attention_processor.py 42.4 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Callable, Optional, Union

import torch
import torch.nn.functional as F
from torch import nn

from ..utils import deprecate, logging
from ..utils.import_utils import is_xformers_available


logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


if is_xformers_available():
    import xformers
    import xformers.ops
else:
    xformers = None


class Attention(nn.Module):
    r"""
    A cross attention layer.

    Parameters:
        query_dim (`int`): The number of channels in the query.
        cross_attention_dim (`int`, *optional*):
            The number of channels in the encoder_hidden_states. If not given, defaults to `query_dim`.
        heads (`int`,  *optional*, defaults to 8): The number of heads to use for multi-head attention.
        dim_head (`int`,  *optional*, defaults to 64): The number of channels in each head.
        dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
        bias (`bool`, *optional*, defaults to False):
            Set to `True` for the query, key, and value linear layers to contain a bias parameter.
    """

    def __init__(
        self,
        query_dim: int,
        cross_attention_dim: Optional[int] = None,
        heads: int = 8,
        dim_head: int = 64,
        dropout: float = 0.0,
        bias=False,
        upcast_attention: bool = False,
        upcast_softmax: bool = False,
59
60
        cross_attention_norm: Optional[str] = None,
        cross_attention_norm_num_groups: int = 32,
Patrick von Platen's avatar
Patrick von Platen committed
61
62
63
64
        added_kv_proj_dim: Optional[int] = None,
        norm_num_groups: Optional[int] = None,
        out_bias: bool = True,
        scale_qk: bool = True,
65
        only_cross_attention: bool = False,
Patrick von Platen's avatar
Patrick von Platen committed
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
        processor: Optional["AttnProcessor"] = None,
    ):
        super().__init__()
        inner_dim = dim_head * heads
        cross_attention_dim = cross_attention_dim if cross_attention_dim is not None else query_dim
        self.upcast_attention = upcast_attention
        self.upcast_softmax = upcast_softmax

        self.scale = dim_head**-0.5 if scale_qk else 1.0

        self.heads = heads
        # for slice_size > 0 the attention score computation
        # is split across the batch axis to save memory
        # You can set slice_size with `set_attention_slice`
        self.sliceable_head_dim = heads

        self.added_kv_proj_dim = added_kv_proj_dim
83
84
85
86
87
88
        self.only_cross_attention = only_cross_attention

        if self.added_kv_proj_dim is None and self.only_cross_attention:
            raise ValueError(
                "`only_cross_attention` can only be set to True if `added_kv_proj_dim` is not None. Make sure to set either `only_cross_attention=False` or define `added_kv_proj_dim`."
            )
Patrick von Platen's avatar
Patrick von Platen committed
89
90

        if norm_num_groups is not None:
91
            self.group_norm = nn.GroupNorm(num_channels=query_dim, num_groups=norm_num_groups, eps=1e-5, affine=True)
Patrick von Platen's avatar
Patrick von Platen committed
92
93
94
        else:
            self.group_norm = None

95
96
97
        if cross_attention_norm is None:
            self.norm_cross = None
        elif cross_attention_norm == "layer_norm":
Patrick von Platen's avatar
Patrick von Platen committed
98
            self.norm_cross = nn.LayerNorm(cross_attention_dim)
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
        elif cross_attention_norm == "group_norm":
            if self.added_kv_proj_dim is not None:
                # The given `encoder_hidden_states` are initially of shape
                # (batch_size, seq_len, added_kv_proj_dim) before being projected
                # to (batch_size, seq_len, cross_attention_dim). The norm is applied
                # before the projection, so we need to use `added_kv_proj_dim` as
                # the number of channels for the group norm.
                norm_cross_num_channels = added_kv_proj_dim
            else:
                norm_cross_num_channels = cross_attention_dim

            self.norm_cross = nn.GroupNorm(
                num_channels=norm_cross_num_channels, num_groups=cross_attention_norm_num_groups, eps=1e-5, affine=True
            )
        else:
            raise ValueError(
                f"unknown cross_attention_norm: {cross_attention_norm}. Should be None, 'layer_norm' or 'group_norm'"
            )
Patrick von Platen's avatar
Patrick von Platen committed
117
118

        self.to_q = nn.Linear(query_dim, inner_dim, bias=bias)
119
120
121
122
123
124
125
126

        if not self.only_cross_attention:
            # only relevant for the `AddedKVProcessor` classes
            self.to_k = nn.Linear(cross_attention_dim, inner_dim, bias=bias)
            self.to_v = nn.Linear(cross_attention_dim, inner_dim, bias=bias)
        else:
            self.to_k = None
            self.to_v = None
Patrick von Platen's avatar
Patrick von Platen committed
127
128

        if self.added_kv_proj_dim is not None:
129
130
            self.add_k_proj = nn.Linear(added_kv_proj_dim, inner_dim)
            self.add_v_proj = nn.Linear(added_kv_proj_dim, inner_dim)
Patrick von Platen's avatar
Patrick von Platen committed
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151

        self.to_out = nn.ModuleList([])
        self.to_out.append(nn.Linear(inner_dim, query_dim, bias=out_bias))
        self.to_out.append(nn.Dropout(dropout))

        # set attention processor
        # We use the AttnProcessor2_0 by default when torch 2.x is used which uses
        # torch.nn.functional.scaled_dot_product_attention for native Flash/memory_efficient_attention
        # but only if it has the default `scale` argument. TODO remove scale_qk check when we move to torch 2.1
        if processor is None:
            processor = (
                AttnProcessor2_0() if hasattr(F, "scaled_dot_product_attention") and scale_qk else AttnProcessor()
            )
        self.set_processor(processor)

    def set_use_memory_efficient_attention_xformers(
        self, use_memory_efficient_attention_xformers: bool, attention_op: Optional[Callable] = None
    ):
        is_lora = hasattr(self, "processor") and isinstance(
            self.processor, (LoRAAttnProcessor, LoRAXFormersAttnProcessor)
        )
152
153
154
        is_custom_diffusion = hasattr(self, "processor") and isinstance(
            self.processor, (CustomDiffusionAttnProcessor, CustomDiffusionXFormersAttnProcessor)
        )
Patrick von Platen's avatar
Patrick von Platen committed
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197

        if use_memory_efficient_attention_xformers:
            if self.added_kv_proj_dim is not None:
                # TODO(Anton, Patrick, Suraj, William) - currently xformers doesn't work for UnCLIP
                # which uses this type of cross attention ONLY because the attention mask of format
                # [0, ..., -10.000, ..., 0, ...,] is not supported
                raise NotImplementedError(
                    "Memory efficient attention with `xformers` is currently not supported when"
                    " `self.added_kv_proj_dim` is defined."
                )
            elif not is_xformers_available():
                raise ModuleNotFoundError(
                    (
                        "Refer to https://github.com/facebookresearch/xformers for more information on how to install"
                        " xformers"
                    ),
                    name="xformers",
                )
            elif not torch.cuda.is_available():
                raise ValueError(
                    "torch.cuda.is_available() should be True but is False. xformers' memory efficient attention is"
                    " only available for GPU "
                )
            else:
                try:
                    # Make sure we can run the memory efficient attention
                    _ = xformers.ops.memory_efficient_attention(
                        torch.randn((1, 2, 40), device="cuda"),
                        torch.randn((1, 2, 40), device="cuda"),
                        torch.randn((1, 2, 40), device="cuda"),
                    )
                except Exception as e:
                    raise e

            if is_lora:
                processor = LoRAXFormersAttnProcessor(
                    hidden_size=self.processor.hidden_size,
                    cross_attention_dim=self.processor.cross_attention_dim,
                    rank=self.processor.rank,
                    attention_op=attention_op,
                )
                processor.load_state_dict(self.processor.state_dict())
                processor.to(self.processor.to_q_lora.up.weight.device)
198
199
200
201
202
203
204
205
206
207
208
            elif is_custom_diffusion:
                processor = CustomDiffusionXFormersAttnProcessor(
                    train_kv=self.processor.train_kv,
                    train_q_out=self.processor.train_q_out,
                    hidden_size=self.processor.hidden_size,
                    cross_attention_dim=self.processor.cross_attention_dim,
                    attention_op=attention_op,
                )
                processor.load_state_dict(self.processor.state_dict())
                if hasattr(self.processor, "to_k_custom_diffusion"):
                    processor.to(self.processor.to_k_custom_diffusion.weight.device)
Patrick von Platen's avatar
Patrick von Platen committed
209
210
211
212
213
214
215
216
217
218
219
            else:
                processor = XFormersAttnProcessor(attention_op=attention_op)
        else:
            if is_lora:
                processor = LoRAAttnProcessor(
                    hidden_size=self.processor.hidden_size,
                    cross_attention_dim=self.processor.cross_attention_dim,
                    rank=self.processor.rank,
                )
                processor.load_state_dict(self.processor.state_dict())
                processor.to(self.processor.to_q_lora.up.weight.device)
220
221
222
223
224
225
226
227
228
229
            elif is_custom_diffusion:
                processor = CustomDiffusionAttnProcessor(
                    train_kv=self.processor.train_kv,
                    train_q_out=self.processor.train_q_out,
                    hidden_size=self.processor.hidden_size,
                    cross_attention_dim=self.processor.cross_attention_dim,
                )
                processor.load_state_dict(self.processor.state_dict())
                if hasattr(self.processor, "to_k_custom_diffusion"):
                    processor.to(self.processor.to_k_custom_diffusion.weight.device)
Patrick von Platen's avatar
Patrick von Platen committed
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
            else:
                processor = AttnProcessor()

        self.set_processor(processor)

    def set_attention_slice(self, slice_size):
        if slice_size is not None and slice_size > self.sliceable_head_dim:
            raise ValueError(f"slice_size {slice_size} has to be smaller or equal to {self.sliceable_head_dim}.")

        if slice_size is not None and self.added_kv_proj_dim is not None:
            processor = SlicedAttnAddedKVProcessor(slice_size)
        elif slice_size is not None:
            processor = SlicedAttnProcessor(slice_size)
        elif self.added_kv_proj_dim is not None:
            processor = AttnAddedKVProcessor()
        else:
            processor = AttnProcessor()

        self.set_processor(processor)

    def set_processor(self, processor: "AttnProcessor"):
        # if current processor is in `self._modules` and if passed `processor` is not, we need to
        # pop `processor` from `self._modules`
        if (
            hasattr(self, "processor")
            and isinstance(self.processor, torch.nn.Module)
            and not isinstance(processor, torch.nn.Module)
        ):
            logger.info(f"You are removing possibly trained weights of {self.processor} with {processor}")
            self._modules.pop("processor")

        self.processor = processor

    def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None, **cross_attention_kwargs):
        # The `Attention` class can call different attention processors / attention functions
        # here we simply pass along all tensors to the selected processor class
        # For standard processors that are defined here, `**cross_attention_kwargs` is empty
        return self.processor(
            self,
            hidden_states,
            encoder_hidden_states=encoder_hidden_states,
            attention_mask=attention_mask,
            **cross_attention_kwargs,
        )

    def batch_to_head_dim(self, tensor):
        head_size = self.heads
        batch_size, seq_len, dim = tensor.shape
        tensor = tensor.reshape(batch_size // head_size, head_size, seq_len, dim)
        tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size // head_size, seq_len, dim * head_size)
        return tensor

282
    def head_to_batch_dim(self, tensor, out_dim=3):
Patrick von Platen's avatar
Patrick von Platen committed
283
284
285
        head_size = self.heads
        batch_size, seq_len, dim = tensor.shape
        tensor = tensor.reshape(batch_size, seq_len, head_size, dim // head_size)
286
287
288
289
290
        tensor = tensor.permute(0, 2, 1, 3)

        if out_dim == 3:
            tensor = tensor.reshape(batch_size * head_size, seq_len, dim // head_size)

Patrick von Platen's avatar
Patrick von Platen committed
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
        return tensor

    def get_attention_scores(self, query, key, attention_mask=None):
        dtype = query.dtype
        if self.upcast_attention:
            query = query.float()
            key = key.float()

        if attention_mask is None:
            baddbmm_input = torch.empty(
                query.shape[0], query.shape[1], key.shape[1], dtype=query.dtype, device=query.device
            )
            beta = 0
        else:
            baddbmm_input = attention_mask
            beta = 1

        attention_scores = torch.baddbmm(
            baddbmm_input,
            query,
            key.transpose(-1, -2),
            beta=beta,
            alpha=self.scale,
        )

        if self.upcast_softmax:
            attention_scores = attention_scores.float()

        attention_probs = attention_scores.softmax(dim=-1)
        attention_probs = attention_probs.to(dtype)

        return attention_probs

324
    def prepare_attention_mask(self, attention_mask, target_length, batch_size=None, out_dim=3):
Patrick von Platen's avatar
Patrick von Platen committed
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
        if batch_size is None:
            deprecate(
                "batch_size=None",
                "0.0.15",
                (
                    "Not passing the `batch_size` parameter to `prepare_attention_mask` can lead to incorrect"
                    " attention mask preparation and is deprecated behavior. Please make sure to pass `batch_size` to"
                    " `prepare_attention_mask` when preparing the attention_mask."
                ),
            )
            batch_size = 1

        head_size = self.heads
        if attention_mask is None:
            return attention_mask

        if attention_mask.shape[-1] != target_length:
            if attention_mask.device.type == "mps":
                # HACK: MPS: Does not support padding by greater than dimension of input tensor.
                # Instead, we can manually construct the padding tensor.
                padding_shape = (attention_mask.shape[0], attention_mask.shape[1], target_length)
                padding = torch.zeros(padding_shape, dtype=attention_mask.dtype, device=attention_mask.device)
                attention_mask = torch.cat([attention_mask, padding], dim=2)
            else:
                attention_mask = F.pad(attention_mask, (0, target_length), value=0.0)

351
352
353
354
355
356
357
        if out_dim == 3:
            if attention_mask.shape[0] < batch_size * head_size:
                attention_mask = attention_mask.repeat_interleave(head_size, dim=0)
        elif out_dim == 4:
            attention_mask = attention_mask.unsqueeze(1)
            attention_mask = attention_mask.repeat_interleave(head_size, dim=1)

Patrick von Platen's avatar
Patrick von Platen committed
358
359
        return attention_mask

360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
    def norm_encoder_hidden_states(self, encoder_hidden_states):
        assert self.norm_cross is not None, "self.norm_cross must be defined to call self.norm_encoder_hidden_states"

        if isinstance(self.norm_cross, nn.LayerNorm):
            encoder_hidden_states = self.norm_cross(encoder_hidden_states)
        elif isinstance(self.norm_cross, nn.GroupNorm):
            # Group norm norms along the channels dimension and expects
            # input to be in the shape of (N, C, *). In this case, we want
            # to norm along the hidden dimension, so we need to move
            # (batch_size, sequence_length, hidden_size) ->
            # (batch_size, hidden_size, sequence_length)
            encoder_hidden_states = encoder_hidden_states.transpose(1, 2)
            encoder_hidden_states = self.norm_cross(encoder_hidden_states)
            encoder_hidden_states = encoder_hidden_states.transpose(1, 2)
        else:
            assert False

        return encoder_hidden_states

Patrick von Platen's avatar
Patrick von Platen committed
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395

class AttnProcessor:
    def __call__(
        self,
        attn: Attention,
        hidden_states,
        encoder_hidden_states=None,
        attention_mask=None,
    ):
        batch_size, sequence_length, _ = (
            hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
        )
        attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
        query = attn.to_q(hidden_states)

        if encoder_hidden_states is None:
            encoder_hidden_states = hidden_states
396
397
        elif attn.norm_cross:
            encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
Patrick von Platen's avatar
Patrick von Platen committed
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462

        key = attn.to_k(encoder_hidden_states)
        value = attn.to_v(encoder_hidden_states)

        query = attn.head_to_batch_dim(query)
        key = attn.head_to_batch_dim(key)
        value = attn.head_to_batch_dim(value)

        attention_probs = attn.get_attention_scores(query, key, attention_mask)
        hidden_states = torch.bmm(attention_probs, value)
        hidden_states = attn.batch_to_head_dim(hidden_states)

        # linear proj
        hidden_states = attn.to_out[0](hidden_states)
        # dropout
        hidden_states = attn.to_out[1](hidden_states)

        return hidden_states


class LoRALinearLayer(nn.Module):
    def __init__(self, in_features, out_features, rank=4):
        super().__init__()

        if rank > min(in_features, out_features):
            raise ValueError(f"LoRA rank {rank} must be less or equal than {min(in_features, out_features)}")

        self.down = nn.Linear(in_features, rank, bias=False)
        self.up = nn.Linear(rank, out_features, bias=False)

        nn.init.normal_(self.down.weight, std=1 / rank)
        nn.init.zeros_(self.up.weight)

    def forward(self, hidden_states):
        orig_dtype = hidden_states.dtype
        dtype = self.down.weight.dtype

        down_hidden_states = self.down(hidden_states.to(dtype))
        up_hidden_states = self.up(down_hidden_states)

        return up_hidden_states.to(orig_dtype)


class LoRAAttnProcessor(nn.Module):
    def __init__(self, hidden_size, cross_attention_dim=None, rank=4):
        super().__init__()

        self.hidden_size = hidden_size
        self.cross_attention_dim = cross_attention_dim
        self.rank = rank

        self.to_q_lora = LoRALinearLayer(hidden_size, hidden_size, rank)
        self.to_k_lora = LoRALinearLayer(cross_attention_dim or hidden_size, hidden_size, rank)
        self.to_v_lora = LoRALinearLayer(cross_attention_dim or hidden_size, hidden_size, rank)
        self.to_out_lora = LoRALinearLayer(hidden_size, hidden_size, rank)

    def __call__(self, attn: Attention, hidden_states, encoder_hidden_states=None, attention_mask=None, scale=1.0):
        batch_size, sequence_length, _ = (
            hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
        )
        attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)

        query = attn.to_q(hidden_states) + scale * self.to_q_lora(hidden_states)
        query = attn.head_to_batch_dim(query)

463
464
465
466
        if encoder_hidden_states is None:
            encoder_hidden_states = hidden_states
        elif attn.norm_cross:
            encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
Patrick von Platen's avatar
Patrick von Platen committed
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

        key = attn.to_k(encoder_hidden_states) + scale * self.to_k_lora(encoder_hidden_states)
        value = attn.to_v(encoder_hidden_states) + scale * self.to_v_lora(encoder_hidden_states)

        key = attn.head_to_batch_dim(key)
        value = attn.head_to_batch_dim(value)

        attention_probs = attn.get_attention_scores(query, key, attention_mask)
        hidden_states = torch.bmm(attention_probs, value)
        hidden_states = attn.batch_to_head_dim(hidden_states)

        # linear proj
        hidden_states = attn.to_out[0](hidden_states) + scale * self.to_out_lora(hidden_states)
        # dropout
        hidden_states = attn.to_out[1](hidden_states)

        return hidden_states


486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
class CustomDiffusionAttnProcessor(nn.Module):
    def __init__(
        self,
        train_kv=True,
        train_q_out=True,
        hidden_size=None,
        cross_attention_dim=None,
        out_bias=True,
        dropout=0.0,
    ):
        super().__init__()
        self.train_kv = train_kv
        self.train_q_out = train_q_out

        self.hidden_size = hidden_size
        self.cross_attention_dim = cross_attention_dim

        # `_custom_diffusion` id for easy serialization and loading.
        if self.train_kv:
            self.to_k_custom_diffusion = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
            self.to_v_custom_diffusion = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
        if self.train_q_out:
            self.to_q_custom_diffusion = nn.Linear(hidden_size, hidden_size, bias=False)
            self.to_out_custom_diffusion = nn.ModuleList([])
            self.to_out_custom_diffusion.append(nn.Linear(hidden_size, hidden_size, bias=out_bias))
            self.to_out_custom_diffusion.append(nn.Dropout(dropout))

    def __call__(self, attn: Attention, hidden_states, encoder_hidden_states=None, attention_mask=None):
        batch_size, sequence_length, _ = hidden_states.shape
        attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
        if self.train_q_out:
            query = self.to_q_custom_diffusion(hidden_states)
        else:
            query = attn.to_q(hidden_states)

        if encoder_hidden_states is None:
            crossattn = False
            encoder_hidden_states = hidden_states
        else:
            crossattn = True
            if attn.norm_cross:
                encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)

        if self.train_kv:
            key = self.to_k_custom_diffusion(encoder_hidden_states)
            value = self.to_v_custom_diffusion(encoder_hidden_states)
        else:
            key = attn.to_k(encoder_hidden_states)
            value = attn.to_v(encoder_hidden_states)

        if crossattn:
            detach = torch.ones_like(key)
            detach[:, :1, :] = detach[:, :1, :] * 0.0
            key = detach * key + (1 - detach) * key.detach()
            value = detach * value + (1 - detach) * value.detach()

        query = attn.head_to_batch_dim(query)
        key = attn.head_to_batch_dim(key)
        value = attn.head_to_batch_dim(value)

        attention_probs = attn.get_attention_scores(query, key, attention_mask)
        hidden_states = torch.bmm(attention_probs, value)
        hidden_states = attn.batch_to_head_dim(hidden_states)

        if self.train_q_out:
            # linear proj
            hidden_states = self.to_out_custom_diffusion[0](hidden_states)
            # dropout
            hidden_states = self.to_out_custom_diffusion[1](hidden_states)
        else:
            # linear proj
            hidden_states = attn.to_out[0](hidden_states)
            # dropout
            hidden_states = attn.to_out[1](hidden_states)

        return hidden_states


Patrick von Platen's avatar
Patrick von Platen committed
564
565
566
567
568
569
570
571
class AttnAddedKVProcessor:
    def __call__(self, attn: Attention, hidden_states, encoder_hidden_states=None, attention_mask=None):
        residual = hidden_states
        hidden_states = hidden_states.view(hidden_states.shape[0], hidden_states.shape[1], -1).transpose(1, 2)
        batch_size, sequence_length, _ = hidden_states.shape

        attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)

572
573
574
575
576
        if encoder_hidden_states is None:
            encoder_hidden_states = hidden_states
        elif attn.norm_cross:
            encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)

Patrick von Platen's avatar
Patrick von Platen committed
577
578
579
580
581
582
583
584
585
586
        hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)

        query = attn.to_q(hidden_states)
        query = attn.head_to_batch_dim(query)

        encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states)
        encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states)
        encoder_hidden_states_key_proj = attn.head_to_batch_dim(encoder_hidden_states_key_proj)
        encoder_hidden_states_value_proj = attn.head_to_batch_dim(encoder_hidden_states_value_proj)

587
588
589
590
591
592
593
594
595
596
        if not attn.only_cross_attention:
            key = attn.to_k(hidden_states)
            value = attn.to_v(hidden_states)
            key = attn.head_to_batch_dim(key)
            value = attn.head_to_batch_dim(value)
            key = torch.cat([encoder_hidden_states_key_proj, key], dim=1)
            value = torch.cat([encoder_hidden_states_value_proj, value], dim=1)
        else:
            key = encoder_hidden_states_key_proj
            value = encoder_hidden_states_value_proj
Patrick von Platen's avatar
Patrick von Platen committed
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612

        attention_probs = attn.get_attention_scores(query, key, attention_mask)
        hidden_states = torch.bmm(attention_probs, value)
        hidden_states = attn.batch_to_head_dim(hidden_states)

        # linear proj
        hidden_states = attn.to_out[0](hidden_states)
        # dropout
        hidden_states = attn.to_out[1](hidden_states)

        hidden_states = hidden_states.transpose(-1, -2).reshape(residual.shape)
        hidden_states = hidden_states + residual

        return hidden_states


613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
class AttnAddedKVProcessor2_0:
    def __init__(self):
        if not hasattr(F, "scaled_dot_product_attention"):
            raise ImportError(
                "AttnAddedKVProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0."
            )

    def __call__(self, attn: Attention, hidden_states, encoder_hidden_states=None, attention_mask=None):
        residual = hidden_states
        hidden_states = hidden_states.view(hidden_states.shape[0], hidden_states.shape[1], -1).transpose(1, 2)
        batch_size, sequence_length, _ = hidden_states.shape

        attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size, out_dim=4)

        if encoder_hidden_states is None:
            encoder_hidden_states = hidden_states
        elif attn.norm_cross:
            encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)

        hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)

        query = attn.to_q(hidden_states)
        query = attn.head_to_batch_dim(query, out_dim=4)

        encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states)
        encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states)
        encoder_hidden_states_key_proj = attn.head_to_batch_dim(encoder_hidden_states_key_proj, out_dim=4)
        encoder_hidden_states_value_proj = attn.head_to_batch_dim(encoder_hidden_states_value_proj, out_dim=4)

        if not attn.only_cross_attention:
            key = attn.to_k(hidden_states)
            value = attn.to_v(hidden_states)
            key = attn.head_to_batch_dim(key, out_dim=4)
            value = attn.head_to_batch_dim(value, out_dim=4)
            key = torch.cat([encoder_hidden_states_key_proj, key], dim=2)
            value = torch.cat([encoder_hidden_states_value_proj, value], dim=2)
        else:
            key = encoder_hidden_states_key_proj
            value = encoder_hidden_states_value_proj

        # the output of sdp = (batch, num_heads, seq_len, head_dim)
        # TODO: add support for attn.scale when we move to Torch 2.1
        hidden_states = F.scaled_dot_product_attention(
            query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
        )
        hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, residual.shape[1])

        # linear proj
        hidden_states = attn.to_out[0](hidden_states)
        # dropout
        hidden_states = attn.to_out[1](hidden_states)

        hidden_states = hidden_states.transpose(-1, -2).reshape(residual.shape)
        hidden_states = hidden_states + residual

        return hidden_states


Patrick von Platen's avatar
Patrick von Platen committed
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
class XFormersAttnProcessor:
    def __init__(self, attention_op: Optional[Callable] = None):
        self.attention_op = attention_op

    def __call__(self, attn: Attention, hidden_states, encoder_hidden_states=None, attention_mask=None):
        batch_size, sequence_length, _ = (
            hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
        )

        attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)

        query = attn.to_q(hidden_states)

        if encoder_hidden_states is None:
            encoder_hidden_states = hidden_states
686
687
        elif attn.norm_cross:
            encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
Patrick von Platen's avatar
Patrick von Platen committed
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729

        key = attn.to_k(encoder_hidden_states)
        value = attn.to_v(encoder_hidden_states)

        query = attn.head_to_batch_dim(query).contiguous()
        key = attn.head_to_batch_dim(key).contiguous()
        value = attn.head_to_batch_dim(value).contiguous()

        hidden_states = xformers.ops.memory_efficient_attention(
            query, key, value, attn_bias=attention_mask, op=self.attention_op, scale=attn.scale
        )
        hidden_states = hidden_states.to(query.dtype)
        hidden_states = attn.batch_to_head_dim(hidden_states)

        # linear proj
        hidden_states = attn.to_out[0](hidden_states)
        # dropout
        hidden_states = attn.to_out[1](hidden_states)
        return hidden_states


class AttnProcessor2_0:
    def __init__(self):
        if not hasattr(F, "scaled_dot_product_attention"):
            raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")

    def __call__(self, attn: Attention, hidden_states, encoder_hidden_states=None, attention_mask=None):
        batch_size, sequence_length, _ = (
            hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
        )
        inner_dim = hidden_states.shape[-1]

        if attention_mask is not None:
            attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
            # scaled_dot_product_attention expects attention_mask shape to be
            # (batch, heads, source_length, target_length)
            attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])

        query = attn.to_q(hidden_states)

        if encoder_hidden_states is None:
            encoder_hidden_states = hidden_states
730
731
        elif attn.norm_cross:
            encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
Patrick von Platen's avatar
Patrick von Platen committed
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779

        key = attn.to_k(encoder_hidden_states)
        value = attn.to_v(encoder_hidden_states)

        head_dim = inner_dim // attn.heads
        query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

        # the output of sdp = (batch, num_heads, seq_len, head_dim)
        # TODO: add support for attn.scale when we move to Torch 2.1
        hidden_states = F.scaled_dot_product_attention(
            query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
        )

        hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
        hidden_states = hidden_states.to(query.dtype)

        # linear proj
        hidden_states = attn.to_out[0](hidden_states)
        # dropout
        hidden_states = attn.to_out[1](hidden_states)
        return hidden_states


class LoRAXFormersAttnProcessor(nn.Module):
    def __init__(self, hidden_size, cross_attention_dim, rank=4, attention_op: Optional[Callable] = None):
        super().__init__()

        self.hidden_size = hidden_size
        self.cross_attention_dim = cross_attention_dim
        self.rank = rank
        self.attention_op = attention_op

        self.to_q_lora = LoRALinearLayer(hidden_size, hidden_size, rank)
        self.to_k_lora = LoRALinearLayer(cross_attention_dim or hidden_size, hidden_size, rank)
        self.to_v_lora = LoRALinearLayer(cross_attention_dim or hidden_size, hidden_size, rank)
        self.to_out_lora = LoRALinearLayer(hidden_size, hidden_size, rank)

    def __call__(self, attn: Attention, hidden_states, encoder_hidden_states=None, attention_mask=None, scale=1.0):
        batch_size, sequence_length, _ = (
            hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
        )
        attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)

        query = attn.to_q(hidden_states) + scale * self.to_q_lora(hidden_states)
        query = attn.head_to_batch_dim(query).contiguous()

780
781
782
783
        if encoder_hidden_states is None:
            encoder_hidden_states = hidden_states
        elif attn.norm_cross:
            encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
Patrick von Platen's avatar
Patrick von Platen committed
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803

        key = attn.to_k(encoder_hidden_states) + scale * self.to_k_lora(encoder_hidden_states)
        value = attn.to_v(encoder_hidden_states) + scale * self.to_v_lora(encoder_hidden_states)

        key = attn.head_to_batch_dim(key).contiguous()
        value = attn.head_to_batch_dim(value).contiguous()

        hidden_states = xformers.ops.memory_efficient_attention(
            query, key, value, attn_bias=attention_mask, op=self.attention_op, scale=attn.scale
        )
        hidden_states = attn.batch_to_head_dim(hidden_states)

        # linear proj
        hidden_states = attn.to_out[0](hidden_states) + scale * self.to_out_lora(hidden_states)
        # dropout
        hidden_states = attn.to_out[1](hidden_states)

        return hidden_states


804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
class CustomDiffusionXFormersAttnProcessor(nn.Module):
    def __init__(
        self,
        train_kv=True,
        train_q_out=False,
        hidden_size=None,
        cross_attention_dim=None,
        out_bias=True,
        dropout=0.0,
        attention_op: Optional[Callable] = None,
    ):
        super().__init__()
        self.train_kv = train_kv
        self.train_q_out = train_q_out

        self.hidden_size = hidden_size
        self.cross_attention_dim = cross_attention_dim
        self.attention_op = attention_op

        # `_custom_diffusion` id for easy serialization and loading.
        if self.train_kv:
            self.to_k_custom_diffusion = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
            self.to_v_custom_diffusion = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
        if self.train_q_out:
            self.to_q_custom_diffusion = nn.Linear(hidden_size, hidden_size, bias=False)
            self.to_out_custom_diffusion = nn.ModuleList([])
            self.to_out_custom_diffusion.append(nn.Linear(hidden_size, hidden_size, bias=out_bias))
            self.to_out_custom_diffusion.append(nn.Dropout(dropout))

    def __call__(self, attn: Attention, hidden_states, encoder_hidden_states=None, attention_mask=None):
        batch_size, sequence_length, _ = (
            hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
        )

        attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)

        if self.train_q_out:
            query = self.to_q_custom_diffusion(hidden_states)
        else:
            query = attn.to_q(hidden_states)

        if encoder_hidden_states is None:
            crossattn = False
            encoder_hidden_states = hidden_states
        else:
            crossattn = True
            if attn.norm_cross:
                encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)

        if self.train_kv:
            key = self.to_k_custom_diffusion(encoder_hidden_states)
            value = self.to_v_custom_diffusion(encoder_hidden_states)
        else:
            key = attn.to_k(encoder_hidden_states)
            value = attn.to_v(encoder_hidden_states)

        if crossattn:
            detach = torch.ones_like(key)
            detach[:, :1, :] = detach[:, :1, :] * 0.0
            key = detach * key + (1 - detach) * key.detach()
            value = detach * value + (1 - detach) * value.detach()

        query = attn.head_to_batch_dim(query).contiguous()
        key = attn.head_to_batch_dim(key).contiguous()
        value = attn.head_to_batch_dim(value).contiguous()

        hidden_states = xformers.ops.memory_efficient_attention(
            query, key, value, attn_bias=attention_mask, op=self.attention_op, scale=attn.scale
        )
        hidden_states = hidden_states.to(query.dtype)
        hidden_states = attn.batch_to_head_dim(hidden_states)

        if self.train_q_out:
            # linear proj
            hidden_states = self.to_out_custom_diffusion[0](hidden_states)
            # dropout
            hidden_states = self.to_out_custom_diffusion[1](hidden_states)
        else:
            # linear proj
            hidden_states = attn.to_out[0](hidden_states)
            # dropout
            hidden_states = attn.to_out[1](hidden_states)
        return hidden_states


Patrick von Platen's avatar
Patrick von Platen committed
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
class SlicedAttnProcessor:
    def __init__(self, slice_size):
        self.slice_size = slice_size

    def __call__(self, attn: Attention, hidden_states, encoder_hidden_states=None, attention_mask=None):
        batch_size, sequence_length, _ = (
            hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
        )
        attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)

        query = attn.to_q(hidden_states)
        dim = query.shape[-1]
        query = attn.head_to_batch_dim(query)

        if encoder_hidden_states is None:
            encoder_hidden_states = hidden_states
905
906
        elif attn.norm_cross:
            encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
Patrick von Platen's avatar
Patrick von Platen committed
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953

        key = attn.to_k(encoder_hidden_states)
        value = attn.to_v(encoder_hidden_states)
        key = attn.head_to_batch_dim(key)
        value = attn.head_to_batch_dim(value)

        batch_size_attention, query_tokens, _ = query.shape
        hidden_states = torch.zeros(
            (batch_size_attention, query_tokens, dim // attn.heads), device=query.device, dtype=query.dtype
        )

        for i in range(batch_size_attention // self.slice_size):
            start_idx = i * self.slice_size
            end_idx = (i + 1) * self.slice_size

            query_slice = query[start_idx:end_idx]
            key_slice = key[start_idx:end_idx]
            attn_mask_slice = attention_mask[start_idx:end_idx] if attention_mask is not None else None

            attn_slice = attn.get_attention_scores(query_slice, key_slice, attn_mask_slice)

            attn_slice = torch.bmm(attn_slice, value[start_idx:end_idx])

            hidden_states[start_idx:end_idx] = attn_slice

        hidden_states = attn.batch_to_head_dim(hidden_states)

        # linear proj
        hidden_states = attn.to_out[0](hidden_states)
        # dropout
        hidden_states = attn.to_out[1](hidden_states)

        return hidden_states


class SlicedAttnAddedKVProcessor:
    def __init__(self, slice_size):
        self.slice_size = slice_size

    def __call__(self, attn: "Attention", hidden_states, encoder_hidden_states=None, attention_mask=None):
        residual = hidden_states
        hidden_states = hidden_states.view(hidden_states.shape[0], hidden_states.shape[1], -1).transpose(1, 2)

        batch_size, sequence_length, _ = hidden_states.shape

        attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)

954
955
956
957
958
        if encoder_hidden_states is None:
            encoder_hidden_states = hidden_states
        elif attn.norm_cross:
            encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)

Patrick von Platen's avatar
Patrick von Platen committed
959
960
961
962
963
964
965
966
967
968
969
970
        hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)

        query = attn.to_q(hidden_states)
        dim = query.shape[-1]
        query = attn.head_to_batch_dim(query)

        encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states)
        encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states)

        encoder_hidden_states_key_proj = attn.head_to_batch_dim(encoder_hidden_states_key_proj)
        encoder_hidden_states_value_proj = attn.head_to_batch_dim(encoder_hidden_states_value_proj)

971
972
973
974
975
976
977
978
979
980
        if not attn.only_cross_attention:
            key = attn.to_k(hidden_states)
            value = attn.to_v(hidden_states)
            key = attn.head_to_batch_dim(key)
            value = attn.head_to_batch_dim(value)
            key = torch.cat([encoder_hidden_states_key_proj, key], dim=1)
            value = torch.cat([encoder_hidden_states_value_proj, value], dim=1)
        else:
            key = encoder_hidden_states_key_proj
            value = encoder_hidden_states_value_proj
Patrick von Platen's avatar
Patrick von Platen committed
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015

        batch_size_attention, query_tokens, _ = query.shape
        hidden_states = torch.zeros(
            (batch_size_attention, query_tokens, dim // attn.heads), device=query.device, dtype=query.dtype
        )

        for i in range(batch_size_attention // self.slice_size):
            start_idx = i * self.slice_size
            end_idx = (i + 1) * self.slice_size

            query_slice = query[start_idx:end_idx]
            key_slice = key[start_idx:end_idx]
            attn_mask_slice = attention_mask[start_idx:end_idx] if attention_mask is not None else None

            attn_slice = attn.get_attention_scores(query_slice, key_slice, attn_mask_slice)

            attn_slice = torch.bmm(attn_slice, value[start_idx:end_idx])

            hidden_states[start_idx:end_idx] = attn_slice

        hidden_states = attn.batch_to_head_dim(hidden_states)

        # linear proj
        hidden_states = attn.to_out[0](hidden_states)
        # dropout
        hidden_states = attn.to_out[1](hidden_states)

        hidden_states = hidden_states.transpose(-1, -2).reshape(residual.shape)
        hidden_states = hidden_states + residual

        return hidden_states


AttentionProcessor = Union[
    AttnProcessor,
1016
    AttnProcessor2_0,
Patrick von Platen's avatar
Patrick von Platen committed
1017
1018
1019
1020
    XFormersAttnProcessor,
    SlicedAttnProcessor,
    AttnAddedKVProcessor,
    SlicedAttnAddedKVProcessor,
1021
    AttnAddedKVProcessor2_0,
Patrick von Platen's avatar
Patrick von Platen committed
1022
1023
    LoRAAttnProcessor,
    LoRAXFormersAttnProcessor,
1024
1025
    CustomDiffusionAttnProcessor,
    CustomDiffusionXFormersAttnProcessor,
Patrick von Platen's avatar
Patrick von Platen committed
1026
]