scheduling_pndm_flax.py 21.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# Copyright 2022 Zhejiang University Team and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim
16
17

import math
18
19
20
21
from dataclasses import dataclass
from typing import Optional, Tuple, Union

import flax
Pedro Cuenca's avatar
Pedro Cuenca committed
22
import jax
23
24
25
26
27
28
import jax.numpy as jnp

from ..configuration_utils import ConfigMixin, register_to_config
from .scheduling_utils import SchedulerMixin, SchedulerOutput


29
def betas_for_alpha_bar(num_diffusion_timesteps: int, max_beta=0.999) -> jnp.ndarray:
30
31
32
33
34
35
36
37
38
39
40
41
42
43
    """
    Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
    (1-beta) over time from t = [0,1].

    Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
    to that part of the diffusion process.


    Args:
        num_diffusion_timesteps (`int`): the number of betas to produce.
        max_beta (`float`): the maximum beta to use; use values lower than 1 to
                     prevent singularities.

    Returns:
44
        betas (`jnp.ndarray`): the betas used by the scheduler to step the model outputs
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
    """

    def alpha_bar(time_step):
        return math.cos((time_step + 0.008) / 1.008 * math.pi / 2) ** 2

    betas = []
    for i in range(num_diffusion_timesteps):
        t1 = i / num_diffusion_timesteps
        t2 = (i + 1) / num_diffusion_timesteps
        betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
    return jnp.array(betas, dtype=jnp.float32)


@flax.struct.dataclass
class PNDMSchedulerState:
    # setable values
61
    _timesteps: jnp.ndarray
62
    num_inference_steps: Optional[int] = None
63
64
65
    prk_timesteps: Optional[jnp.ndarray] = None
    plms_timesteps: Optional[jnp.ndarray] = None
    timesteps: Optional[jnp.ndarray] = None
66
67
68
69
70

    # running values
    cur_model_output: Optional[jnp.ndarray] = None
    counter: int = 0
    cur_sample: Optional[jnp.ndarray] = None
71
    ets: jnp.ndarray = jnp.array([])
72
73

    @classmethod
74
75
    def create(cls, num_train_timesteps: int):
        return cls(_timesteps=jnp.arange(0, num_train_timesteps)[::-1])
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101


@dataclass
class FlaxSchedulerOutput(SchedulerOutput):
    state: PNDMSchedulerState


class FlaxPNDMScheduler(SchedulerMixin, ConfigMixin):
    """
    Pseudo numerical methods for diffusion models (PNDM) proposes using more advanced ODE integration techniques,
    namely Runge-Kutta method and a linear multi-step method.

    [`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__`
    function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`.
    [`~ConfigMixin`] also provides general loading and saving functionality via the [`~ConfigMixin.save_config`] and
    [`~ConfigMixin.from_config`] functions.

    For more details, see the original paper: https://arxiv.org/abs/2202.09778

    Args:
        num_train_timesteps (`int`): number of diffusion steps used to train the model.
        beta_start (`float`): the starting `beta` value of inference.
        beta_end (`float`): the final `beta` value.
        beta_schedule (`str`):
            the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
            `linear`, `scaled_linear`, or `squaredcos_cap_v2`.
102
        trained_betas (`jnp.ndarray`, optional):
103
104
105
106
            option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc.
        skip_prk_steps (`bool`):
            allows the scheduler to skip the Runge-Kutta steps that are defined in the original paper as being required
            before plms steps; defaults to `False`.
107
108
109
110
111
112
113
114
        set_alpha_to_one (`bool`, default `False`):
            each diffusion step uses the value of alphas product at that step and at the previous one. For the final
            step there is no previous alpha. When this option is `True` the previous alpha product is fixed to `1`,
            otherwise it uses the value of alpha at step 0.
        steps_offset (`int`, default `0`):
            an offset added to the inference steps. You can use a combination of `offset=1` and
            `set_alpha_to_one=False`, to make the last step use step 0 for the previous alpha product, as done in
            stable diffusion.
115
116
    """

117
118
119
120
    @property
    def has_state(self):
        return True

121
122
123
124
125
126
127
    @register_to_config
    def __init__(
        self,
        num_train_timesteps: int = 1000,
        beta_start: float = 0.0001,
        beta_end: float = 0.02,
        beta_schedule: str = "linear",
128
        trained_betas: Optional[jnp.ndarray] = None,
129
        skip_prk_steps: bool = False,
130
131
        set_alpha_to_one: bool = False,
        steps_offset: int = 0,
132
133
    ):
        if trained_betas is not None:
134
            self.betas = jnp.asarray(trained_betas)
135
        elif beta_schedule == "linear":
136
            self.betas = jnp.linspace(beta_start, beta_end, num_train_timesteps, dtype=jnp.float32)
137
138
        elif beta_schedule == "scaled_linear":
            # this schedule is very specific to the latent diffusion model.
139
            self.betas = jnp.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=jnp.float32) ** 2
140
141
        elif beta_schedule == "squaredcos_cap_v2":
            # Glide cosine schedule
142
            self.betas = betas_for_alpha_bar(num_train_timesteps)
143
144
145
        else:
            raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")

146
147
148
        self.alphas = 1.0 - self.betas
        self.alphas_cumprod = jnp.cumprod(self.alphas, axis=0)

149
150
        self.final_alpha_cumprod = jnp.array(1.0) if set_alpha_to_one else self.alphas_cumprod[0]

151
152
153
154
155
        # For now we only support F-PNDM, i.e. the runge-kutta method
        # For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf
        # mainly at formula (9), (12), (13) and the Algorithm 2.
        self.pndm_order = 4

156
157
    def create_state(self):
        return PNDMSchedulerState.create(num_train_timesteps=self.config.num_train_timesteps)
158

Pedro Cuenca's avatar
Pedro Cuenca committed
159
    def set_timesteps(self, state: PNDMSchedulerState, shape: Tuple, num_inference_steps: int) -> PNDMSchedulerState:
160
161
162
163
164
        """
        Sets the discrete timesteps used for the diffusion chain. Supporting function to be run before inference.

        Args:
            state (`PNDMSchedulerState`):
165
                the `FlaxPNDMScheduler` state data class instance.
166
167
168
            num_inference_steps (`int`):
                the number of diffusion steps used when generating samples with a pre-trained model.
        """
169
170
        offset = self.config.steps_offset

171
172
        step_ratio = self.config.num_train_timesteps // num_inference_steps
        # creates integer timesteps by multiplying by ratio
173
        # rounding to avoid issues when num_inference_step is power of 3
174
        _timesteps = (jnp.arange(0, num_inference_steps) * step_ratio).round() + offset
175

176
        state = state.replace(num_inference_steps=num_inference_steps, _timesteps=_timesteps)
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200

        if self.config.skip_prk_steps:
            # for some models like stable diffusion the prk steps can/should be skipped to
            # produce better results. When using PNDM with `self.config.skip_prk_steps` the implementation
            # is based on crowsonkb's PLMS sampler implementation: https://github.com/CompVis/latent-diffusion/pull/51
            state = state.replace(
                prk_timesteps=jnp.array([]),
                plms_timesteps=jnp.concatenate(
                    [state._timesteps[:-1], state._timesteps[-2:-1], state._timesteps[-1:]]
                )[::-1],
            )
        else:
            prk_timesteps = jnp.array(state._timesteps[-self.pndm_order :]).repeat(2) + jnp.tile(
                jnp.array([0, self.config.num_train_timesteps // num_inference_steps // 2]), self.pndm_order
            )

            state = state.replace(
                prk_timesteps=(prk_timesteps[:-1].repeat(2)[1:-1])[::-1],
                plms_timesteps=state._timesteps[:-3][::-1],
            )

        return state.replace(
            timesteps=jnp.concatenate([state.prk_timesteps, state.plms_timesteps]).astype(jnp.int64),
            counter=0,
Pedro Cuenca's avatar
Pedro Cuenca committed
201
202
203
204
            # Reserve space for the state variables
            cur_model_output=jnp.zeros(shape),
            cur_sample=jnp.zeros(shape),
            ets=jnp.zeros((4,) + shape),
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
        )

    def step(
        self,
        state: PNDMSchedulerState,
        model_output: jnp.ndarray,
        timestep: int,
        sample: jnp.ndarray,
        return_dict: bool = True,
    ) -> Union[FlaxSchedulerOutput, Tuple]:
        """
        Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion
        process from the learned model outputs (most often the predicted noise).

        This function calls `step_prk()` or `step_plms()` depending on the internal variable `counter`.

        Args:
222
            state (`PNDMSchedulerState`): the `FlaxPNDMScheduler` state data class instance.
223
224
225
226
227
228
229
230
231
232
233
            model_output (`jnp.ndarray`): direct output from learned diffusion model.
            timestep (`int`): current discrete timestep in the diffusion chain.
            sample (`jnp.ndarray`):
                current instance of sample being created by diffusion process.
            return_dict (`bool`): option for returning tuple rather than SchedulerOutput class

        Returns:
            [`FlaxSchedulerOutput`] or `tuple`: [`FlaxSchedulerOutput`] if `return_dict` is True, otherwise a `tuple`.
            When returning a tuple, the first element is the sample tensor.

        """
Pedro Cuenca's avatar
Pedro Cuenca committed
234
235
236
        if self.config.skip_prk_steps:
            prev_sample, state = self.step_plms(
                state=state, model_output=model_output, timestep=timestep, sample=sample
237
238
            )
        else:
Pedro Cuenca's avatar
Pedro Cuenca committed
239
240
241
242
243
244
245
246
            prev_sample, state = jax.lax.switch(
                jnp.where(state.counter < len(state.prk_timesteps), 0, 1),
                (self.step_prk, self.step_plms),
                # Args to either branch
                state,
                model_output,
                timestep,
                sample,
247
248
            )

Pedro Cuenca's avatar
Pedro Cuenca committed
249
250
251
252
253
        if not return_dict:
            return (prev_sample, state)

        return FlaxSchedulerOutput(prev_sample=prev_sample, state=state)

254
255
256
257
258
259
260
261
262
263
264
265
    def step_prk(
        self,
        state: PNDMSchedulerState,
        model_output: jnp.ndarray,
        timestep: int,
        sample: jnp.ndarray,
    ) -> Union[FlaxSchedulerOutput, Tuple]:
        """
        Step function propagating the sample with the Runge-Kutta method. RK takes 4 forward passes to approximate the
        solution to the differential equation.

        Args:
266
            state (`PNDMSchedulerState`): the `FlaxPNDMScheduler` state data class instance.
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
            model_output (`jnp.ndarray`): direct output from learned diffusion model.
            timestep (`int`): current discrete timestep in the diffusion chain.
            sample (`jnp.ndarray`):
                current instance of sample being created by diffusion process.
            return_dict (`bool`): option for returning tuple rather than SchedulerOutput class

        Returns:
            [`FlaxSchedulerOutput`] or `tuple`: [`FlaxSchedulerOutput`] if `return_dict` is True, otherwise a `tuple`.
            When returning a tuple, the first element is the sample tensor.

        """
        if state.num_inference_steps is None:
            raise ValueError(
                "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
            )

Pedro Cuenca's avatar
Pedro Cuenca committed
283
284
285
        diff_to_prev = jnp.where(
            state.counter % 2, 0, self.config.num_train_timesteps // state.num_inference_steps // 2
        )
286
        prev_timestep = timestep - diff_to_prev
287
288
        timestep = state.prk_timesteps[state.counter // 4 * 4]

Pedro Cuenca's avatar
Pedro Cuenca committed
289
290
291
292
293
294
295
296
        def remainder_0(state: PNDMSchedulerState, model_output: jnp.ndarray, ets_at: int):
            return (
                state.replace(
                    cur_model_output=state.cur_model_output + 1 / 6 * model_output,
                    ets=state.ets.at[ets_at].set(model_output),
                    cur_sample=sample,
                ),
                model_output,
297
298
            )

Pedro Cuenca's avatar
Pedro Cuenca committed
299
300
        def remainder_1(state: PNDMSchedulerState, model_output: jnp.ndarray, ets_at: int):
            return state.replace(cur_model_output=state.cur_model_output + 1 / 3 * model_output), model_output
301

Pedro Cuenca's avatar
Pedro Cuenca committed
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
        def remainder_2(state: PNDMSchedulerState, model_output: jnp.ndarray, ets_at: int):
            return state.replace(cur_model_output=state.cur_model_output + 1 / 3 * model_output), model_output

        def remainder_3(state: PNDMSchedulerState, model_output: jnp.ndarray, ets_at: int):
            model_output = state.cur_model_output + 1 / 6 * model_output
            return state.replace(cur_model_output=jnp.zeros_like(state.cur_model_output)), model_output

        state, model_output = jax.lax.switch(
            state.counter % 4,
            (remainder_0, remainder_1, remainder_2, remainder_3),
            # Args to either branch
            state,
            model_output,
            state.counter // 4,
        )

        cur_sample = state.cur_sample
319
        prev_sample = self._get_prev_sample(cur_sample, timestep, prev_timestep, model_output)
320
        state = state.replace(counter=state.counter + 1)
321

Pedro Cuenca's avatar
Pedro Cuenca committed
322
        return (prev_sample, state)
323
324
325
326
327
328
329
330
331
332
333
334
335

    def step_plms(
        self,
        state: PNDMSchedulerState,
        model_output: jnp.ndarray,
        timestep: int,
        sample: jnp.ndarray,
    ) -> Union[FlaxSchedulerOutput, Tuple]:
        """
        Step function propagating the sample with the linear multi-step method. This has one forward pass with multiple
        times to approximate the solution.

        Args:
336
            state (`PNDMSchedulerState`): the `FlaxPNDMScheduler` state data class instance.
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
            model_output (`jnp.ndarray`): direct output from learned diffusion model.
            timestep (`int`): current discrete timestep in the diffusion chain.
            sample (`jnp.ndarray`):
                current instance of sample being created by diffusion process.
            return_dict (`bool`): option for returning tuple rather than SchedulerOutput class

        Returns:
            [`FlaxSchedulerOutput`] or `tuple`: [`FlaxSchedulerOutput`] if `return_dict` is True, otherwise a `tuple`.
            When returning a tuple, the first element is the sample tensor.

        """
        if state.num_inference_steps is None:
            raise ValueError(
                "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
            )

        if not self.config.skip_prk_steps and len(state.ets) < 3:
            raise ValueError(
                f"{self.__class__} can only be run AFTER scheduler has been run "
                "in 'prk' mode for at least 12 iterations "
                "See: https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/pipeline_pndm.py "
                "for more information."
            )

361
        prev_timestep = timestep - self.config.num_train_timesteps // state.num_inference_steps
Pedro Cuenca's avatar
Pedro Cuenca committed
362
363
364
365
366
367
368
369
370
371
372
373
374
        prev_timestep = jnp.where(prev_timestep > 0, prev_timestep, 0)

        # Reference:
        # if state.counter != 1:
        #     state.ets.append(model_output)
        # else:
        #     prev_timestep = timestep
        #     timestep = timestep + self.config.num_train_timesteps // state.num_inference_steps

        prev_timestep = jnp.where(state.counter == 1, timestep, prev_timestep)
        timestep = jnp.where(
            state.counter == 1, timestep + self.config.num_train_timesteps // state.num_inference_steps, timestep
        )
375

Pedro Cuenca's avatar
Pedro Cuenca committed
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
        # Reference:
        # if len(state.ets) == 1 and state.counter == 0:
        #     model_output = model_output
        #     state.cur_sample = sample
        # elif len(state.ets) == 1 and state.counter == 1:
        #     model_output = (model_output + state.ets[-1]) / 2
        #     sample = state.cur_sample
        #     state.cur_sample = None
        # elif len(state.ets) == 2:
        #     model_output = (3 * state.ets[-1] - state.ets[-2]) / 2
        # elif len(state.ets) == 3:
        #     model_output = (23 * state.ets[-1] - 16 * state.ets[-2] + 5 * state.ets[-3]) / 12
        # else:
        #     model_output = (1 / 24) * (55 * state.ets[-1] - 59 * state.ets[-2] + 37 * state.ets[-3] - 9 * state.ets[-4])

        def counter_0(state: PNDMSchedulerState):
            ets = state.ets.at[0].set(model_output)
            return state.replace(
                ets=ets,
                cur_sample=sample,
                cur_model_output=jnp.array(model_output, dtype=jnp.float32),
            )

        def counter_1(state: PNDMSchedulerState):
            return state.replace(
                cur_model_output=(model_output + state.ets[0]) / 2,
402
403
            )

Pedro Cuenca's avatar
Pedro Cuenca committed
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
        def counter_2(state: PNDMSchedulerState):
            ets = state.ets.at[1].set(model_output)
            return state.replace(
                ets=ets,
                cur_model_output=(3 * ets[1] - ets[0]) / 2,
                cur_sample=sample,
            )

        def counter_3(state: PNDMSchedulerState):
            ets = state.ets.at[2].set(model_output)
            return state.replace(
                ets=ets,
                cur_model_output=(23 * ets[2] - 16 * ets[1] + 5 * ets[0]) / 12,
                cur_sample=sample,
            )

        def counter_other(state: PNDMSchedulerState):
            ets = state.ets.at[3].set(model_output)
            next_model_output = (1 / 24) * (55 * ets[3] - 59 * ets[2] + 37 * ets[1] - 9 * ets[0])

            ets = ets.at[0].set(ets[1])
            ets = ets.at[1].set(ets[2])
            ets = ets.at[2].set(ets[3])

            return state.replace(
                ets=ets,
                cur_model_output=next_model_output,
                cur_sample=sample,
            )

        counter = jnp.clip(state.counter, 0, 4)
        state = jax.lax.switch(
            counter,
            [counter_0, counter_1, counter_2, counter_3, counter_other],
            state,
        )

        sample = state.cur_sample
        model_output = state.cur_model_output
443
        prev_sample = self._get_prev_sample(sample, timestep, prev_timestep, model_output)
444
        state = state.replace(counter=state.counter + 1)
445

Pedro Cuenca's avatar
Pedro Cuenca committed
446
        return (prev_sample, state)
447

448
    def _get_prev_sample(self, sample, timestep, prev_timestep, model_output):
449
450
451
452
453
454
455
456
457
458
459
460
        # See formula (9) of PNDM paper https://arxiv.org/pdf/2202.09778.pdf
        # this function computes x_(t−δ) using the formula of (9)
        # Note that x_t needs to be added to both sides of the equation

        # Notation (<variable name> -> <name in paper>
        # alpha_prod_t -> α_t
        # alpha_prod_t_prev -> α_(t−δ)
        # beta_prod_t -> (1 - α_t)
        # beta_prod_t_prev -> (1 - α_(t−δ))
        # sample -> x_t
        # model_output -> e_θ(x_t, t)
        # prev_sample -> x_(t−δ)
461
        alpha_prod_t = self.alphas_cumprod[timestep]
Pedro Cuenca's avatar
Pedro Cuenca committed
462
        alpha_prod_t_prev = jnp.where(prev_timestep >= 0, self.alphas_cumprod[prev_timestep], self.final_alpha_cumprod)
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
        beta_prod_t = 1 - alpha_prod_t
        beta_prod_t_prev = 1 - alpha_prod_t_prev

        # corresponds to (α_(t−δ) - α_t) divided by
        # denominator of x_t in formula (9) and plus 1
        # Note: (α_(t−δ) - α_t) / (sqrt(α_t) * (sqrt(α_(t−δ)) + sqr(α_t))) =
        # sqrt(α_(t−δ)) / sqrt(α_t))
        sample_coeff = (alpha_prod_t_prev / alpha_prod_t) ** (0.5)

        # corresponds to denominator of e_θ(x_t, t) in formula (9)
        model_output_denom_coeff = alpha_prod_t * beta_prod_t_prev ** (0.5) + (
            alpha_prod_t * beta_prod_t * alpha_prod_t_prev
        ) ** (0.5)

        # full formula (9)
        prev_sample = (
            sample_coeff * sample - (alpha_prod_t_prev - alpha_prod_t) * model_output / model_output_denom_coeff
        )

        return prev_sample

    def add_noise(
        self,
        original_samples: jnp.ndarray,
        noise: jnp.ndarray,
        timesteps: jnp.ndarray,
    ) -> jnp.ndarray:
490
        sqrt_alpha_prod = self.alphas_cumprod[timesteps] ** 0.5
491
492
493
494
        sqrt_alpha_prod = sqrt_alpha_prod.flatten()
        while len(sqrt_alpha_prod.shape) < len(original_samples.shape):
            sqrt_alpha_prod = sqrt_alpha_prod[..., None]

495
        sqrt_one_minus_alpha_prod = (1 - self.alphas_cumprod[timesteps]) ** 0.5
496
497
498
        sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
        while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape):
            sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod[..., None]
499
500
501
502
503
504

        noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
        return noisy_samples

    def __len__(self):
        return self.config.num_train_timesteps