"vscode:/vscode.git/clone" did not exist on "c4359d63e32119081be877ec0affa61df5e6630b"
loaders.py 62.2 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
# Copyright 2023 The HuggingFace Team. All rights reserved.
2
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from collections import defaultdict
1lint's avatar
1lint committed
16
from pathlib import Path
17
from typing import Callable, Dict, List, Optional, Union
18
19

import torch
1lint's avatar
1lint committed
20
from huggingface_hub import hf_hub_download
21

22
23
24
25
26
from .models.attention_processor import (
    CustomDiffusionAttnProcessor,
    CustomDiffusionXFormersAttnProcessor,
    LoRAAttnProcessor,
)
27
28
29
from .utils import (
    DIFFUSERS_CACHE,
    HF_HUB_OFFLINE,
30
    TEXT_ENCODER_TARGET_MODULES,
31
32
33
34
35
36
    _get_model_file,
    deprecate,
    is_safetensors_available,
    is_transformers_available,
    logging,
)
37
38
39
40


if is_safetensors_available():
    import safetensors
41

42
43
44
if is_transformers_available():
    from transformers import PreTrainedModel, PreTrainedTokenizer

45
46
47
48
49

logger = logging.get_logger(__name__)


LORA_WEIGHT_NAME = "pytorch_lora_weights.bin"
50
LORA_WEIGHT_NAME_SAFE = "pytorch_lora_weights.safetensors"
51

52
53
54
TEXT_INVERSION_NAME = "learned_embeds.bin"
TEXT_INVERSION_NAME_SAFE = "learned_embeds.safetensors"

55
56
57
CUSTOM_DIFFUSION_WEIGHT_NAME = "pytorch_custom_diffusion_weights.bin"
CUSTOM_DIFFUSION_WEIGHT_NAME_SAFE = "pytorch_custom_diffusion_weights.safetensors"

58
59
60
61
62

class AttnProcsLayers(torch.nn.Module):
    def __init__(self, state_dict: Dict[str, torch.Tensor]):
        super().__init__()
        self.layers = torch.nn.ModuleList(state_dict.values())
63
        self.mapping = dict(enumerate(state_dict.keys()))
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
        self.rev_mapping = {v: k for k, v in enumerate(state_dict.keys())}

        # we add a hook to state_dict() and load_state_dict() so that the
        # naming fits with `unet.attn_processors`
        def map_to(module, state_dict, *args, **kwargs):
            new_state_dict = {}
            for key, value in state_dict.items():
                num = int(key.split(".")[1])  # 0 is always "layers"
                new_key = key.replace(f"layers.{num}", module.mapping[num])
                new_state_dict[new_key] = value

            return new_state_dict

        def map_from(module, state_dict, *args, **kwargs):
            all_keys = list(state_dict.keys())
            for key in all_keys:
                replace_key = key.split(".processor")[0] + ".processor"
                new_key = key.replace(replace_key, f"layers.{module.rev_mapping[replace_key]}")
                state_dict[new_key] = state_dict[key]
                del state_dict[key]

        self._register_state_dict_hook(map_to)
        self._register_load_state_dict_pre_hook(map_from, with_module=True)


class UNet2DConditionLoadersMixin:
    def load_attn_procs(self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], **kwargs):
        r"""
        Load pretrained attention processor layers into `UNet2DConditionModel`. Attention processor layers have to be
        defined in
94
        [`cross_attention.py`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py)
95
96
97
98
        and be a `torch.nn.Module` class.

        <Tip warning={true}>

99
        This function is experimental and might change in the future.
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144

        </Tip>

        Parameters:
            pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
                Can be either:

                    - A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co.
                      Valid model ids should have an organization name, like `google/ddpm-celebahq-256`.
                    - A path to a *directory* containing model weights saved using [`~ModelMixin.save_config`], e.g.,
                      `./my_model_directory/`.
                    - A [torch state
                      dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).

            cache_dir (`Union[str, os.PathLike]`, *optional*):
                Path to a directory in which a downloaded pretrained model configuration should be cached if the
                standard cache should not be used.
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
            resume_download (`bool`, *optional*, defaults to `False`):
                Whether or not to delete incompletely received files. Will attempt to resume the download if such a
                file exists.
            proxies (`Dict[str, str]`, *optional*):
                A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            local_files_only(`bool`, *optional*, defaults to `False`):
                Whether or not to only look at local files (i.e., do not try to download the model).
            use_auth_token (`str` or *bool*, *optional*):
                The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated
                when running `diffusers-cli login` (stored in `~/.huggingface`).
            revision (`str`, *optional*, defaults to `"main"`):
                The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
                git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
                identifier allowed by git.
            subfolder (`str`, *optional*, defaults to `""`):
                In case the relevant files are located inside a subfolder of the model repo (either remote in
                huggingface.co or downloaded locally), you can specify the folder name here.
            mirror (`str`, *optional*):
                Mirror source to accelerate downloads in China. If you are from China and have an accessibility
                problem, you can set this option to resolve it. Note that we do not guarantee the timeliness or safety.
                Please refer to the mirror site for more information.

        <Tip>

145
146
        It is required to be logged in (`huggingface-cli login`) when you want to use private or [gated
        models](https://huggingface.co/docs/hub/models-gated#gated-models).
147
148
149
150
151
152
153
154
155
156
157
158

        </Tip>
        """

        cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
        force_download = kwargs.pop("force_download", False)
        resume_download = kwargs.pop("resume_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", HF_HUB_OFFLINE)
        use_auth_token = kwargs.pop("use_auth_token", None)
        revision = kwargs.pop("revision", None)
        subfolder = kwargs.pop("subfolder", None)
159
        weight_name = kwargs.pop("weight_name", None)
160
161
162
163
164
165
166
167
168
169
170
        use_safetensors = kwargs.pop("use_safetensors", None)

        if use_safetensors and not is_safetensors_available():
            raise ValueError(
                "`use_safetensors`=True but safetensors is not installed. Please install safetensors with `pip install safetenstors"
            )

        allow_pickle = False
        if use_safetensors is None:
            use_safetensors = is_safetensors_available()
            allow_pickle = True
171
172
173
174
175
176

        user_agent = {
            "file_type": "attn_procs_weights",
            "framework": "pytorch",
        }

177
        model_file = None
178
        if not isinstance(pretrained_model_name_or_path_or_dict, dict):
179
            # Let's first try to load .safetensors weights
180
            if (use_safetensors and weight_name is None) or (
181
182
                weight_name is not None and weight_name.endswith(".safetensors")
            ):
183
184
185
                try:
                    model_file = _get_model_file(
                        pretrained_model_name_or_path_or_dict,
186
                        weights_name=weight_name or LORA_WEIGHT_NAME_SAFE,
187
188
189
190
191
192
193
194
195
196
197
                        cache_dir=cache_dir,
                        force_download=force_download,
                        resume_download=resume_download,
                        proxies=proxies,
                        local_files_only=local_files_only,
                        use_auth_token=use_auth_token,
                        revision=revision,
                        subfolder=subfolder,
                        user_agent=user_agent,
                    )
                    state_dict = safetensors.torch.load_file(model_file, device="cpu")
198
199
200
                except IOError as e:
                    if not allow_pickle:
                        raise e
201
202
                    # try loading non-safetensors weights
                    pass
203
204
205
            if model_file is None:
                model_file = _get_model_file(
                    pretrained_model_name_or_path_or_dict,
206
                    weights_name=weight_name or LORA_WEIGHT_NAME,
207
208
209
210
211
212
213
214
215
216
217
                    cache_dir=cache_dir,
                    force_download=force_download,
                    resume_download=resume_download,
                    proxies=proxies,
                    local_files_only=local_files_only,
                    use_auth_token=use_auth_token,
                    revision=revision,
                    subfolder=subfolder,
                    user_agent=user_agent,
                )
                state_dict = torch.load(model_file, map_location="cpu")
218
219
220
221
222
223
224
        else:
            state_dict = pretrained_model_name_or_path_or_dict

        # fill attn processors
        attn_processors = {}

        is_lora = all("lora" in k for k in state_dict.keys())
225
        is_custom_diffusion = any("custom_diffusion" in k for k in state_dict.keys())
226
227
228
229
230
231
232
233
234
235
236
237

        if is_lora:
            lora_grouped_dict = defaultdict(dict)
            for key, value in state_dict.items():
                attn_processor_key, sub_key = ".".join(key.split(".")[:-3]), ".".join(key.split(".")[-3:])
                lora_grouped_dict[attn_processor_key][sub_key] = value

            for key, value_dict in lora_grouped_dict.items():
                rank = value_dict["to_k_lora.down.weight"].shape[0]
                cross_attention_dim = value_dict["to_k_lora.down.weight"].shape[1]
                hidden_size = value_dict["to_k_lora.up.weight"].shape[0]

Patrick von Platen's avatar
Patrick von Platen committed
238
                attn_processors[key] = LoRAAttnProcessor(
239
240
241
                    hidden_size=hidden_size, cross_attention_dim=cross_attention_dim, rank=rank
                )
                attn_processors[key].load_state_dict(value_dict)
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
        elif is_custom_diffusion:
            custom_diffusion_grouped_dict = defaultdict(dict)
            for key, value in state_dict.items():
                if len(value) == 0:
                    custom_diffusion_grouped_dict[key] = {}
                else:
                    if "to_out" in key:
                        attn_processor_key, sub_key = ".".join(key.split(".")[:-3]), ".".join(key.split(".")[-3:])
                    else:
                        attn_processor_key, sub_key = ".".join(key.split(".")[:-2]), ".".join(key.split(".")[-2:])
                    custom_diffusion_grouped_dict[attn_processor_key][sub_key] = value

            for key, value_dict in custom_diffusion_grouped_dict.items():
                if len(value_dict) == 0:
                    attn_processors[key] = CustomDiffusionAttnProcessor(
                        train_kv=False, train_q_out=False, hidden_size=None, cross_attention_dim=None
                    )
                else:
                    cross_attention_dim = value_dict["to_k_custom_diffusion.weight"].shape[1]
                    hidden_size = value_dict["to_k_custom_diffusion.weight"].shape[0]
                    train_q_out = True if "to_q_custom_diffusion.weight" in value_dict else False
                    attn_processors[key] = CustomDiffusionAttnProcessor(
                        train_kv=True,
                        train_q_out=train_q_out,
                        hidden_size=hidden_size,
                        cross_attention_dim=cross_attention_dim,
                    )
                    attn_processors[key].load_state_dict(value_dict)
270
        else:
271
272
273
            raise ValueError(
                f"{model_file} does not seem to be in the correct format expected by LoRA or Custom Diffusion training."
            )
274
275
276
277
278
279
280
281
282
283
284

        # set correct dtype & device
        attn_processors = {k: v.to(device=self.device, dtype=self.dtype) for k, v in attn_processors.items()}

        # set layers
        self.set_attn_processor(attn_processors)

    def save_attn_procs(
        self,
        save_directory: Union[str, os.PathLike],
        is_main_process: bool = True,
285
        weight_name: str = None,
286
        save_function: Callable = None,
287
        safe_serialization: bool = False,
288
        **kwargs,
289
290
    ):
        r"""
Ji soo Kim's avatar
Ji soo Kim committed
291
        Save an attention processor to a directory, so that it can be re-loaded using the
292
        [`~loaders.UNet2DConditionLoadersMixin.load_attn_procs`] method.
293
294
295
296
297
298
299
300
301
302
303
304
305

        Arguments:
            save_directory (`str` or `os.PathLike`):
                Directory to which to save. Will be created if it doesn't exist.
            is_main_process (`bool`, *optional*, defaults to `True`):
                Whether the process calling this is the main process or not. Useful when in distributed training like
                TPUs and need to call this function on all processes. In this case, set `is_main_process=True` only on
                the main process to avoid race conditions.
            save_function (`Callable`):
                The function to use to save the state dictionary. Useful on distributed training like TPUs when one
                need to replace `torch.save` by another method. Can be configured with the environment variable
                `DIFFUSERS_SAVE_MODE`.
        """
306
307
308
309
310
311
        weight_name = weight_name or deprecate(
            "weights_name",
            "0.18.0",
            "`weights_name` is deprecated, please use `weight_name` instead.",
            take_from=kwargs,
        )
312
313
314
315
316
        if os.path.isfile(save_directory):
            logger.error(f"Provided path ({save_directory}) should be a directory, not a file")
            return

        if save_function is None:
317
318
319
320
321
322
323
            if safe_serialization:

                def save_function(weights, filename):
                    return safetensors.torch.save_file(weights, filename, metadata={"format": "pt"})

            else:
                save_function = torch.save
324
325
326

        os.makedirs(save_directory, exist_ok=True)

327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
        is_custom_diffusion = any(
            isinstance(x, (CustomDiffusionAttnProcessor, CustomDiffusionXFormersAttnProcessor))
            for (_, x) in self.attn_processors.items()
        )
        if is_custom_diffusion:
            model_to_save = AttnProcsLayers(
                {
                    y: x
                    for (y, x) in self.attn_processors.items()
                    if isinstance(x, (CustomDiffusionAttnProcessor, CustomDiffusionXFormersAttnProcessor))
                }
            )
            state_dict = model_to_save.state_dict()
            for name, attn in self.attn_processors.items():
                if len(attn.state_dict()) == 0:
                    state_dict[name] = {}
        else:
            model_to_save = AttnProcsLayers(self.attn_processors)
            state_dict = model_to_save.state_dict()
346

347
        if weight_name is None:
348
            if safe_serialization:
349
                weight_name = CUSTOM_DIFFUSION_WEIGHT_NAME_SAFE if is_custom_diffusion else LORA_WEIGHT_NAME_SAFE
350
            else:
351
                weight_name = CUSTOM_DIFFUSION_WEIGHT_NAME if is_custom_diffusion else LORA_WEIGHT_NAME
352

353
        # Save the model
354
355
        save_function(state_dict, os.path.join(save_directory, weight_name))
        logger.info(f"Model weights saved in {os.path.join(save_directory, weight_name)}")
356
357
358
359
360
361
362


class TextualInversionLoaderMixin:
    r"""
    Mixin class for loading textual inversion tokens and embeddings to the tokenizer and text encoder.
    """

363
    def maybe_convert_prompt(self, prompt: Union[str, List[str]], tokenizer: "PreTrainedTokenizer"):
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
        r"""
        Maybe convert a prompt into a "multi vector"-compatible prompt. If the prompt includes a token that corresponds
        to a multi-vector textual inversion embedding, this function will process the prompt so that the special token
        is replaced with multiple special tokens each corresponding to one of the vectors. If the prompt has no textual
        inversion token or a textual inversion token that is a single vector, the input prompt is simply returned.

        Parameters:
            prompt (`str` or list of `str`):
                The prompt or prompts to guide the image generation.
            tokenizer (`PreTrainedTokenizer`):
                The tokenizer responsible for encoding the prompt into input tokens.

        Returns:
            `str` or list of `str`: The converted prompt
        """
        if not isinstance(prompt, List):
            prompts = [prompt]
        else:
            prompts = prompt

        prompts = [self._maybe_convert_prompt(p, tokenizer) for p in prompts]

        if not isinstance(prompt, List):
            return prompts[0]

        return prompts

391
    def _maybe_convert_prompt(self, prompt: str, tokenizer: "PreTrainedTokenizer"):
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
        r"""
        Maybe convert a prompt into a "multi vector"-compatible prompt. If the prompt includes a token that corresponds
        to a multi-vector textual inversion embedding, this function will process the prompt so that the special token
        is replaced with multiple special tokens each corresponding to one of the vectors. If the prompt has no textual
        inversion token or a textual inversion token that is a single vector, the input prompt is simply returned.

        Parameters:
            prompt (`str`):
                The prompt to guide the image generation.
            tokenizer (`PreTrainedTokenizer`):
                The tokenizer responsible for encoding the prompt into input tokens.

        Returns:
            `str`: The converted prompt
        """
        tokens = tokenizer.tokenize(prompt)
        for token in tokens:
            if token in tokenizer.added_tokens_encoder:
                replacement = token
                i = 1
                while f"{token}_{i}" in tokenizer.added_tokens_encoder:
                    replacement += f"{token}_{i}"
                    i += 1

                prompt = prompt.replace(token, replacement)

        return prompt

    def load_textual_inversion(
        self, pretrained_model_name_or_path: Union[str, Dict[str, torch.Tensor]], token: Optional[str] = None, **kwargs
    ):
        r"""
        Load textual inversion embeddings into the text encoder of stable diffusion pipelines. Both `diffusers` and
425
        `Automatic1111` formats are supported (see example below).
426
427
428

        <Tip warning={true}>

429
        This function is experimental and might change in the future.
430
431
432
433

        </Tip>

        Parameters:
434
            pretrained_model_name_or_path (`str` or `os.PathLike`):
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
                Can be either:

                    - A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co.
                      Valid model ids should have an organization name, like
                      `"sd-concepts-library/low-poly-hd-logos-icons"`.
                    - A path to a *directory* containing textual inversion weights, e.g.
                      `./my_text_inversion_directory/`.
            weight_name (`str`, *optional*):
                Name of a custom weight file. This should be used in two cases:

                    - The saved textual inversion file is in `diffusers` format, but was saved under a specific weight
                      name, such as `text_inv.bin`.
                    - The saved textual inversion file is in the "Automatic1111" form.
            cache_dir (`Union[str, os.PathLike]`, *optional*):
                Path to a directory in which a downloaded pretrained model configuration should be cached if the
                standard cache should not be used.
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
            resume_download (`bool`, *optional*, defaults to `False`):
                Whether or not to delete incompletely received files. Will attempt to resume the download if such a
                file exists.
            proxies (`Dict[str, str]`, *optional*):
                A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            local_files_only(`bool`, *optional*, defaults to `False`):
                Whether or not to only look at local files (i.e., do not try to download the model).
            use_auth_token (`str` or *bool*, *optional*):
                The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated
                when running `diffusers-cli login` (stored in `~/.huggingface`).
            revision (`str`, *optional*, defaults to `"main"`):
                The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
                git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
                identifier allowed by git.
            subfolder (`str`, *optional*, defaults to `""`):
                In case the relevant files are located inside a subfolder of the model repo (either remote in
                huggingface.co or downloaded locally), you can specify the folder name here.

            mirror (`str`, *optional*):
                Mirror source to accelerate downloads in China. If you are from China and have an accessibility
                problem, you can set this option to resolve it. Note that we do not guarantee the timeliness or safety.
                Please refer to the mirror site for more information.

        <Tip>

         It is required to be logged in (`huggingface-cli login`) when you want to use private or [gated
         models](https://huggingface.co/docs/hub/models-gated#gated-models).

        </Tip>
484
485
486
487

        Example:

        To load a textual inversion embedding vector in `diffusers` format:
1lint's avatar
1lint committed
488

489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
        ```py
        from diffusers import StableDiffusionPipeline
        import torch

        model_id = "runwayml/stable-diffusion-v1-5"
        pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to("cuda")

        pipe.load_textual_inversion("sd-concepts-library/cat-toy")

        prompt = "A <cat-toy> backpack"

        image = pipe(prompt, num_inference_steps=50).images[0]
        image.save("cat-backpack.png")
        ```

        To load a textual inversion embedding vector in Automatic1111 format, make sure to first download the vector,
        e.g. from [civitAI](https://civitai.com/models/3036?modelVersionId=9857) and then load the vector locally:

        ```py
        from diffusers import StableDiffusionPipeline
        import torch

        model_id = "runwayml/stable-diffusion-v1-5"
        pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to("cuda")

        pipe.load_textual_inversion("./charturnerv2.pt")

        prompt = "charturnerv2, multiple views of the same character in the same outfit, a character turnaround of a woman wearing a black jacket and red shirt, best quality, intricate details."

        image = pipe(prompt, num_inference_steps=50).images[0]
        image.save("character.png")
        ```
1lint's avatar
1lint committed
521

522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
        """
        if not hasattr(self, "tokenizer") or not isinstance(self.tokenizer, PreTrainedTokenizer):
            raise ValueError(
                f"{self.__class__.__name__} requires `self.tokenizer` of type `PreTrainedTokenizer` for calling"
                f" `{self.load_textual_inversion.__name__}`"
            )

        if not hasattr(self, "text_encoder") or not isinstance(self.text_encoder, PreTrainedModel):
            raise ValueError(
                f"{self.__class__.__name__} requires `self.text_encoder` of type `PreTrainedModel` for calling"
                f" `{self.load_textual_inversion.__name__}`"
            )

        cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
        force_download = kwargs.pop("force_download", False)
        resume_download = kwargs.pop("resume_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", HF_HUB_OFFLINE)
        use_auth_token = kwargs.pop("use_auth_token", None)
        revision = kwargs.pop("revision", None)
        subfolder = kwargs.pop("subfolder", None)
        weight_name = kwargs.pop("weight_name", None)
        use_safetensors = kwargs.pop("use_safetensors", None)

        if use_safetensors and not is_safetensors_available():
            raise ValueError(
                "`use_safetensors`=True but safetensors is not installed. Please install safetensors with `pip install safetenstors"
            )

        allow_pickle = False
        if use_safetensors is None:
            use_safetensors = is_safetensors_available()
            allow_pickle = True

        user_agent = {
            "file_type": "text_inversion",
            "framework": "pytorch",
        }

        # 1. Load textual inversion file
        model_file = None
        # Let's first try to load .safetensors weights
        if (use_safetensors and weight_name is None) or (
            weight_name is not None and weight_name.endswith(".safetensors")
        ):
            try:
                model_file = _get_model_file(
                    pretrained_model_name_or_path,
                    weights_name=weight_name or TEXT_INVERSION_NAME_SAFE,
                    cache_dir=cache_dir,
                    force_download=force_download,
                    resume_download=resume_download,
                    proxies=proxies,
                    local_files_only=local_files_only,
                    use_auth_token=use_auth_token,
                    revision=revision,
                    subfolder=subfolder,
                    user_agent=user_agent,
                )
                state_dict = safetensors.torch.load_file(model_file, device="cpu")
            except Exception as e:
                if not allow_pickle:
                    raise e

                model_file = None

        if model_file is None:
            model_file = _get_model_file(
                pretrained_model_name_or_path,
                weights_name=weight_name or TEXT_INVERSION_NAME,
                cache_dir=cache_dir,
                force_download=force_download,
                resume_download=resume_download,
                proxies=proxies,
                local_files_only=local_files_only,
                use_auth_token=use_auth_token,
                revision=revision,
                subfolder=subfolder,
                user_agent=user_agent,
            )
            state_dict = torch.load(model_file, map_location="cpu")

        # 2. Load token and embedding correcly from file
        if isinstance(state_dict, torch.Tensor):
            if token is None:
                raise ValueError(
                    "You are trying to load a textual inversion embedding that has been saved as a PyTorch tensor. Make sure to pass the name of the corresponding token in this case: `token=...`."
                )
            embedding = state_dict
        elif len(state_dict) == 1:
            # diffusers
            loaded_token, embedding = next(iter(state_dict.items()))
        elif "string_to_param" in state_dict:
            # A1111
            loaded_token = state_dict["name"]
            embedding = state_dict["string_to_param"]["*"]

        if token is not None and loaded_token != token:
            logger.warn(f"The loaded token: {loaded_token} is overwritten by the passed token {token}.")
        else:
            token = loaded_token

        embedding = embedding.to(dtype=self.text_encoder.dtype, device=self.text_encoder.device)

        # 3. Make sure we don't mess up the tokenizer or text encoder
        vocab = self.tokenizer.get_vocab()
        if token in vocab:
            raise ValueError(
                f"Token {token} already in tokenizer vocabulary. Please choose a different token name or remove {token} and embedding from the tokenizer and text encoder."
            )
        elif f"{token}_1" in vocab:
            multi_vector_tokens = [token]
            i = 1
            while f"{token}_{i}" in self.tokenizer.added_tokens_encoder:
                multi_vector_tokens.append(f"{token}_{i}")
                i += 1

            raise ValueError(
                f"Multi-vector Token {multi_vector_tokens} already in tokenizer vocabulary. Please choose a different token name or remove the {multi_vector_tokens} and embedding from the tokenizer and text encoder."
            )

        is_multi_vector = len(embedding.shape) > 1 and embedding.shape[0] > 1

        if is_multi_vector:
            tokens = [token] + [f"{token}_{i}" for i in range(1, embedding.shape[0])]
            embeddings = [e for e in embedding]  # noqa: C416
        else:
            tokens = [token]
650
            embeddings = [embedding[0]] if len(embedding.shape) > 1 else [embedding]
651
652
653
654
655
656
657
658
659
660

        # add tokens and get ids
        self.tokenizer.add_tokens(tokens)
        token_ids = self.tokenizer.convert_tokens_to_ids(tokens)

        # resize token embeddings and set new embeddings
        self.text_encoder.resize_token_embeddings(len(self.tokenizer))
        for token_id, embedding in zip(token_ids, embeddings):
            self.text_encoder.get_input_embeddings().weight.data[token_id] = embedding

661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
        logger.info(f"Loaded textual inversion embedding for {token}.")


class LoraLoaderMixin:
    r"""
    Utility class for handling the loading LoRA layers into UNet (of class [`UNet2DConditionModel`]) and Text Encoder
    (of class [`CLIPTextModel`](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel)).

    <Tip warning={true}>

    This function is experimental and might change in the future.

    </Tip>
    """
    text_encoder_name = "text_encoder"
    unet_name = "unet"

    def load_lora_weights(self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], **kwargs):
        r"""
        Load pretrained attention processor layers (such as LoRA) into [`UNet2DConditionModel`] and
        [`CLIPTextModel`](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel)).

        <Tip warning={true}>

        This function is experimental and might change in the future.

        </Tip>

        Parameters:
            pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
                Can be either:

                    - A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co.
                      Valid model ids should have an organization name, like `google/ddpm-celebahq-256`.
                    - A path to a *directory* containing model weights saved using [`~ModelMixin.save_config`], e.g.,
                      `./my_model_directory/`.
                    - A [torch state
                      dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).

            cache_dir (`Union[str, os.PathLike]`, *optional*):
                Path to a directory in which a downloaded pretrained model configuration should be cached if the
                standard cache should not be used.
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
            resume_download (`bool`, *optional*, defaults to `False`):
                Whether or not to delete incompletely received files. Will attempt to resume the download if such a
                file exists.
            proxies (`Dict[str, str]`, *optional*):
                A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            local_files_only(`bool`, *optional*, defaults to `False`):
                Whether or not to only look at local files (i.e., do not try to download the model).
            use_auth_token (`str` or *bool*, *optional*):
                The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated
                when running `diffusers-cli login` (stored in `~/.huggingface`).
            revision (`str`, *optional*, defaults to `"main"`):
                The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
                git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
                identifier allowed by git.
            subfolder (`str`, *optional*, defaults to `""`):
                In case the relevant files are located inside a subfolder of the model repo (either remote in
                huggingface.co or downloaded locally), you can specify the folder name here.

            mirror (`str`, *optional*):
                Mirror source to accelerate downloads in China. If you are from China and have an accessibility
                problem, you can set this option to resolve it. Note that we do not guarantee the timeliness or safety.
                Please refer to the mirror site for more information.

        <Tip>

        It is required to be logged in (`huggingface-cli login`) when you want to use private or [gated
        models](https://huggingface.co/docs/hub/models-gated#gated-models).

        </Tip>
        """
        # Load the main state dict first which has the LoRA layers for either of
        # UNet and text encoder or both.
        cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
        force_download = kwargs.pop("force_download", False)
        resume_download = kwargs.pop("resume_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", HF_HUB_OFFLINE)
        use_auth_token = kwargs.pop("use_auth_token", None)
        revision = kwargs.pop("revision", None)
        subfolder = kwargs.pop("subfolder", None)
        weight_name = kwargs.pop("weight_name", None)
        use_safetensors = kwargs.pop("use_safetensors", None)

        if use_safetensors and not is_safetensors_available():
            raise ValueError(
                "`use_safetensors`=True but safetensors is not installed. Please install safetensors with `pip install safetenstors"
            )

        allow_pickle = False
        if use_safetensors is None:
            use_safetensors = is_safetensors_available()
            allow_pickle = True

        user_agent = {
            "file_type": "attn_procs_weights",
            "framework": "pytorch",
        }

        model_file = None
        if not isinstance(pretrained_model_name_or_path_or_dict, dict):
            # Let's first try to load .safetensors weights
            if (use_safetensors and weight_name is None) or (
                weight_name is not None and weight_name.endswith(".safetensors")
            ):
                try:
                    model_file = _get_model_file(
                        pretrained_model_name_or_path_or_dict,
                        weights_name=weight_name or LORA_WEIGHT_NAME_SAFE,
                        cache_dir=cache_dir,
                        force_download=force_download,
                        resume_download=resume_download,
                        proxies=proxies,
                        local_files_only=local_files_only,
                        use_auth_token=use_auth_token,
                        revision=revision,
                        subfolder=subfolder,
                        user_agent=user_agent,
                    )
                    state_dict = safetensors.torch.load_file(model_file, device="cpu")
                except IOError as e:
                    if not allow_pickle:
                        raise e
                    # try loading non-safetensors weights
                    pass
            if model_file is None:
                model_file = _get_model_file(
                    pretrained_model_name_or_path_or_dict,
                    weights_name=weight_name or LORA_WEIGHT_NAME,
                    cache_dir=cache_dir,
                    force_download=force_download,
                    resume_download=resume_download,
                    proxies=proxies,
                    local_files_only=local_files_only,
                    use_auth_token=use_auth_token,
                    revision=revision,
                    subfolder=subfolder,
                    user_agent=user_agent,
                )
                state_dict = torch.load(model_file, map_location="cpu")
        else:
            state_dict = pretrained_model_name_or_path_or_dict

        # If the serialization format is new (introduced in https://github.com/huggingface/diffusers/pull/2918),
        # then the `state_dict` keys should have `self.unet_name` and/or `self.text_encoder_name` as
        # their prefixes.
        keys = list(state_dict.keys())

        # Load the layers corresponding to UNet.
        if all(key.startswith(self.unet_name) for key in keys):
            logger.info(f"Loading {self.unet_name}.")
            unet_lora_state_dict = {k: v for k, v in state_dict.items() if k.startswith(self.unet_name)}
            self.unet.load_attn_procs(unet_lora_state_dict)

        # Load the layers corresponding to text encoder and make necessary adjustments.
        elif all(key.startswith(self.text_encoder_name) for key in keys):
            logger.info(f"Loading {self.text_encoder_name}.")
            text_encoder_lora_state_dict = {
                k: v for k, v in state_dict.items() if k.startswith(self.text_encoder_name)
            }
            attn_procs_text_encoder = self.load_attn_procs(text_encoder_lora_state_dict)
            self._modify_text_encoder(attn_procs_text_encoder)

        # Otherwise, we're dealing with the old format. This means the `state_dict` should only
        # contain the module names of the `unet` as its keys WITHOUT any prefix.
        elif not all(
            key.startswith(self.unet_name) or key.startswith(self.text_encoder_name) for key in state_dict.keys()
        ):
            self.unet.load_attn_procs(state_dict)
            deprecation_message = "You have saved the LoRA weights using the old format. This will be"
            " deprecated soon. To convert the old LoRA weights to the new format, you can first load them"
            " in a dictionary and then create a new dictionary like the following:"
            " `new_state_dict = {f'unet'.{module_name}: params for module_name, params in old_state_dict.items()}`."
            deprecate("legacy LoRA weights", "1.0.0", deprecation_message, standard_warn=False)

    def _modify_text_encoder(self, attn_processors: Dict[str, LoRAAttnProcessor]):
        r"""
        Monkey-patches the forward passes of attention modules of the text encoder.

        Parameters:
            attn_processors: Dict[str, `LoRAAttnProcessor`]:
                A dictionary mapping the module names and their corresponding [`~LoRAAttnProcessor`].
        """
        # Loop over the original attention modules.
        for name, _ in self.text_encoder.named_modules():
            if any([x in name for x in TEXT_ENCODER_TARGET_MODULES]):
                # Retrieve the module and its corresponding LoRA processor.
                module = self.text_encoder.get_submodule(name)
                # Construct a new function that performs the LoRA merging. We will monkey patch
                # this forward pass.
                lora_layer = getattr(attn_processors[name], self._get_lora_layer_attribute(name))
                old_forward = module.forward

                def new_forward(x):
                    return old_forward(x) + lora_layer(x)

                # Monkey-patch.
                module.forward = new_forward

    def _get_lora_layer_attribute(self, name: str) -> str:
        if "q_proj" in name:
            return "to_q_lora"
        elif "v_proj" in name:
            return "to_v_lora"
        elif "k_proj" in name:
            return "to_k_lora"
        else:
            return "to_out_lora"

    def load_attn_procs(self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], **kwargs):
        r"""
        Load pretrained attention processor layers for
        [`CLIPTextModel`](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel).

        <Tip warning={true}>

        This function is experimental and might change in the future.

        </Tip>

        Parameters:
            pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
                Can be either:

                    - A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co.
                      Valid model ids should have an organization name, like `google/ddpm-celebahq-256`.
                    - A path to a *directory* containing model weights saved using [`~ModelMixin.save_config`], e.g.,
                      `./my_model_directory/`.
                    - A [torch state
                      dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).

            cache_dir (`Union[str, os.PathLike]`, *optional*):
                Path to a directory in which a downloaded pretrained model configuration should be cached if the
                standard cache should not be used.
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
            resume_download (`bool`, *optional*, defaults to `False`):
                Whether or not to delete incompletely received files. Will attempt to resume the download if such a
                file exists.
            proxies (`Dict[str, str]`, *optional*):
                A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            local_files_only(`bool`, *optional*, defaults to `False`):
                Whether or not to only look at local files (i.e., do not try to download the model).
            use_auth_token (`str` or *bool*, *optional*):
                The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated
                when running `diffusers-cli login` (stored in `~/.huggingface`).
            revision (`str`, *optional*, defaults to `"main"`):
                The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
                git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
                identifier allowed by git.
            subfolder (`str`, *optional*, defaults to `""`):
                In case the relevant files are located inside a subfolder of the model repo (either remote in
                huggingface.co or downloaded locally), you can specify the folder name here.
            mirror (`str`, *optional*):
                Mirror source to accelerate downloads in China. If you are from China and have an accessibility
                problem, you can set this option to resolve it. Note that we do not guarantee the timeliness or safety.
                Please refer to the mirror site for more information.

        Returns:
            `Dict[name, LoRAAttnProcessor]`: Mapping between the module names and their corresponding
            [`LoRAAttnProcessor`].

        <Tip>

        It is required to be logged in (`huggingface-cli login`) when you want to use private or [gated
        models](https://huggingface.co/docs/hub/models-gated#gated-models).

        </Tip>
        """

        cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
        force_download = kwargs.pop("force_download", False)
        resume_download = kwargs.pop("resume_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", HF_HUB_OFFLINE)
        use_auth_token = kwargs.pop("use_auth_token", None)
        revision = kwargs.pop("revision", None)
        subfolder = kwargs.pop("subfolder", None)
        weight_name = kwargs.pop("weight_name", None)
        use_safetensors = kwargs.pop("use_safetensors", None)

        if use_safetensors and not is_safetensors_available():
            raise ValueError(
                "`use_safetensors`=True but safetensors is not installed. Please install safetensors with `pip install safetenstors"
            )

        allow_pickle = False
        if use_safetensors is None:
            use_safetensors = is_safetensors_available()
            allow_pickle = True

        user_agent = {
            "file_type": "attn_procs_weights",
            "framework": "pytorch",
        }

        model_file = None
        if not isinstance(pretrained_model_name_or_path_or_dict, dict):
            # Let's first try to load .safetensors weights
            if (use_safetensors and weight_name is None) or (
                weight_name is not None and weight_name.endswith(".safetensors")
            ):
                try:
                    model_file = _get_model_file(
                        pretrained_model_name_or_path_or_dict,
                        weights_name=weight_name or LORA_WEIGHT_NAME_SAFE,
                        cache_dir=cache_dir,
                        force_download=force_download,
                        resume_download=resume_download,
                        proxies=proxies,
                        local_files_only=local_files_only,
                        use_auth_token=use_auth_token,
                        revision=revision,
                        subfolder=subfolder,
                        user_agent=user_agent,
                    )
                    state_dict = safetensors.torch.load_file(model_file, device="cpu")
                except IOError as e:
                    if not allow_pickle:
                        raise e
                    # try loading non-safetensors weights
                    pass
            if model_file is None:
                model_file = _get_model_file(
                    pretrained_model_name_or_path_or_dict,
                    weights_name=weight_name or LORA_WEIGHT_NAME,
                    cache_dir=cache_dir,
                    force_download=force_download,
                    resume_download=resume_download,
                    proxies=proxies,
                    local_files_only=local_files_only,
                    use_auth_token=use_auth_token,
                    revision=revision,
                    subfolder=subfolder,
                    user_agent=user_agent,
                )
                state_dict = torch.load(model_file, map_location="cpu")
        else:
            state_dict = pretrained_model_name_or_path_or_dict

        # fill attn processors
        attn_processors = {}

        is_lora = all("lora" in k for k in state_dict.keys())

        if is_lora:
            lora_grouped_dict = defaultdict(dict)
            for key, value in state_dict.items():
                attn_processor_key, sub_key = ".".join(key.split(".")[:-3]), ".".join(key.split(".")[-3:])
                lora_grouped_dict[attn_processor_key][sub_key] = value

            for key, value_dict in lora_grouped_dict.items():
                rank = value_dict["to_k_lora.down.weight"].shape[0]
                cross_attention_dim = value_dict["to_k_lora.down.weight"].shape[1]
                hidden_size = value_dict["to_k_lora.up.weight"].shape[0]

                attn_processors[key] = LoRAAttnProcessor(
                    hidden_size=hidden_size, cross_attention_dim=cross_attention_dim, rank=rank
                )
                attn_processors[key].load_state_dict(value_dict)

        else:
            raise ValueError(f"{model_file} does not seem to be in the correct format expected by LoRA training.")

        # set correct dtype & device
        attn_processors = {
            k: v.to(device=self.device, dtype=self.text_encoder.dtype) for k, v in attn_processors.items()
        }
        return attn_processors

    @classmethod
    def save_lora_weights(
        self,
        save_directory: Union[str, os.PathLike],
        unet_lora_layers: Dict[str, torch.nn.Module] = None,
        text_encoder_lora_layers: Dict[str, torch.nn.Module] = None,
        is_main_process: bool = True,
        weight_name: str = None,
        save_function: Callable = None,
        safe_serialization: bool = False,
    ):
        r"""
        Save the LoRA parameters corresponding to the UNet and the text encoder.

        Arguments:
            save_directory (`str` or `os.PathLike`):
                Directory to which to save. Will be created if it doesn't exist.
            unet_lora_layers (`Dict[str, torch.nn.Module`]):
                State dict of the LoRA layers corresponding to the UNet. Specifying this helps to make the
                serialization process easier and cleaner.
            text_encoder_lora_layers (`Dict[str, torch.nn.Module`]):
                State dict of the LoRA layers corresponding to the `text_encoder`. Since the `text_encoder` comes from
                `transformers`, we cannot rejig it. That is why we have to explicitly pass the text encoder LoRA state
                dict.
            is_main_process (`bool`, *optional*, defaults to `True`):
                Whether the process calling this is the main process or not. Useful when in distributed training like
                TPUs and need to call this function on all processes. In this case, set `is_main_process=True` only on
                the main process to avoid race conditions.
            save_function (`Callable`):
                The function to use to save the state dictionary. Useful on distributed training like TPUs when one
                need to replace `torch.save` by another method. Can be configured with the environment variable
                `DIFFUSERS_SAVE_MODE`.
        """
        if os.path.isfile(save_directory):
            logger.error(f"Provided path ({save_directory}) should be a directory, not a file")
            return

        if save_function is None:
            if safe_serialization:

                def save_function(weights, filename):
                    return safetensors.torch.save_file(weights, filename, metadata={"format": "pt"})

            else:
                save_function = torch.save

        os.makedirs(save_directory, exist_ok=True)

        # Create a flat dictionary.
        state_dict = {}
        if unet_lora_layers is not None:
            unet_lora_state_dict = {
                f"{self.unet_name}.{module_name}": param
                for module_name, param in unet_lora_layers.state_dict().items()
            }
            state_dict.update(unet_lora_state_dict)
        if text_encoder_lora_layers is not None:
            text_encoder_lora_state_dict = {
                f"{self.text_encoder_name}.{module_name}": param
                for module_name, param in text_encoder_lora_layers.state_dict().items()
            }
            state_dict.update(text_encoder_lora_state_dict)

        # Save the model
        if weight_name is None:
            if safe_serialization:
                weight_name = LORA_WEIGHT_NAME_SAFE
            else:
                weight_name = LORA_WEIGHT_NAME

        save_function(state_dict, os.path.join(save_directory, weight_name))
        logger.info(f"Model weights saved in {os.path.join(save_directory, weight_name)}")
1lint's avatar
1lint committed
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303


class FromCkptMixin:
    """This helper class allows to directly load .ckpt stable diffusion file_extension
    into the respective classes."""

    @classmethod
    def from_ckpt(cls, pretrained_model_link_or_path, **kwargs):
        r"""
        Instantiate a PyTorch diffusion pipeline from pre-trained pipeline weights saved in the original .ckpt format.

        The pipeline is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated).

        Parameters:
            pretrained_model_link_or_path (`str` or `os.PathLike`, *optional*):
                Can be either:
                    - A link to the .ckpt file on the Hub. Should be in the format
                      `"https://huggingface.co/<repo_id>/blob/main/<path_to_file>"`
                    - A path to a *file* containing all pipeline weights.
            torch_dtype (`str` or `torch.dtype`, *optional*):
                Override the default `torch.dtype` and load the model under this dtype. If `"auto"` is passed the dtype
                will be automatically derived from the model's weights.
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
            cache_dir (`Union[str, os.PathLike]`, *optional*):
                Path to a directory in which a downloaded pretrained model configuration should be cached if the
                standard cache should not be used.
            resume_download (`bool`, *optional*, defaults to `False`):
                Whether or not to delete incompletely received files. Will attempt to resume the download if such a
                file exists.
            proxies (`Dict[str, str]`, *optional*):
                A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            local_files_only (`bool`, *optional*, defaults to `False`):
                Whether or not to only look at local files (i.e., do not try to download the model).
            use_auth_token (`str` or *bool*, *optional*):
                The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated
                when running `huggingface-cli login` (stored in `~/.huggingface`).
            revision (`str`, *optional*, defaults to `"main"`):
                The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
                git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
                identifier allowed by git.
            use_safetensors (`bool`, *optional* ):
                If set to `True`, the pipeline will be loaded from `safetensors` weights. If set to `None` (the
                default). The pipeline will load using `safetensors` if the safetensors weights are available *and* if
                `safetensors` is installed. If the to `False` the pipeline will *not* use `safetensors`.
            extract_ema (`bool`, *optional*, defaults to `False`): Only relevant for
                checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights or not. Defaults
                to `False`. Pass `True` to extract the EMA weights. EMA weights usually yield higher quality images for
                inference. Non-EMA weights are usually better to continue fine-tuning.
            upcast_attention (`bool`, *optional*, defaults to `None`):
                Whether the attention computation should always be upcasted. This is necessary when running stable
            image_size (`int`, *optional*, defaults to 512):
                The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Diffusion v2
                Base. Use 768 for Stable Diffusion v2.
            prediction_type (`str`, *optional*):
                The prediction type that the model was trained on. Use `'epsilon'` for Stable Diffusion v1.X and Stable
                Diffusion v2 Base. Use `'v_prediction'` for Stable Diffusion v2.
            num_in_channels (`int`, *optional*, defaults to None):
                The number of input channels. If `None`, it will be automatically inferred.
            scheduler_type (`str`, *optional*, defaults to 'pndm'):
                Type of scheduler to use. Should be one of `["pndm", "lms", "heun", "euler", "euler-ancestral", "dpm",
                "ddim"]`.
            load_safety_checker (`bool`, *optional*, defaults to `True`):
                Whether to load the safety checker or not. Defaults to `True`.
            kwargs (remaining dictionary of keyword arguments, *optional*):
                Can be used to overwrite load - and saveable variables - *i.e.* the pipeline components - of the
                specific pipeline class. The overwritten components are then directly passed to the pipelines
                `__init__` method. See example below for more information.

        Examples:

        ```py
        >>> from diffusers import StableDiffusionPipeline

        >>> # Download pipeline from huggingface.co and cache.
        >>> pipeline = StableDiffusionPipeline.from_ckpt(
        ...     "https://huggingface.co/WarriorMama777/OrangeMixs/blob/main/Models/AbyssOrangeMix/AbyssOrangeMix.safetensors"
        ... )

        >>> # Download pipeline from local file
        >>> # file is downloaded under ./v1-5-pruned-emaonly.ckpt
        >>> pipeline = StableDiffusionPipeline.from_ckpt("./v1-5-pruned-emaonly")

        >>> # Enable float16 and move to GPU
        >>> pipeline = StableDiffusionPipeline.from_ckpt(
        ...     "https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/v1-5-pruned-emaonly.ckpt",
        ...     torch_dtype=torch.float16,
        ... )
        >>> pipeline.to("cuda")
        ```
        """
        # import here to avoid circular dependency
        from .pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt

        cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
        resume_download = kwargs.pop("resume_download", False)
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", HF_HUB_OFFLINE)
        use_auth_token = kwargs.pop("use_auth_token", None)
        revision = kwargs.pop("revision", None)
        extract_ema = kwargs.pop("extract_ema", False)
        image_size = kwargs.pop("image_size", 512)
        scheduler_type = kwargs.pop("scheduler_type", "pndm")
        num_in_channels = kwargs.pop("num_in_channels", None)
        upcast_attention = kwargs.pop("upcast_attention", None)
        load_safety_checker = kwargs.pop("load_safety_checker", True)
        prediction_type = kwargs.pop("prediction_type", None)

        torch_dtype = kwargs.pop("torch_dtype", None)

        use_safetensors = kwargs.pop("use_safetensors", None if is_safetensors_available() else False)

        pipeline_name = cls.__name__
        file_extension = pretrained_model_link_or_path.rsplit(".", 1)[-1]
        from_safetensors = file_extension == "safetensors"

        if from_safetensors and use_safetensors is True:
            raise ValueError("Make sure to install `safetensors` with `pip install safetensors`.")

        # TODO: For now we only support stable diffusion
        stable_unclip = None
        controlnet = False

        if pipeline_name == "StableDiffusionControlNetPipeline":
            model_type = "FrozenCLIPEmbedder"
            controlnet = True
        elif "StableDiffusion" in pipeline_name:
            model_type = "FrozenCLIPEmbedder"
        elif pipeline_name == "StableUnCLIPPipeline":
            model_type == "FrozenOpenCLIPEmbedder"
            stable_unclip = "txt2img"
        elif pipeline_name == "StableUnCLIPImg2ImgPipeline":
            model_type == "FrozenOpenCLIPEmbedder"
            stable_unclip = "img2img"
        elif pipeline_name == "PaintByExamplePipeline":
            model_type == "PaintByExample"
        elif pipeline_name == "LDMTextToImagePipeline":
            model_type == "LDMTextToImage"
        else:
            raise ValueError(f"Unhandled pipeline class: {pipeline_name}")

        # remove huggingface url
        for prefix in ["https://huggingface.co/", "huggingface.co/", "hf.co/", "https://hf.co/"]:
            if pretrained_model_link_or_path.startswith(prefix):
                pretrained_model_link_or_path = pretrained_model_link_or_path[len(prefix) :]

        # Code based on diffusers.pipelines.pipeline_utils.DiffusionPipeline.from_pretrained
        ckpt_path = Path(pretrained_model_link_or_path)
        if not ckpt_path.is_file():
            # get repo_id and (potentially nested) file path of ckpt in repo
            repo_id = str(Path().joinpath(*ckpt_path.parts[:2]))
            file_path = str(Path().joinpath(*ckpt_path.parts[2:]))

            if file_path.startswith("blob/"):
                file_path = file_path[len("blob/") :]

            if file_path.startswith("main/"):
                file_path = file_path[len("main/") :]

            pretrained_model_link_or_path = hf_hub_download(
                repo_id,
                filename=file_path,
                cache_dir=cache_dir,
                resume_download=resume_download,
                proxies=proxies,
                local_files_only=local_files_only,
                use_auth_token=use_auth_token,
                revision=revision,
                force_download=force_download,
            )

        pipe = download_from_original_stable_diffusion_ckpt(
            pretrained_model_link_or_path,
            pipeline_class=cls,
            model_type=model_type,
            stable_unclip=stable_unclip,
            controlnet=controlnet,
            from_safetensors=from_safetensors,
            extract_ema=extract_ema,
            image_size=image_size,
            scheduler_type=scheduler_type,
            num_in_channels=num_in_channels,
            upcast_attention=upcast_attention,
            load_safety_checker=load_safety_checker,
            prediction_type=prediction_type,
        )

        if torch_dtype is not None:
            pipe.to(torch_dtype=torch_dtype)

        return pipe