scheduling_consistency_models.py 17.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from dataclasses import dataclass
from typing import List, Optional, Tuple, Union

import numpy as np
import torch

from ..configuration_utils import ConfigMixin, register_to_config
Dhruv Nair's avatar
Dhruv Nair committed
22
23
from ..utils import BaseOutput, logging
from ..utils.torch_utils import randn_tensor
24
25
26
27
28
29
30
31
32
from .scheduling_utils import SchedulerMixin


logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


@dataclass
class CMStochasticIterativeSchedulerOutput(BaseOutput):
    """
33
    Output class for the scheduler's `step` function.
34
35
36

    Args:
        prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
37
            Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
38
39
40
41
42
43
44
45
            denoising loop.
    """

    prev_sample: torch.FloatTensor


class CMStochasticIterativeScheduler(SchedulerMixin, ConfigMixin):
    """
46
    Multistep and onestep sampling for consistency models.
47

48
49
    This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
    methods the library implements for all schedulers such as loading and saving.
50
51

    Args:
52
53
54
55
56
57
58
59
60
61
        num_train_timesteps (`int`, defaults to 40):
            The number of diffusion steps to train the model.
        sigma_min (`float`, defaults to 0.002):
            Minimum noise magnitude in the sigma schedule. Defaults to 0.002 from the original implementation.
        sigma_max (`float`, defaults to 80.0):
            Maximum noise magnitude in the sigma schedule. Defaults to 80.0 from the original implementation.
        sigma_data (`float`, defaults to 0.5):
            The standard deviation of the data distribution from the EDM
            [paper](https://huggingface.co/papers/2206.00364). Defaults to 0.5 from the original implementation.
        s_noise (`float`, defaults to 1.0):
62
            The amount of additional noise to counteract loss of detail during sampling. A reasonable range is [1.000,
63
64
65
66
67
68
            1.011]. Defaults to 1.0 from the original implementation.
        rho (`float`, defaults to 7.0):
            The parameter for calculating the Karras sigma schedule from the EDM
            [paper](https://huggingface.co/papers/2206.00364). Defaults to 7.0 from the original implementation.
        clip_denoised (`bool`, defaults to `True`):
            Whether to clip the denoised outputs to `(-1, 1)`.
69
        timesteps (`List` or `np.ndarray` or `torch.Tensor`, *optional*):
70
71
            An explicit timestep schedule that can be optionally specified. The timesteps are expected to be in
            increasing order.
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
    """

    order = 1

    @register_to_config
    def __init__(
        self,
        num_train_timesteps: int = 40,
        sigma_min: float = 0.002,
        sigma_max: float = 80.0,
        sigma_data: float = 0.5,
        s_noise: float = 1.0,
        rho: float = 7.0,
        clip_denoised: bool = True,
    ):
        # standard deviation of the initial noise distribution
        self.init_noise_sigma = sigma_max

        ramp = np.linspace(0, 1, num_train_timesteps)
        sigmas = self._convert_to_karras(ramp)
        timesteps = self.sigma_to_t(sigmas)

        # setable values
        self.num_inference_steps = None
        self.sigmas = torch.from_numpy(sigmas)
        self.timesteps = torch.from_numpy(timesteps)
        self.custom_timesteps = False
        self.is_scale_input_called = False
YiYi Xu's avatar
YiYi Xu committed
100
        self._step_index = None
101
        self.sigmas = self.sigmas.to("cpu")  # to avoid too much CPU/GPU communication
102
103
104
105
106
107
108
109

    def index_for_timestep(self, timestep, schedule_timesteps=None):
        if schedule_timesteps is None:
            schedule_timesteps = self.timesteps

        indices = (schedule_timesteps == timestep).nonzero()
        return indices.item()

YiYi Xu's avatar
YiYi Xu committed
110
111
112
113
114
115
116
    @property
    def step_index(self):
        """
        The index counter for current timestep. It will increae 1 after each scheduler step.
        """
        return self._step_index

117
118
119
120
    def scale_model_input(
        self, sample: torch.FloatTensor, timestep: Union[float, torch.FloatTensor]
    ) -> torch.FloatTensor:
        """
121
        Scales the consistency model input by `(sigma**2 + sigma_data**2) ** 0.5`.
122
123

        Args:
124
125
126
127
128
            sample (`torch.FloatTensor`):
                The input sample.
            timestep (`float` or `torch.FloatTensor`):
                The current timestep in the diffusion chain.

129
        Returns:
130
131
            `torch.FloatTensor`:
                A scaled input sample.
132
133
        """
        # Get sigma corresponding to timestep
YiYi Xu's avatar
YiYi Xu committed
134
135
136
137
        if self.step_index is None:
            self._init_step_index(timestep)

        sigma = self.sigmas[self.step_index]
138
139
140
141
142
143
144
145

        sample = sample / ((sigma**2 + self.config.sigma_data**2) ** 0.5)

        self.is_scale_input_called = True
        return sample

    def sigma_to_t(self, sigmas: Union[float, np.ndarray]):
        """
146
        Gets scaled timesteps from the Karras sigmas for input to the consistency model.
147
148

        Args:
149
150
151
            sigmas (`float` or `np.ndarray`):
                A single Karras sigma or an array of Karras sigmas.

152
        Returns:
153
154
            `float` or `np.ndarray`:
                A scaled input timestep or scaled input timestep array.
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
        """
        if not isinstance(sigmas, np.ndarray):
            sigmas = np.array(sigmas, dtype=np.float64)

        timesteps = 1000 * 0.25 * np.log(sigmas + 1e-44)

        return timesteps

    def set_timesteps(
        self,
        num_inference_steps: Optional[int] = None,
        device: Union[str, torch.device] = None,
        timesteps: Optional[List[int]] = None,
    ):
        """
170
        Sets the timesteps used for the diffusion chain (to be run before inference).
171
172
173

        Args:
            num_inference_steps (`int`):
174
175
176
177
178
179
180
                The number of diffusion steps used when generating samples with a pre-trained model.
            device (`str` or `torch.device`, *optional*):
                The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
            timesteps (`List[int]`, *optional*):
                Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default
                timestep spacing strategy of equal spacing between timesteps is used. If `timesteps` is passed,
                `num_inference_steps` must be `None`.
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
        """
        if num_inference_steps is None and timesteps is None:
            raise ValueError("Exactly one of `num_inference_steps` or `timesteps` must be supplied.")

        if num_inference_steps is not None and timesteps is not None:
            raise ValueError("Can only pass one of `num_inference_steps` or `timesteps`.")

        # Follow DDPMScheduler custom timesteps logic
        if timesteps is not None:
            for i in range(1, len(timesteps)):
                if timesteps[i] >= timesteps[i - 1]:
                    raise ValueError("`timesteps` must be in descending order.")

            if timesteps[0] >= self.config.num_train_timesteps:
                raise ValueError(
                    f"`timesteps` must start before `self.config.train_timesteps`:"
                    f" {self.config.num_train_timesteps}."
                )

            timesteps = np.array(timesteps, dtype=np.int64)
            self.custom_timesteps = True
        else:
            if num_inference_steps > self.config.num_train_timesteps:
                raise ValueError(
                    f"`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:"
                    f" {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle"
                    f" maximal {self.config.num_train_timesteps} timesteps."
                )

            self.num_inference_steps = num_inference_steps

            step_ratio = self.config.num_train_timesteps // self.num_inference_steps
            timesteps = (np.arange(0, num_inference_steps) * step_ratio).round()[::-1].copy().astype(np.int64)
            self.custom_timesteps = False

        # Map timesteps to Karras sigmas directly for multistep sampling
        # See https://github.com/openai/consistency_models/blob/main/cm/karras_diffusion.py#L675
        num_train_timesteps = self.config.num_train_timesteps
        ramp = timesteps[::-1].copy()
        ramp = ramp / (num_train_timesteps - 1)
        sigmas = self._convert_to_karras(ramp)
        timesteps = self.sigma_to_t(sigmas)

        sigmas = np.concatenate([sigmas, [self.sigma_min]]).astype(np.float32)
        self.sigmas = torch.from_numpy(sigmas).to(device=device)

        if str(device).startswith("mps"):
            # mps does not support float64
            self.timesteps = torch.from_numpy(timesteps).to(device, dtype=torch.float32)
        else:
            self.timesteps = torch.from_numpy(timesteps).to(device=device)

YiYi Xu's avatar
YiYi Xu committed
233
        self._step_index = None
234
        self.sigmas = self.sigmas.to("cpu")  # to avoid too much CPU/GPU communication
YiYi Xu's avatar
YiYi Xu committed
235

236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
    # Modified _convert_to_karras implementation that takes in ramp as argument
    def _convert_to_karras(self, ramp):
        """Constructs the noise schedule of Karras et al. (2022)."""

        sigma_min: float = self.config.sigma_min
        sigma_max: float = self.config.sigma_max

        rho = self.config.rho
        min_inv_rho = sigma_min ** (1 / rho)
        max_inv_rho = sigma_max ** (1 / rho)
        sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
        return sigmas

    def get_scalings(self, sigma):
        sigma_data = self.config.sigma_data

        c_skip = sigma_data**2 / (sigma**2 + sigma_data**2)
        c_out = sigma * sigma_data / (sigma**2 + sigma_data**2) ** 0.5
        return c_skip, c_out

    def get_scalings_for_boundary_condition(self, sigma):
        """
258
259
        Gets the scalings used in the consistency model parameterization (from Appendix C of the
        [paper](https://huggingface.co/papers/2303.01469)) to enforce boundary condition.
260

261
262
263
264
265
        <Tip>

        `epsilon` in the equations for `c_skip` and `c_out` is set to `sigma_min`.

        </Tip>
266
267
268
269

        Args:
            sigma (`torch.FloatTensor`):
                The current sigma in the Karras sigma schedule.
270

271
272
        Returns:
            `tuple`:
273
                A two-element tuple where `c_skip` (which weights the current sample) is the first element and `c_out`
274
275
276
277
278
279
280
281
282
                (which weights the consistency model output) is the second element.
        """
        sigma_min = self.config.sigma_min
        sigma_data = self.config.sigma_data

        c_skip = sigma_data**2 / ((sigma - sigma_min) ** 2 + sigma_data**2)
        c_out = (sigma - sigma_min) * sigma_data / (sigma**2 + sigma_data**2) ** 0.5
        return c_skip, c_out

YiYi Xu's avatar
YiYi Xu committed
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._init_step_index
    def _init_step_index(self, timestep):
        if isinstance(timestep, torch.Tensor):
            timestep = timestep.to(self.timesteps.device)

        index_candidates = (self.timesteps == timestep).nonzero()

        # The sigma index that is taken for the **very** first `step`
        # is always the second index (or the last index if there is only 1)
        # This way we can ensure we don't accidentally skip a sigma in
        # case we start in the middle of the denoising schedule (e.g. for image-to-image)
        if len(index_candidates) > 1:
            step_index = index_candidates[1]
        else:
            step_index = index_candidates[0]

        self._step_index = step_index.item()

301
302
303
304
305
306
307
308
309
    def step(
        self,
        model_output: torch.FloatTensor,
        timestep: Union[float, torch.FloatTensor],
        sample: torch.FloatTensor,
        generator: Optional[torch.Generator] = None,
        return_dict: bool = True,
    ) -> Union[CMStochasticIterativeSchedulerOutput, Tuple]:
        """
310
        Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
311
312
313
        process from the learned model outputs (most often the predicted noise).

        Args:
314
315
316
317
            model_output (`torch.FloatTensor`):
                The direct output from the learned diffusion model.
            timestep (`float`):
                The current timestep in the diffusion chain.
318
            sample (`torch.FloatTensor`):
319
320
321
322
323
324
325
                A current instance of a sample created by the diffusion process.
            generator (`torch.Generator`, *optional*):
                A random number generator.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a
                [`~schedulers.scheduling_consistency_models.CMStochasticIterativeSchedulerOutput`] or `tuple`.

326
        Returns:
327
328
329
330
            [`~schedulers.scheduling_consistency_models.CMStochasticIterativeSchedulerOutput`] or `tuple`:
                If return_dict is `True`,
                [`~schedulers.scheduling_consistency_models.CMStochasticIterativeSchedulerOutput`] is returned,
                otherwise a tuple is returned where the first element is the sample tensor.
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
        """

        if (
            isinstance(timestep, int)
            or isinstance(timestep, torch.IntTensor)
            or isinstance(timestep, torch.LongTensor)
        ):
            raise ValueError(
                (
                    "Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to"
                    f" `{self.__class__}.step()` is not supported. Make sure to pass"
                    " one of the `scheduler.timesteps` as a timestep."
                ),
            )

        if not self.is_scale_input_called:
            logger.warning(
                "The `scale_model_input` function should be called before `step` to ensure correct denoising. "
                "See `StableDiffusionPipeline` for a usage example."
            )

        sigma_min = self.config.sigma_min
        sigma_max = self.config.sigma_max

YiYi Xu's avatar
YiYi Xu committed
355
356
        if self.step_index is None:
            self._init_step_index(timestep)
357
358

        # sigma_next corresponds to next_t in original implementation
YiYi Xu's avatar
YiYi Xu committed
359
360
361
        sigma = self.sigmas[self.step_index]
        if self.step_index + 1 < self.config.num_train_timesteps:
            sigma_next = self.sigmas[self.step_index + 1]
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
        else:
            # Set sigma_next to sigma_min
            sigma_next = self.sigmas[-1]

        # Get scalings for boundary conditions
        c_skip, c_out = self.get_scalings_for_boundary_condition(sigma)

        # 1. Denoise model output using boundary conditions
        denoised = c_out * model_output + c_skip * sample
        if self.config.clip_denoised:
            denoised = denoised.clamp(-1, 1)

        # 2. Sample z ~ N(0, s_noise^2 * I)
        # Noise is not used for onestep sampling.
        if len(self.timesteps) > 1:
            noise = randn_tensor(
                model_output.shape, dtype=model_output.dtype, device=model_output.device, generator=generator
            )
        else:
            noise = torch.zeros_like(model_output)
        z = noise * self.config.s_noise

        sigma_hat = sigma_next.clamp(min=sigma_min, max=sigma_max)

        # 3. Return noisy sample
        # tau = sigma_hat, eps = sigma_min
        prev_sample = denoised + z * (sigma_hat**2 - sigma_min**2) ** 0.5

YiYi Xu's avatar
YiYi Xu committed
390
391
392
        # upon completion increase step index by one
        self._step_index += 1

393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
        if not return_dict:
            return (prev_sample,)

        return CMStochasticIterativeSchedulerOutput(prev_sample=prev_sample)

    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler.add_noise
    def add_noise(
        self,
        original_samples: torch.FloatTensor,
        noise: torch.FloatTensor,
        timesteps: torch.FloatTensor,
    ) -> torch.FloatTensor:
        # Make sure sigmas and timesteps have the same device and dtype as original_samples
        sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype)
        if original_samples.device.type == "mps" and torch.is_floating_point(timesteps):
            # mps does not support float64
            schedule_timesteps = self.timesteps.to(original_samples.device, dtype=torch.float32)
            timesteps = timesteps.to(original_samples.device, dtype=torch.float32)
        else:
            schedule_timesteps = self.timesteps.to(original_samples.device)
            timesteps = timesteps.to(original_samples.device)

        step_indices = [(schedule_timesteps == t).nonzero().item() for t in timesteps]

        sigma = sigmas[step_indices].flatten()
        while len(sigma.shape) < len(original_samples.shape):
            sigma = sigma.unsqueeze(-1)

        noisy_samples = original_samples + noise * sigma
        return noisy_samples

    def __len__(self):
        return self.config.num_train_timesteps