conversion.py 4.16 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import inspect
import tempfile
import unittest

import numpy as np
import torch

from diffusers import (
    AutoencoderKL,
    DDIMPipeline,
    DDIMScheduler,
    DDPMPipeline,
    DDPMScheduler,
    GlidePipeline,
    GlideSuperResUNetModel,
    GlideTextToImageUNetModel,
    LatentDiffusionPipeline,
    LatentDiffusionUncondPipeline,
    NCSNpp,
    PNDMPipeline,
    PNDMScheduler,
    ScoreSdeVePipeline,
    ScoreSdeVeScheduler,
    ScoreSdeVpPipeline,
    ScoreSdeVpScheduler,
    UNetLDMModel,
    UNetModel,
    UNetUnconditionalModel,
    VQModel,
)
from diffusers.configuration_utils import ConfigMixin
from diffusers.pipeline_utils import DiffusionPipeline
from diffusers.testing_utils import floats_tensor, slow, torch_device
from diffusers.training_utils import EMAModel


53
54
# 1. LDM

Patrick von Platen's avatar
Patrick von Platen committed
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
def test_output_pretrained_ldm_dummy():
    model = UNetUnconditionalModel.from_pretrained("fusing/unet-ldm-dummy", ldm=True)
    model.eval()

    torch.manual_seed(0)
    if torch.cuda.is_available():
        torch.cuda.manual_seed_all(0)

    noise = torch.randn(1, model.config.in_channels, model.config.image_size, model.config.image_size)
    time_step = torch.tensor([10] * noise.shape[0])

    with torch.no_grad():
        output = model(noise, time_step)
        
    print(model)
    import ipdb; ipdb.set_trace()


def test_output_pretrained_ldm():
    model = UNetUnconditionalModel.from_pretrained("fusing/latent-diffusion-celeba-256", subfolder="unet", ldm=True)
    model.eval()

    torch.manual_seed(0)
    if torch.cuda.is_available():
        torch.cuda.manual_seed_all(0)

    noise = torch.randn(1, model.config.in_channels, model.config.image_size, model.config.image_size)
    time_step = torch.tensor([10] * noise.shape[0])

    with torch.no_grad():
        output = model(noise, time_step)
            
    print(model)
    import ipdb; ipdb.set_trace()

# To see the how the final model should look like
# => this is the architecture in which the model should be saved in the new format
# -> verify new repo with the following tests (in `test_modeling_utils.py`)
# - test_ldm_uncond (in PipelineTesterMixin)
# - test_output_pretrained  ( in UNetLDMModelTests)
95
96
97
98
99
100
101
102

#test_output_pretrained_ldm_dummy()
#test_output_pretrained_ldm()


# 2. DDPM

def get_model(model_id):
103
    model = UNetUnconditionalModel.from_pretrained(model_id, ldm=True)
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125

    noise = torch.randn(1, model.config.in_channels, model.config.image_size, model.config.image_size)
    time_step = torch.tensor([10] * noise.shape[0])

    with torch.no_grad():
        output = model(noise, time_step)

    print(model)

# Repos to convert and port to google (part of https://github.com/hojonathanho/diffusion)
# - fusing/ddpm_dummy
# - fusing/ddpm-cifar10
# - https://huggingface.co/fusing/ddpm-lsun-church-ema
# - https://huggingface.co/fusing/ddpm-lsun-bedroom-ema
# - https://huggingface.co/fusing/ddpm-celeba-hq

# tests to make sure to pass
# - test_ddim_cifar10, test_ddim_lsun, test_ddpm_cifar10, test_ddim_cifar10 (in PipelineTesterMixin)
# - test_output_pretrained  ( in UNetModelTests)

# e.g.
get_model("fusing/ddpm-cifar10")
126
127
128
129
130
131
132
133
134
135
136
137
138

# 3. NCSNpp

# Repos to convert and port to google (part of https://github.com/yang-song/score_sde)
# - https://huggingface.co/fusing/ffhq_ncsnpp
# - https://huggingface.co/fusing/church_256-ncsnpp-ve
# - https://huggingface.co/fusing/celebahq_256-ncsnpp-ve
# - https://huggingface.co/fusing/bedroom_256-ncsnpp-ve
# - https://huggingface.co/fusing/ffhq_256-ncsnpp-ve

# tests to make sure to pass
# - test_score_sde_ve_pipeline (in PipelineTesterMixin)
# - test_output_pretrained_ve_mid, test_output_pretrained_ve_large (in NCSNppModelTests)