gaussian_ddpm.py 4.51 KB
Newer Older
Patrick von Platen's avatar
improve  
Patrick von Platen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
anton-l's avatar
anton-l committed
15
import math
Patrick von Platen's avatar
improve  
Patrick von Platen committed
16
17
from torch import nn

Patrick von Platen's avatar
Patrick von Platen committed
18
from ..configuration_utils import ConfigMixin
Patrick von Platen's avatar
improve  
Patrick von Platen committed
19
20
21
22
23
24
25
26
27


SAMPLING_CONFIG_NAME = "scheduler_config.json"


def linear_beta_schedule(timesteps, beta_start, beta_end):
    return torch.linspace(beta_start, beta_end, timesteps, dtype=torch.float64)


anton-l's avatar
anton-l committed
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999):
    """
    Create a beta schedule that discretizes the given alpha_t_bar function,
    which defines the cumulative product of (1-beta) over time from t = [0,1].

    :param num_diffusion_timesteps: the number of betas to produce.
    :param alpha_bar: a lambda that takes an argument t from 0 to 1 and
                      produces the cumulative product of (1-beta) up to that
                      part of the diffusion process.
    :param max_beta: the maximum beta to use; use values lower than 1 to
                     prevent singularities.
    """
    betas = []
    for i in range(num_diffusion_timesteps):
        t1 = i / num_diffusion_timesteps
        t2 = (i + 1) / num_diffusion_timesteps
        betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
    return torch.tensor(betas, dtype=torch.float64)


Patrick von Platen's avatar
Patrick von Platen committed
48
class GaussianDDPMScheduler(nn.Module, ConfigMixin):
Patrick von Platen's avatar
improve  
Patrick von Platen committed
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71

    config_name = SAMPLING_CONFIG_NAME

    def __init__(
        self,
        timesteps=1000,
        beta_start=0.0001,
        beta_end=0.02,
        beta_schedule="linear",
        variance_type="fixed_small",
    ):
        super().__init__()
        self.register(
            timesteps=timesteps,
            beta_start=beta_start,
            beta_end=beta_end,
            beta_schedule=beta_schedule,
            variance_type=variance_type,
        )
        self.num_timesteps = int(timesteps)

        if beta_schedule == "linear":
            betas = linear_beta_schedule(timesteps, beta_start=beta_start, beta_end=beta_end)
anton-l's avatar
anton-l committed
72
73
74
75
76
77
        elif beta_schedule == "squaredcos_cap_v2":
            # GLIDE cosine schedule
            betas = betas_for_alpha_bar(
                timesteps,
                lambda t: math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2,
            )
Patrick von Platen's avatar
improve  
Patrick von Platen committed
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
        else:
            raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")

        alphas = 1.0 - betas
        alphas_cumprod = torch.cumprod(alphas, axis=0)
        alphas_cumprod_prev = torch.nn.functional.pad(alphas_cumprod[:-1], (1, 0), value=1.0)

        variance = betas * (1.0 - alphas_cumprod_prev) / (1.0 - alphas_cumprod)

        if variance_type == "fixed_small":
            log_variance = torch.log(variance.clamp(min=1e-20))
        elif variance_type == "fixed_large":
            log_variance = torch.log(torch.cat([variance[1:2], betas[1:]], dim=0))

        self.register_buffer("betas", betas.to(torch.float32))
        self.register_buffer("alphas", alphas.to(torch.float32))
        self.register_buffer("alphas_cumprod", alphas_cumprod.to(torch.float32))

        self.register_buffer("log_variance", log_variance.to(torch.float32))

    def get_alpha(self, time_step):
        return self.alphas[time_step]

    def get_beta(self, time_step):
        return self.betas[time_step]

    def get_alpha_prod(self, time_step):
        if time_step < 0:
            return torch.tensor(1.0)
        return self.alphas_cumprod[time_step]

    def sample_variance(self, time_step, shape, device, generator=None):
        variance = self.log_variance[time_step]
Patrick von Platen's avatar
up  
Patrick von Platen committed
111
        nonzero_mask = torch.tensor([1 - (time_step == 0)], device=device).float()[None, :]
Patrick von Platen's avatar
improve  
Patrick von Platen committed
112
113
114
115
116
117
118
119
120
121
122
123
124
125

        noise = self.sample_noise(shape, device=device, generator=generator)

        sampled_variance = nonzero_mask * (0.5 * variance).exp()
        sampled_variance = sampled_variance * noise

        return sampled_variance

    def sample_noise(self, shape, device, generator=None):
        # always sample on CPU to be deterministic
        return torch.randn(shape, generator=generator).to(device)

    def __len__(self):
        return self.num_timesteps