README_sd3.md 5.49 KB
Newer Older
Dhruv Nair's avatar
Dhruv Nair committed
1
2
3
4
5
6
7
8
9
10
11
12
13
# DreamBooth training example for Stable Diffusion 3 (SD3)

[DreamBooth](https://arxiv.org/abs/2208.12242) is a method to personalize text2image models like stable diffusion given just a few (3~5) images of a subject.

The `train_dreambooth_sd3.py` script shows how to implement the training procedure and adapt it for [Stable Diffusion 3](https://huggingface.co/papers/2403.03206). We also provide a LoRA implementation in the `train_dreambooth_lora_sd3.py` script. 

> [!NOTE]  
> As the model is gated, before using it with diffusers you first need to go to the [Stable Diffusion 3 Medium Hugging Face page](https://huggingface.co/stabilityai/stable-diffusion-3-medium-diffusers), fill in the form and accept the gate. Once you are in, you need to log in so that your system knows you’ve accepted the gate. Use the command below to log in: 

```bash
huggingface-cli login
```

14
15
This will also allow us to push the trained model parameters to the Hugging Face Hub platform. 

Dhruv Nair's avatar
Dhruv Nair committed
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
## Running locally with PyTorch

### Installing the dependencies

Before running the scripts, make sure to install the library's training dependencies:

**Important**

To make sure you can successfully run the latest versions of the example scripts, we highly recommend **installing from source** and keeping the install up to date as we update the example scripts frequently and install some example-specific requirements. To do this, execute the following steps in a new virtual environment:

```bash
git clone https://github.com/huggingface/diffusers
cd diffusers
pip install -e .
```

Then cd in the `examples/dreambooth` folder and run
```bash
pip install -r requirements_sd3.txt
```

And initialize an [🤗Accelerate](https://github.com/huggingface/accelerate/) environment with:

```bash
accelerate config
```

Or for a default accelerate configuration without answering questions about your environment

```bash
accelerate config default
```

Or if your environment doesn't support an interactive shell (e.g., a notebook)

```python
from accelerate.utils import write_basic_config
write_basic_config()
```

When running `accelerate config`, if we specify torch compile mode to True there can be dramatic speedups. 

### Dog toy example

Now let's get our dataset. For this example we will use some dog images: https://huggingface.co/datasets/diffusers/dog-example.

Let's first download it locally:

```python
from huggingface_hub import snapshot_download

local_dir = "./dog"
snapshot_download(
    "diffusers/dog-example",
    local_dir=local_dir, repo_type="dataset",
    ignore_patterns=".gitattributes",
)
```

Now, we can launch training using:

```bash
export MODEL_NAME="stabilityai/stable-diffusion-3-medium-diffusers"
export INSTANCE_DIR="dog"
export OUTPUT_DIR="trained-sd3"

accelerate launch train_dreambooth_sd3.py \
  --pretrained_model_name_or_path=$MODEL_NAME  \
  --instance_data_dir=$INSTANCE_DIR \
  --output_dir=$OUTPUT_DIR \
  --mixed_precision="fp16" \
  --instance_prompt="a photo of sks dog" \
  --resolution=1024 \
  --train_batch_size=1 \
  --gradient_accumulation_steps=4 \
  --learning_rate=1e-4 \
  --report_to="wandb" \
  --lr_scheduler="constant" \
  --lr_warmup_steps=0 \
  --max_train_steps=500 \
  --validation_prompt="A photo of sks dog in a bucket" \
  --validation_epochs=25 \
  --seed="0" \
  --push_to_hub
```

To better track our training experiments, we're using the following flags in the command above:

* `report_to="wandb` will ensure the training runs are tracked on Weights and Biases. To use it, be sure to install `wandb` with `pip install wandb`.
* `validation_prompt` and `validation_epochs` to allow the script to do a few validation inference runs. This allows us to qualitatively check if the training is progressing as expected. 

107
108
109
> [!NOTE]  
> If you want to train using long prompts with the T5 text encoder, you can use `--max_sequence_length` to set the token limit. The default is 77, but it can be increased to as high as 512. Note that this will use more resources and may slow down the training in some cases.

Dhruv Nair's avatar
Dhruv Nair committed
110
111
112
113
114
115
116
> [!TIP]
> You can pass `--use_8bit_adam` to reduce the memory requirements of training. Make sure to install `bitsandbytes` if you want to do so.

## LoRA + DreamBooth

[LoRA](https://huggingface.co/docs/peft/conceptual_guides/adapter#low-rank-adaptation-lora) is a popular parameter-efficient fine-tuning technique that allows you to achieve full-finetuning like performance but with a fraction of learnable parameters.

117
118
Note also that we use PEFT library as backend for LoRA training, make sure to have `peft>=0.6.0` installed in your environment.

Dhruv Nair's avatar
Dhruv Nair committed
119
120
121
122
123
124
125
To perform DreamBooth with LoRA, run:

```bash
export MODEL_NAME="stabilityai/stable-diffusion-3-medium-diffusers"
export INSTANCE_DIR="dog"
export OUTPUT_DIR="trained-sd3-lora"

Ameer Azam's avatar
Ameer Azam committed
126
accelerate launch train_dreambooth_lora_sd3.py \
Dhruv Nair's avatar
Dhruv Nair committed
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
  --pretrained_model_name_or_path=$MODEL_NAME  \
  --instance_data_dir=$INSTANCE_DIR \
  --output_dir=$OUTPUT_DIR \
  --mixed_precision="fp16" \
  --instance_prompt="a photo of sks dog" \
  --resolution=512 \
  --train_batch_size=1 \
  --gradient_accumulation_steps=4 \
  --learning_rate=1e-5 \
  --report_to="wandb" \
  --lr_scheduler="constant" \
  --lr_warmup_steps=0 \
  --max_train_steps=500 \
  --validation_prompt="A photo of sks dog in a bucket" \
  --validation_epochs=25 \
  --seed="0" \
  --push_to_hub
Ameer Azam's avatar
Ameer Azam committed
144
```
145
146
147
148

## Other notes

We default to the "logit_normal" weighting scheme for the loss following the SD3 paper. Thanks to @bghira for helping us discover that for other weighting schemes supported from the training script, training may incur numerical instabilities.