test_models_unet_2d.py 9.73 KB
Newer Older
1
# coding=utf-8
Patrick von Platen's avatar
Patrick von Platen committed
2
# Copyright 2023 HuggingFace Inc.
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
import gc
17
18
19
20
21
import math
import unittest

import torch

22
23
from diffusers import UNet2DModel
from diffusers.utils import floats_tensor, logging, slow, torch_all_close, torch_device
24

25
from .test_modeling_common import ModelTesterMixin
26
27


Patrick von Platen's avatar
Patrick von Platen committed
28
logger = logging.get_logger(__name__)
29
30
31
torch.backends.cuda.matmul.allow_tf32 = False


32
class Unet2DModelTests(ModelTesterMixin, unittest.TestCase):
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
    model_class = UNet2DModel

    @property
    def dummy_input(self):
        batch_size = 4
        num_channels = 3
        sizes = (32, 32)

        noise = floats_tensor((batch_size, num_channels) + sizes).to(torch_device)
        time_step = torch.tensor([10]).to(torch_device)

        return {"sample": noise, "timestep": time_step}

    @property
    def input_shape(self):
        return (3, 32, 32)

    @property
    def output_shape(self):
        return (3, 32, 32)

    def prepare_init_args_and_inputs_for_common(self):
        init_dict = {
            "block_out_channels": (32, 64),
            "down_block_types": ("DownBlock2D", "AttnDownBlock2D"),
            "up_block_types": ("AttnUpBlock2D", "UpBlock2D"),
            "attention_head_dim": None,
            "out_channels": 3,
            "in_channels": 3,
            "layers_per_block": 2,
            "sample_size": 32,
        }
        inputs_dict = self.dummy_input
        return init_dict, inputs_dict


class UNetLDMModelTests(ModelTesterMixin, unittest.TestCase):
    model_class = UNet2DModel

    @property
    def dummy_input(self):
        batch_size = 4
        num_channels = 4
        sizes = (32, 32)

        noise = floats_tensor((batch_size, num_channels) + sizes).to(torch_device)
        time_step = torch.tensor([10]).to(torch_device)

        return {"sample": noise, "timestep": time_step}

    @property
    def input_shape(self):
        return (4, 32, 32)

    @property
    def output_shape(self):
        return (4, 32, 32)

    def prepare_init_args_and_inputs_for_common(self):
        init_dict = {
            "sample_size": 32,
            "in_channels": 4,
            "out_channels": 4,
            "layers_per_block": 2,
            "block_out_channels": (32, 64),
            "attention_head_dim": 32,
            "down_block_types": ("DownBlock2D", "DownBlock2D"),
            "up_block_types": ("UpBlock2D", "UpBlock2D"),
        }
        inputs_dict = self.dummy_input
        return init_dict, inputs_dict

    def test_from_pretrained_hub(self):
        model, loading_info = UNet2DModel.from_pretrained("fusing/unet-ldm-dummy-update", output_loading_info=True)

        self.assertIsNotNone(model)
        self.assertEqual(len(loading_info["missing_keys"]), 0)

        model.to(torch_device)
112
        image = model(**self.dummy_input).sample
113
114
115

        assert image is not None, "Make sure output is not None"

Anton Lozhkov's avatar
Anton Lozhkov committed
116
    @unittest.skipIf(torch_device != "cuda", "This test is supposed to run on GPU")
117
    def test_from_pretrained_accelerate(self):
118
        model, _ = UNet2DModel.from_pretrained("fusing/unet-ldm-dummy-update", output_loading_info=True)
119
120
121
122
123
        model.to(torch_device)
        image = model(**self.dummy_input).sample

        assert image is not None, "Make sure output is not None"

Anton Lozhkov's avatar
Anton Lozhkov committed
124
    @unittest.skipIf(torch_device != "cuda", "This test is supposed to run on GPU")
125
    def test_from_pretrained_accelerate_wont_change_results(self):
126
        # by defautl model loading will use accelerate as `low_cpu_mem_usage=True`
127
        model_accelerate, _ = UNet2DModel.from_pretrained("fusing/unet-ldm-dummy-update", output_loading_info=True)
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
        model_accelerate.to(torch_device)
        model_accelerate.eval()

        noise = torch.randn(
            1,
            model_accelerate.config.in_channels,
            model_accelerate.config.sample_size,
            model_accelerate.config.sample_size,
            generator=torch.manual_seed(0),
        )
        noise = noise.to(torch_device)
        time_step = torch.tensor([10] * noise.shape[0]).to(torch_device)

        arr_accelerate = model_accelerate(noise, time_step)["sample"]

        # two models don't need to stay in the device at the same time
        del model_accelerate
        torch.cuda.empty_cache()
        gc.collect()

148
        model_normal_load, _ = UNet2DModel.from_pretrained(
149
            "fusing/unet-ldm-dummy-update", output_loading_info=True, low_cpu_mem_usage=False
150
        )
151
152
153
154
        model_normal_load.to(torch_device)
        model_normal_load.eval()
        arr_normal_load = model_normal_load(noise, time_step)["sample"]

155
        assert torch_all_close(arr_accelerate, arr_normal_load, rtol=1e-3)
156

157
158
159
    def test_output_pretrained(self):
        model = UNet2DModel.from_pretrained("fusing/unet-ldm-dummy-update")
        model.eval()
160
        model.to(torch_device)
161

162
163
164
165
166
167
168
        noise = torch.randn(
            1,
            model.config.in_channels,
            model.config.sample_size,
            model.config.sample_size,
            generator=torch.manual_seed(0),
        )
169
170
        noise = noise.to(torch_device)
        time_step = torch.tensor([10] * noise.shape[0]).to(torch_device)
171
172

        with torch.no_grad():
173
            output = model(noise, time_step).sample
174

175
        output_slice = output[0, -1, -3:, -3:].flatten().cpu()
176
177
178
179
        # fmt: off
        expected_output_slice = torch.tensor([-13.3258, -20.1100, -15.9873, -17.6617, -23.0596, -17.9419, -13.3675, -16.1889, -12.3800])
        # fmt: on

180
        self.assertTrue(torch_all_close(output_slice, expected_output_slice, rtol=1e-3))
181
182
183
184
185
186
187
188
189
190
191


class NCSNppModelTests(ModelTesterMixin, unittest.TestCase):
    model_class = UNet2DModel

    @property
    def dummy_input(self, sizes=(32, 32)):
        batch_size = 4
        num_channels = 3

        noise = floats_tensor((batch_size, num_channels) + sizes).to(torch_device)
192
        time_step = torch.tensor(batch_size * [10]).to(dtype=torch.int32, device=torch_device)
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229

        return {"sample": noise, "timestep": time_step}

    @property
    def input_shape(self):
        return (3, 32, 32)

    @property
    def output_shape(self):
        return (3, 32, 32)

    def prepare_init_args_and_inputs_for_common(self):
        init_dict = {
            "block_out_channels": [32, 64, 64, 64],
            "in_channels": 3,
            "layers_per_block": 1,
            "out_channels": 3,
            "time_embedding_type": "fourier",
            "norm_eps": 1e-6,
            "mid_block_scale_factor": math.sqrt(2.0),
            "norm_num_groups": None,
            "down_block_types": [
                "SkipDownBlock2D",
                "AttnSkipDownBlock2D",
                "SkipDownBlock2D",
                "SkipDownBlock2D",
            ],
            "up_block_types": [
                "SkipUpBlock2D",
                "SkipUpBlock2D",
                "AttnSkipUpBlock2D",
                "SkipUpBlock2D",
            ],
        }
        inputs_dict = self.dummy_input
        return init_dict, inputs_dict

230
    @slow
231
    def test_from_pretrained_hub(self):
232
        model, loading_info = UNet2DModel.from_pretrained("google/ncsnpp-celebahq-256", output_loading_info=True)
233
234
235
236
237
238
239
240
241
242
243
        self.assertIsNotNone(model)
        self.assertEqual(len(loading_info["missing_keys"]), 0)

        model.to(torch_device)
        inputs = self.dummy_input
        noise = floats_tensor((4, 3) + (256, 256)).to(torch_device)
        inputs["sample"] = noise
        image = model(**inputs)

        assert image is not None, "Make sure output is not None"

244
    @slow
245
    def test_output_pretrained_ve_mid(self):
246
        model = UNet2DModel.from_pretrained("google/ncsnpp-celebahq-256")
247
248
249
250
251
252
253
254
255
256
257
258
259
260
        model.to(torch_device)

        torch.manual_seed(0)
        if torch.cuda.is_available():
            torch.cuda.manual_seed_all(0)

        batch_size = 4
        num_channels = 3
        sizes = (256, 256)

        noise = torch.ones((batch_size, num_channels) + sizes).to(torch_device)
        time_step = torch.tensor(batch_size * [1e-4]).to(torch_device)

        with torch.no_grad():
261
            output = model(noise, time_step).sample
262
263
264
265
266
267

        output_slice = output[0, -3:, -3:, -1].flatten().cpu()
        # fmt: off
        expected_output_slice = torch.tensor([-4836.2231, -6487.1387, -3816.7969, -7964.9253, -10966.2842, -20043.6016, 8137.0571, 2340.3499, 544.6114])
        # fmt: on

268
        self.assertTrue(torch_all_close(output_slice, expected_output_slice, rtol=1e-2))
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285

    def test_output_pretrained_ve_large(self):
        model = UNet2DModel.from_pretrained("fusing/ncsnpp-ffhq-ve-dummy-update")
        model.to(torch_device)

        torch.manual_seed(0)
        if torch.cuda.is_available():
            torch.cuda.manual_seed_all(0)

        batch_size = 4
        num_channels = 3
        sizes = (32, 32)

        noise = torch.ones((batch_size, num_channels) + sizes).to(torch_device)
        time_step = torch.tensor(batch_size * [1e-4]).to(torch_device)

        with torch.no_grad():
286
            output = model(noise, time_step).sample
287
288
289
290
291
292

        output_slice = output[0, -3:, -3:, -1].flatten().cpu()
        # fmt: off
        expected_output_slice = torch.tensor([-0.0325, -0.0900, -0.0869, -0.0332, -0.0725, -0.0270, -0.0101, 0.0227, 0.0256])
        # fmt: on

293
        self.assertTrue(torch_all_close(output_slice, expected_output_slice, rtol=1e-2))
294
295
296
297

    def test_forward_with_norm_groups(self):
        # not required for this model
        pass