x.transpose(1, 2)
            # (bs, n_heads, length, dim_per_head) --> (bs*n_heads, length, dim_per_head)
            x = x.reshape(bs * self.num_heads, -1, self.dim_per_head)
            # (bs*n_heads, length, dim_per_head) --> (bs*n_heads, dim_per_head, length)
            x = x.transpose(1, 2)
            return x

        class_token = x.mean(dim=1, keepdim=True) + self.positional_embedding.to(x.dtype)
        x = torch.cat([class_token, x], dim=1)  # (bs, length+1, width)

        # (bs*n_heads, class_token_length, dim_per_head)
        q = shape(self.q_proj(class_token))
        # (bs*n_heads, length+class_token_length, dim_per_head)
        k = shape(self.k_proj(x))
        v = shape(self.v_proj(x))

        # (bs*n_heads, class_token_length, length+class_token_length):
        scale = 1 / math.sqrt(math.sqrt(self.dim_per_head))
        weight = torch.einsum("bct,bcs->bts", q * scale, k * scale)  # More stable with f16 than dividing afterwards
        weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype)

        # (bs*n_heads, dim_per_head, class_token_length)
        a = torch.einsum("bts,bcs->bct", weight, v)

        # (bs, length+1, width)
        a = a.reshape(bs, -1, 1).transpose(1, 2)

        return a[:, 0, :]  # cls_token
837
838


839
840
841
842
843
844
845
846
847
848
def get_fourier_embeds_from_boundingbox(embed_dim, box):
    """
    Args:
        embed_dim: int
        box: a 3-D tensor [B x N x 4] representing the bounding boxes for GLIGEN pipeline
    Returns:
        [B x N x embed_dim] tensor of positional embeddings
    """

    batch_size, num_boxes = box.shape[:2]
849

850
851
852
    emb = 100 ** (torch.arange(embed_dim) / embed_dim)
    emb = emb[None, None, None].to(device=box.device, dtype=box.dtype)
    emb = emb * box.unsqueeze(-1)
853

854
855
    emb = torch.stack((emb.sin(), emb.cos()), dim=-1)
    emb = emb.permute(0, 1, 3, 4, 2).reshape(batch_size, num_boxes, embed_dim * 2 * 4)
856

857
    return emb
858
859


860
class GLIGENTextBoundingboxProjection(nn.Module):
861
    def __init__(self, positive_len, out_dim, feature_type="text-only", fourier_freqs=8):
862
863
864
865
        super().__init__()
        self.positive_len = positive_len
        self.out_dim = out_dim

866
        self.fourier_embedder_dim = fourier_freqs
867
868
869
870
871
        self.position_dim = fourier_freqs * 2 * 4  # 2: sin/cos, 4: xyxy

        if isinstance(out_dim, tuple):
            out_dim = out_dim[0]

872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
        if feature_type == "text-only":
            self.linears = nn.Sequential(
                nn.Linear(self.positive_len + self.position_dim, 512),
                nn.SiLU(),
                nn.Linear(512, 512),
                nn.SiLU(),
                nn.Linear(512, out_dim),
            )
            self.null_positive_feature = torch.nn.Parameter(torch.zeros([self.positive_len]))

        elif feature_type == "text-image":
            self.linears_text = nn.Sequential(
                nn.Linear(self.positive_len + self.position_dim, 512),
                nn.SiLU(),
                nn.Linear(512, 512),
                nn.SiLU(),
                nn.Linear(512, out_dim),
            )
            self.linears_image = nn.Sequential(
                nn.Linear(self.positive_len + self.position_dim, 512),
                nn.SiLU(),
                nn.Linear(512, 512),
                nn.SiLU(),
                nn.Linear(512, out_dim),
            )
            self.null_text_feature = torch.nn.Parameter(torch.zeros([self.positive_len]))
            self.null_image_feature = torch.nn.Parameter(torch.zeros([self.positive_len]))

900
901
        self.null_position_feature = torch.nn.Parameter(torch.zeros([self.position_dim]))

902
903
904
905
906
907
908
909
910
911
    def forward(
        self,
        boxes,
        masks,
        positive_embeddings=None,
        phrases_masks=None,
        image_masks=None,
        phrases_embeddings=None,
        image_embeddings=None,
    ):
912
913
914
        masks = masks.unsqueeze(-1)

        # embedding position (it may includes padding as placeholder)
915
        xyxy_embedding = get_fourier_embeds_from_boundingbox(self.fourier_embedder_dim, boxes)  # B*N*4 -> B*N*C
916
917
918
919
920
921
922

        # learnable null embedding
        xyxy_null = self.null_position_feature.view(1, 1, -1)

        # replace padding with learnable null embedding
        xyxy_embedding = xyxy_embedding * masks + (1 - masks) * xyxy_null

923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
        # positionet with text only information
        if positive_embeddings is not None:
            # learnable null embedding
            positive_null = self.null_positive_feature.view(1, 1, -1)

            # replace padding with learnable null embedding
            positive_embeddings = positive_embeddings * masks + (1 - masks) * positive_null

            objs = self.linears(torch.cat([positive_embeddings, xyxy_embedding], dim=-1))

        # positionet with text and image infomation
        else:
            phrases_masks = phrases_masks.unsqueeze(-1)
            image_masks = image_masks.unsqueeze(-1)

            # learnable null embedding
            text_null = self.null_text_feature.view(1, 1, -1)
            image_null = self.null_image_feature.view(1, 1, -1)

            # replace padding with learnable null embedding
            phrases_embeddings = phrases_embeddings * phrases_masks + (1 - phrases_masks) * text_null
            image_embeddings = image_embeddings * image_masks + (1 - image_masks) * image_null

            objs_text = self.linears_text(torch.cat([phrases_embeddings, xyxy_embedding], dim=-1))
            objs_image = self.linears_image(torch.cat([image_embeddings, xyxy_embedding], dim=-1))
            objs = torch.cat([objs_text, objs_image], dim=1)

950
        return objs
Sayak Paul's avatar
Sayak Paul committed
951
952


953
class PixArtAlphaCombinedTimestepSizeEmbeddings(nn.Module):
Sayak Paul's avatar
Sayak Paul committed
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
    """
    For PixArt-Alpha.

    Reference:
    https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L164C9-L168C29
    """

    def __init__(self, embedding_dim, size_emb_dim, use_additional_conditions: bool = False):
        super().__init__()

        self.outdim = size_emb_dim
        self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0)
        self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim)

        self.use_additional_conditions = use_additional_conditions
        if use_additional_conditions:
            self.additional_condition_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0)
            self.resolution_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=size_emb_dim)
            self.aspect_ratio_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=size_emb_dim)

    def forward(self, timestep, resolution, aspect_ratio, batch_size, hidden_dtype):
        timesteps_proj = self.time_proj(timestep)
        timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=hidden_dtype))  # (N, D)

        if self.use_additional_conditions:
979
980
981
982
983
            resolution_emb = self.additional_condition_proj(resolution.flatten()).to(hidden_dtype)
            resolution_emb = self.resolution_embedder(resolution_emb).reshape(batch_size, -1)
            aspect_ratio_emb = self.additional_condition_proj(aspect_ratio.flatten()).to(hidden_dtype)
            aspect_ratio_emb = self.aspect_ratio_embedder(aspect_ratio_emb).reshape(batch_size, -1)
            conditioning = timesteps_emb + torch.cat([resolution_emb, aspect_ratio_emb], dim=1)
Sayak Paul's avatar
Sayak Paul committed
984
985
986
987
988
989
        else:
            conditioning = timesteps_emb

        return conditioning


990
class PixArtAlphaTextProjection(nn.Module):
Sayak Paul's avatar
Sayak Paul committed
991
992
993
994
995
996
    """
    Projects caption embeddings. Also handles dropout for classifier-free guidance.

    Adapted from https://github.com/PixArt-alpha/PixArt-alpha/blob/master/diffusion/model/nets/PixArt_blocks.py
    """

997
    def __init__(self, in_features, hidden_size, out_features=None, act_fn="gelu_tanh"):
Sayak Paul's avatar
Sayak Paul committed
998
        super().__init__()
999
1000
        if out_features is None:
            out_features = hidden_size
Sayak Paul's avatar
Sayak Paul committed
1001
        self.linear_1 = nn.Linear(in_features=in_features, out_features=hidden_size, bias=True)
1002
1003
1004
1005
1006
1007
1008
        if act_fn == "gelu_tanh":
            self.act_1 = nn.GELU(approximate="tanh")
        elif act_fn == "silu_fp32":
            self.act_1 = FP32SiLU()
        else:
            raise ValueError(f"Unknown activation function: {act_fn}")
        self.linear_2 = nn.Linear(in_features=hidden_size, out_features=out_features, bias=True)
Sayak Paul's avatar
Sayak Paul committed
1009

1010
    def forward(self, caption):
Sayak Paul's avatar
Sayak Paul committed
1011
1012
1013
1014
        hidden_states = self.linear_1(caption)
        hidden_states = self.act_1(hidden_states)
        hidden_states = self.linear_2(hidden_states)
        return hidden_states
1015
1016


1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
class IPAdapterPlusImageProjectionBlock(nn.Module):
    def __init__(
        self,
        embed_dims: int = 768,
        dim_head: int = 64,
        heads: int = 16,
        ffn_ratio: float = 4,
    ) -> None:
        super().__init__()
        from .attention import FeedForward

        self.ln0 = nn.LayerNorm(embed_dims)
        self.ln1 = nn.LayerNorm(embed_dims)
        self.attn = Attention(
            query_dim=embed_dims,
            dim_head=dim_head,
            heads=heads,
            out_bias=False,
        )
        self.ff = nn.Sequential(
            nn.LayerNorm(embed_dims),
            FeedForward(embed_dims, embed_dims, activation_fn="gelu", mult=ffn_ratio, bias=False),
        )

    def forward(self, x, latents, residual):
        encoder_hidden_states = self.ln0(x)
        latents = self.ln1(latents)
        encoder_hidden_states = torch.cat([encoder_hidden_states, latents], dim=-2)
        latents = self.attn(latents, encoder_hidden_states) + residual
        latents = self.ff(latents) + latents
        return latents


1050
class IPAdapterPlusImageProjection(nn.Module):
1051
1052
1053
    """Resampler of IP-Adapter Plus.

    Args:
1054
1055
1056
        embed_dims (int): The feature dimension. Defaults to 768. output_dims (int): The number of output channels,
        that is the same
            number of the channels in the `unet.config.cross_attention_dim`. Defaults to 1024.
1057
1058
        hidden_dims (int):
            The number of hidden channels. Defaults to 1280. depth (int): The number of blocks. Defaults
1059
        to 8. dim_head (int): The number of head channels. Defaults to 64. heads (int): Parallel attention heads.
1060
1061
        Defaults to 16. num_queries (int):
            The number of queries. Defaults to 8. ffn_ratio (float): The expansion ratio
1062
        of feedforward network hidden
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
            layer channels. Defaults to 4.
    """

    def __init__(
        self,
        embed_dims: int = 768,
        output_dims: int = 1024,
        hidden_dims: int = 1280,
        depth: int = 4,
        dim_head: int = 64,
        heads: int = 16,
        num_queries: int = 8,
        ffn_ratio: float = 4,
    ) -> None:
        super().__init__()
        self.latents = nn.Parameter(torch.randn(1, num_queries, hidden_dims) / hidden_dims**0.5)

        self.proj_in = nn.Linear(embed_dims, hidden_dims)

        self.proj_out = nn.Linear(hidden_dims, output_dims)
        self.norm_out = nn.LayerNorm(output_dims)

1085
1086
1087
        self.layers = nn.ModuleList(
            [IPAdapterPlusImageProjectionBlock(hidden_dims, dim_head, heads, ffn_ratio) for _ in range(depth)]
        )
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        """Forward pass.

        Args:
            x (torch.Tensor): Input Tensor.
        Returns:
            torch.Tensor: Output Tensor.
        """
        latents = self.latents.repeat(x.size(0), 1, 1)

        x = self.proj_in(x)

1101
        for block in self.layers:
1102
            residual = latents
1103
            latents = block(x, latents, residual)
1104
1105
1106

        latents = self.proj_out(latents)
        return self.norm_out(latents)
1107
1108


1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
class IPAdapterFaceIDPlusImageProjection(nn.Module):
    """FacePerceiverResampler of IP-Adapter Plus.

    Args:
        embed_dims (int): The feature dimension. Defaults to 768. output_dims (int): The number of output channels,
        that is the same
            number of the channels in the `unet.config.cross_attention_dim`. Defaults to 1024.
        hidden_dims (int):
            The number of hidden channels. Defaults to 1280. depth (int): The number of blocks. Defaults
        to 8. dim_head (int): The number of head channels. Defaults to 64. heads (int): Parallel attention heads.
        Defaults to 16. num_tokens (int): Number of tokens num_queries (int): The number of queries. Defaults to 8.
        ffn_ratio (float): The expansion ratio of feedforward network hidden
            layer channels. Defaults to 4.
        ffproj_ratio (float): The expansion ratio of feedforward network hidden
            layer channels (for ID embeddings). Defaults to 4.
    """

    def __init__(
        self,
        embed_dims: int = 768,
        output_dims: int = 768,
        hidden_dims: int = 1280,
        id_embeddings_dim: int = 512,
        depth: int = 4,
        dim_head: int = 64,
        heads: int = 16,
        num_tokens: int = 4,
        num_queries: int = 8,
        ffn_ratio: float = 4,
        ffproj_ratio: int = 2,
    ) -> None:
        super().__init__()
        from .attention import FeedForward

        self.num_tokens = num_tokens
        self.embed_dim = embed_dims
        self.clip_embeds = None
        self.shortcut = False
        self.shortcut_scale = 1.0

        self.proj = FeedForward(id_embeddings_dim, embed_dims * num_tokens, activation_fn="gelu", mult=ffproj_ratio)
        self.norm = nn.LayerNorm(embed_dims)

        self.proj_in = nn.Linear(hidden_dims, embed_dims)

        self.proj_out = nn.Linear(embed_dims, output_dims)
        self.norm_out = nn.LayerNorm(output_dims)

        self.layers = nn.ModuleList(
            [IPAdapterPlusImageProjectionBlock(embed_dims, dim_head, heads, ffn_ratio) for _ in range(depth)]
        )

    def forward(self, id_embeds: torch.Tensor) -> torch.Tensor:
        """Forward pass.

        Args:
            id_embeds (torch.Tensor): Input Tensor (ID embeds).
        Returns:
            torch.Tensor: Output Tensor.
        """
        id_embeds = id_embeds.to(self.clip_embeds.dtype)
        id_embeds = self.proj(id_embeds)
        id_embeds = id_embeds.reshape(-1, self.num_tokens, self.embed_dim)
        id_embeds = self.norm(id_embeds)
        latents = id_embeds

        clip_embeds = self.proj_in(self.clip_embeds)
        x = clip_embeds.reshape(-1, clip_embeds.shape[2], clip_embeds.shape[3])

        for block in self.layers:
            residual = latents
            latents = block(x, latents, residual)

        latents = self.proj_out(latents)
        out = self.norm_out(latents)
        if self.shortcut:
            out = id_embeds + self.shortcut_scale * out
        return out


1189
1190
1191
1192
1193
class MultiIPAdapterImageProjection(nn.Module):
    def __init__(self, IPAdapterImageProjectionLayers: Union[List[nn.Module], Tuple[nn.Module]]):
        super().__init__()
        self.image_projection_layers = nn.ModuleList(IPAdapterImageProjectionLayers)

1194
    def forward(self, image_embeds: List[torch.Tensor]):
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
        projected_image_embeds = []

        # currently, we accept `image_embeds` as
        #  1. a tensor (deprecated) with shape [batch_size, embed_dim] or [batch_size, sequence_length, embed_dim]
        #  2. list of `n` tensors where `n` is number of ip-adapters, each tensor can hae shape [batch_size, num_images, embed_dim] or [batch_size, num_images, sequence_length, embed_dim]
        if not isinstance(image_embeds, list):
            deprecation_message = (
                "You have passed a tensor as `image_embeds`.This is deprecated and will be removed in a future release."
                " Please make sure to update your script to pass `image_embeds` as a list of tensors to supress this warning."
            )
            deprecate("image_embeds not a list", "1.0.0", deprecation_message, standard_warn=False)
            image_embeds = [image_embeds.unsqueeze(1)]

        if len(image_embeds) != len(self.image_projection_layers):
            raise ValueError(
                f"image_embeds must have the same length as image_projection_layers, got {len(image_embeds)} and {len(self.image_projection_layers)}"
            )

        for image_embed, image_projection_layer in zip(image_embeds, self.image_projection_layers):
            batch_size, num_images = image_embed.shape[0], image_embed.shape[1]
            image_embed = image_embed.reshape((batch_size * num_images,) + image_embed.shape[2:])
            image_embed = image_projection_layer(image_embed)
            image_embed = image_embed.reshape((batch_size, num_images) + image_embed.shape[1:])

            projected_image_embeds.append(image_embed)

        return projected_image_embeds