README.md 7.39 KB
Newer Older
Juan Acevedo's avatar
Juan Acevedo committed
1
2
3
4
5
6
7
8
9
# Stable Diffusion text-to-image fine-tuning using PyTorch/XLA

The `train_text_to_image_xla.py` script shows how to fine-tune stable diffusion model on TPU devices using PyTorch/XLA.

It has been tested on v4 and v5p TPU versions. Training code has been tested on multi-host. 

This script implements Distributed Data Parallel using GSPMD feature in XLA compiler
where we shard the input batches over the TPU devices. 

Juan Acevedo's avatar
Juan Acevedo committed
10
As of 10-31-2024, these are some expected step times.
Juan Acevedo's avatar
Juan Acevedo committed
11
12
13

| accelerator | global batch size | step time (seconds) |
| ----------- | ----------------- | --------- |
Juan Acevedo's avatar
Juan Acevedo committed
14
15
16
17
| v5p-512 | 16384 | 1.01 |
| v5p-256 | 8192 | 1.01 |
| v5p-128 | 4096 | 1.0 |
| v5p-64 | 2048 | 1.01 |
Juan Acevedo's avatar
Juan Acevedo committed
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

## Create TPU

To create a TPU on Google Cloud first set these environment variables:

```bash
export TPU_NAME=<tpu-name>
export PROJECT_ID=<project-id>
export ZONE=<google-cloud-zone>
export ACCELERATOR_TYPE=<accelerator type like v5p-8>
export RUNTIME_VERSION=<runtime version like v2-alpha-tpuv5 for v5p>
```

Then run the create TPU command:
```bash
gcloud alpha compute tpus tpu-vm create ${TPU_NAME} --project ${PROJECT_ID} 
--zone ${ZONE} --accelerator-type ${ACCELERATOR_TYPE} --version ${RUNTIME_VERSION} 
--reserved
```

You can also use other ways to reserve TPUs like GKE or queued resources.

## Setup TPU environment

Install PyTorch and PyTorch/XLA nightly versions:
```bash
gcloud compute tpus tpu-vm ssh ${TPU_NAME} \
--project=${PROJECT_ID} --zone=${ZONE} --worker=all \
--command='
Juan Acevedo's avatar
Juan Acevedo committed
47
48
49
pip3 install --pre torch==2.6.0.dev20241031+cpu torchvision --index-url https://download.pytorch.org/whl/nightly/cpu
pip3 install "torch_xla[tpu] @ https://storage.googleapis.com/pytorch-xla-releases/wheels/tpuvm/torch_xla-2.6.0.dev20241031.cxx11-cp310-cp310-linux_x86_64.whl" -f https://storage.googleapis.com/libtpu-releases/index.html
pip install torch_xla[pallas] -f https://storage.googleapis.com/jax-releases/jax_nightly_releases.html -f https://storage.googleapis.com/jax-releases/jaxlib_nightly_releases.html
Juan Acevedo's avatar
Juan Acevedo committed
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
'
```

Verify that PyTorch and PyTorch/XLA were installed correctly:

```bash
gcloud compute tpus tpu-vm ssh ${TPU_NAME} \
--project ${PROJECT_ID} --zone ${ZONE} --worker=all \
--command='python3 -c "import torch; import torch_xla;"'
```

Install dependencies:
```bash
gcloud compute tpus tpu-vm ssh ${TPU_NAME} \
--project=${PROJECT_ID} --zone=${ZONE} --worker=all \
--command='
git clone https://github.com/huggingface/diffusers.git
cd diffusers
git checkout main
cd examples/research_projects/pytorch_xla
pip3 install -r requirements.txt
pip3 install pillow --upgrade
cd ../../..
pip3 install .'
```

## Run the training job

### Authenticate

Run the following command to authenticate your token.

```bash
huggingface-cli login
```

This script only trains the unet part of the network. The VAE and text encoder
are fixed.

```bash
gcloud compute tpus tpu-vm ssh ${TPU_NAME} \
--project=${PROJECT_ID} --zone=${ZONE} --worker=all \
--command='
Juan Acevedo's avatar
Juan Acevedo committed
93
export XLA_DISABLE_FUNCTIONALIZATION=0
Juan Acevedo's avatar
Juan Acevedo committed
94
95
96
97
98
99
export PROFILE_DIR=/tmp/
export CACHE_DIR=/tmp/
export DATASET_NAME=lambdalabs/naruto-blip-captions
export PER_HOST_BATCH_SIZE=32 # This is known to work on TPU v4. Can set this to 64 for TPU v5p
export TRAIN_STEPS=50
export OUTPUT_DIR=/tmp/trained-model/
Juan Acevedo's avatar
Juan Acevedo committed
100
python diffusers/examples/research_projects/pytorch_xla/train_text_to_image_xla.py --pretrained_model_name_or_path=stabilityai/stable-diffusion-2-base --dataset_name=$DATASET_NAME --resolution=512 --center_crop --random_flip --train_batch_size=$PER_HOST_BATCH_SIZE  --max_train_steps=$TRAIN_STEPS --learning_rate=1e-06 --mixed_precision=bf16 --profile_duration=80000 --output_dir=$OUTPUT_DIR --dataloader_num_workers=8 --loader_prefetch_size=4 --device_prefetch_size=4'
Juan Acevedo's avatar
Juan Acevedo committed
101
102
```

Juan Acevedo's avatar
Juan Acevedo committed
103
104
Pass `--print_loss` if you would like to see the loss printed at every step. Be aware that printing the loss at every step disrupts the optimized flow execution, thus the step time will be longer. 

Juan Acevedo's avatar
Juan Acevedo committed
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
### Environment Envs Explained

*   `XLA_DISABLE_FUNCTIONALIZATION`: To optimize the performance for AdamW optimizer.
*   `PROFILE_DIR`: Specify where to put the profiling results.
*   `CACHE_DIR`: Directory to store XLA compiled graphs for persistent caching.
*   `DATASET_NAME`: Dataset to train the model. 
*   `PER_HOST_BATCH_SIZE`: Size of the batch to load per CPU host. For e.g. for a v5p-16 with 2 CPU hosts, the global batch size will be 2xPER_HOST_BATCH_SIZE. The input batch is sharded along the batch axis.
*    `TRAIN_STEPS`: Total number of training steps to run the training for.
*    `OUTPUT_DIR`: Directory to store the fine-tuned model.

## Run inference using the output model

To run inference using the output, you can simply load the model and pass it
input prompts. The first pass will compile the graph and takes longer with the following passes running much faster.

```bash
export CACHE_DIR=/tmp/
```

```python
import torch
import os
import sys
import  numpy as np

import torch_xla.core.xla_model as xm
from time import time
from diffusers import StableDiffusionPipeline
import torch_xla.runtime as xr

CACHE_DIR = os.environ.get("CACHE_DIR", None)
if CACHE_DIR:
    xr.initialize_cache(CACHE_DIR, readonly=False)

def main():
    device = xm.xla_device()
    model_path = "jffacevedo/pxla_trained_model"
    pipe = StableDiffusionPipeline.from_pretrained(
        model_path, 
        torch_dtype=torch.bfloat16
    )
    pipe.to(device)
    prompt = ["A naruto with green eyes and red legs."]
    start = time()
    print("compiling...")
    image = pipe(prompt, num_inference_steps=30, guidance_scale=7.5).images[0]
    print(f"compile time: {time() - start}")
    print("generate...")
    start = time()
    image = pipe(prompt, num_inference_steps=30, guidance_scale=7.5).images[0]
    print(f"generation time (after compile) : {time() - start}")
    image.save("naruto.png")

if __name__ == '__main__':
    main()
```

Expected Results:

```bash
compiling...
100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 30/30 [10:03<00:00, 20.10s/it]
compile time: 720.656970500946
generate...
100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 30/30 [00:01<00:00, 17.65it/s]
generation time (after compile) : 1.8461642265319824