scheduling_consistency_decoder.py 6.76 KB
Newer Older
Will Berman's avatar
Will Berman committed
1
2
import math
from dataclasses import dataclass
3
from typing import Literal, Optional, Tuple, Union
Will Berman's avatar
Will Berman committed
4
5
6
7
8
9
10
11
12
13
14

import torch

from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput
from ..utils.torch_utils import randn_tensor
from .scheduling_utils import SchedulerMixin


# Copied from diffusers.schedulers.scheduling_ddpm.betas_for_alpha_bar
def betas_for_alpha_bar(
15
16
17
18
    num_diffusion_timesteps: int,
    max_beta: float = 0.999,
    alpha_transform_type: Literal["cosine", "exp"] = "cosine",
) -> torch.Tensor:
Will Berman's avatar
Will Berman committed
19
20
21
22
23
24
25
26
    """
    Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
    (1-beta) over time from t = [0,1].

    Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
    to that part of the diffusion process.

    Args:
27
28
29
30
31
32
        num_diffusion_timesteps (`int`):
            The number of betas to produce.
        max_beta (`float`, defaults to `0.999`):
            The maximum beta to use; use values lower than 1 to avoid numerical instability.
        alpha_transform_type (`"cosine"` or `"exp"`, defaults to `"cosine"`):
            The type of noise schedule for `alpha_bar`. Choose from `cosine` or `exp`.
Will Berman's avatar
Will Berman committed
33
34

    Returns:
35
36
        `torch.Tensor`:
            The betas used by the scheduler to step the model outputs.
Will Berman's avatar
Will Berman committed
37
38
39
40
41
42
43
44
45
46
47
48
    """
    if alpha_transform_type == "cosine":

        def alpha_bar_fn(t):
            return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2

    elif alpha_transform_type == "exp":

        def alpha_bar_fn(t):
            return math.exp(t * -12.0)

    else:
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
49
        raise ValueError(f"Unsupported alpha_transform_type: {alpha_transform_type}")
Will Berman's avatar
Will Berman committed
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

    betas = []
    for i in range(num_diffusion_timesteps):
        t1 = i / num_diffusion_timesteps
        t2 = (i + 1) / num_diffusion_timesteps
        betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta))
    return torch.tensor(betas, dtype=torch.float32)


@dataclass
class ConsistencyDecoderSchedulerOutput(BaseOutput):
    """
    Output class for the scheduler's `step` function.

    Args:
65
        prev_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
Will Berman's avatar
Will Berman committed
66
67
68
69
            Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
            denoising loop.
    """

70
    prev_sample: torch.Tensor
Will Berman's avatar
Will Berman committed
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116


class ConsistencyDecoderScheduler(SchedulerMixin, ConfigMixin):
    order = 1

    @register_to_config
    def __init__(
        self,
        num_train_timesteps: int = 1024,
        sigma_data: float = 0.5,
    ):
        betas = betas_for_alpha_bar(num_train_timesteps)

        alphas = 1.0 - betas
        alphas_cumprod = torch.cumprod(alphas, dim=0)

        self.sqrt_alphas_cumprod = torch.sqrt(alphas_cumprod)
        self.sqrt_one_minus_alphas_cumprod = torch.sqrt(1.0 - alphas_cumprod)

        sigmas = torch.sqrt(1.0 / alphas_cumprod - 1)

        sqrt_recip_alphas_cumprod = torch.sqrt(1.0 / alphas_cumprod)

        self.c_skip = sqrt_recip_alphas_cumprod * sigma_data**2 / (sigmas**2 + sigma_data**2)
        self.c_out = sigmas * sigma_data / (sigmas**2 + sigma_data**2) ** 0.5
        self.c_in = sqrt_recip_alphas_cumprod / (sigmas**2 + sigma_data**2) ** 0.5

    def set_timesteps(
        self,
        num_inference_steps: Optional[int] = None,
        device: Union[str, torch.device] = None,
    ):
        if num_inference_steps != 2:
            raise ValueError("Currently more than 2 inference steps are not supported.")

        self.timesteps = torch.tensor([1008, 512], dtype=torch.long, device=device)
        self.sqrt_alphas_cumprod = self.sqrt_alphas_cumprod.to(device)
        self.sqrt_one_minus_alphas_cumprod = self.sqrt_one_minus_alphas_cumprod.to(device)
        self.c_skip = self.c_skip.to(device)
        self.c_out = self.c_out.to(device)
        self.c_in = self.c_in.to(device)

    @property
    def init_noise_sigma(self):
        return self.sqrt_one_minus_alphas_cumprod[self.timesteps[0]]

117
    def scale_model_input(self, sample: torch.Tensor, timestep: Optional[int] = None) -> torch.Tensor:
Will Berman's avatar
Will Berman committed
118
119
120
121
122
        """
        Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
        current timestep.

        Args:
123
            sample (`torch.Tensor`):
Will Berman's avatar
Will Berman committed
124
125
126
127
128
                The input sample.
            timestep (`int`, *optional*):
                The current timestep in the diffusion chain.

        Returns:
129
            `torch.Tensor`:
Will Berman's avatar
Will Berman committed
130
131
132
133
134
135
                A scaled input sample.
        """
        return sample * self.c_in[timestep]

    def step(
        self,
136
137
138
        model_output: torch.Tensor,
        timestep: Union[float, torch.Tensor],
        sample: torch.Tensor,
Will Berman's avatar
Will Berman committed
139
140
141
142
143
144
145
146
        generator: Optional[torch.Generator] = None,
        return_dict: bool = True,
    ) -> Union[ConsistencyDecoderSchedulerOutput, Tuple]:
        """
        Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
        process from the learned model outputs (most often the predicted noise).

        Args:
147
            model_output (`torch.Tensor`):
Will Berman's avatar
Will Berman committed
148
149
150
                The direct output from the learned diffusion model.
            timestep (`float`):
                The current timestep in the diffusion chain.
151
            sample (`torch.Tensor`):
Will Berman's avatar
Will Berman committed
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
                A current instance of a sample created by the diffusion process.
            generator (`torch.Generator`, *optional*):
                A random number generator.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a
                [`~schedulers.scheduling_consistency_models.ConsistencyDecoderSchedulerOutput`] or `tuple`.

        Returns:
            [`~schedulers.scheduling_consistency_models.ConsistencyDecoderSchedulerOutput`] or `tuple`:
                If return_dict is `True`,
                [`~schedulers.scheduling_consistency_models.ConsistencyDecoderSchedulerOutput`] is returned, otherwise
                a tuple is returned where the first element is the sample tensor.
        """
        x_0 = self.c_out[timestep] * model_output + self.c_skip[timestep] * sample

        timestep_idx = torch.where(self.timesteps == timestep)[0]

        if timestep_idx == len(self.timesteps) - 1:
            prev_sample = x_0
        else:
            noise = randn_tensor(x_0.shape, generator=generator, dtype=x_0.dtype, device=x_0.device)
            prev_sample = (
                self.sqrt_alphas_cumprod[self.timesteps[timestep_idx + 1]].to(x_0.dtype) * x_0
                + self.sqrt_one_minus_alphas_cumprod[self.timesteps[timestep_idx + 1]].to(x_0.dtype) * noise
            )

        if not return_dict:
            return (prev_sample,)

        return ConsistencyDecoderSchedulerOutput(prev_sample=prev_sample)