test_pixart.py 15.4 KB
Newer Older
Sayak Paul's avatar
Sayak Paul committed
1
# coding=utf-8
2
# Copyright 2024 HuggingFace Inc.
Sayak Paul's avatar
Sayak Paul committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import gc
import tempfile
import unittest

import numpy as np
import torch
from transformers import AutoTokenizer, T5EncoderModel

from diffusers import (
    AutoencoderKL,
    DDIMScheduler,
    PixArtAlphaPipeline,
    Transformer2DModel,
)
Dhruv Nair's avatar
Dhruv Nair committed
30
31
32
33
34
35
36
from diffusers.utils.testing_utils import (
    enable_full_determinism,
    numpy_cosine_similarity_distance,
    require_torch_gpu,
    slow,
    torch_device,
)
Sayak Paul's avatar
Sayak Paul committed
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineTesterMixin, to_np


enable_full_determinism()


class PixArtAlphaPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
    pipeline_class = PixArtAlphaPipeline
    params = TEXT_TO_IMAGE_PARAMS - {"cross_attention_kwargs"}
    batch_params = TEXT_TO_IMAGE_BATCH_PARAMS
    image_params = TEXT_TO_IMAGE_IMAGE_PARAMS
    image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS

    required_optional_params = PipelineTesterMixin.required_optional_params

    def get_dummy_components(self):
        torch.manual_seed(0)
        transformer = Transformer2DModel(
            sample_size=8,
            num_layers=2,
            patch_size=2,
            attention_head_dim=8,
            num_attention_heads=3,
            caption_channels=32,
            in_channels=4,
            cross_attention_dim=24,
            out_channels=8,
            attention_bias=True,
            activation_fn="gelu-approximate",
            num_embeds_ada_norm=1000,
            norm_type="ada_norm_single",
            norm_elementwise_affine=False,
            norm_eps=1e-6,
        )
73
        torch.manual_seed(0)
Sayak Paul's avatar
Sayak Paul committed
74
        vae = AutoencoderKL()
75

Sayak Paul's avatar
Sayak Paul committed
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
        scheduler = DDIMScheduler()
        text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")

        tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")

        components = {
            "transformer": transformer.eval(),
            "vae": vae.eval(),
            "scheduler": scheduler,
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
        }
        return components

    def get_dummy_inputs(self, device, seed=0):
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)
        inputs = {
            "prompt": "A painting of a squirrel eating a burger",
            "generator": generator,
            "num_inference_steps": 2,
            "guidance_scale": 5.0,
100
101
            "use_resolution_binning": False,
            "output_type": "np",
Sayak Paul's avatar
Sayak Paul committed
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
        }
        return inputs

    def test_sequential_cpu_offload_forward_pass(self):
        # TODO(PVP, Sayak) need to fix later
        return

    def test_save_load_optional_components(self):
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)

        prompt = inputs["prompt"]
        generator = inputs["generator"]
        num_inference_steps = inputs["num_inference_steps"]
        output_type = inputs["output_type"]

122
123
124
125
126
127
        (
            prompt_embeds,
            prompt_attention_mask,
            negative_prompt_embeds,
            negative_prompt_attention_mask,
        ) = pipe.encode_prompt(prompt)
Sayak Paul's avatar
Sayak Paul committed
128
129
130
131

        # inputs with prompt converted to embeddings
        inputs = {
            "prompt_embeds": prompt_embeds,
132
            "prompt_attention_mask": prompt_attention_mask,
Sayak Paul's avatar
Sayak Paul committed
133
134
            "negative_prompt": None,
            "negative_prompt_embeds": negative_prompt_embeds,
135
            "negative_prompt_attention_mask": negative_prompt_attention_mask,
Sayak Paul's avatar
Sayak Paul committed
136
137
138
            "generator": generator,
            "num_inference_steps": num_inference_steps,
            "output_type": output_type,
139
            "use_resolution_binning": False,
Sayak Paul's avatar
Sayak Paul committed
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
        }

        # set all optional components to None
        for optional_component in pipe._optional_components:
            setattr(pipe, optional_component, None)

        output = pipe(**inputs)[0]

        with tempfile.TemporaryDirectory() as tmpdir:
            pipe.save_pretrained(tmpdir)
            pipe_loaded = self.pipeline_class.from_pretrained(tmpdir)
            pipe_loaded.to(torch_device)
            pipe_loaded.set_progress_bar_config(disable=None)

        for optional_component in pipe._optional_components:
            self.assertTrue(
                getattr(pipe_loaded, optional_component) is None,
                f"`{optional_component}` did not stay set to None after loading.",
            )

        inputs = self.get_dummy_inputs(torch_device)

        generator = inputs["generator"]
        num_inference_steps = inputs["num_inference_steps"]
        output_type = inputs["output_type"]

        # inputs with prompt converted to embeddings
        inputs = {
            "prompt_embeds": prompt_embeds,
169
            "prompt_attention_mask": prompt_attention_mask,
Sayak Paul's avatar
Sayak Paul committed
170
171
            "negative_prompt": None,
            "negative_prompt_embeds": negative_prompt_embeds,
172
            "negative_prompt_attention_mask": negative_prompt_attention_mask,
Sayak Paul's avatar
Sayak Paul committed
173
174
175
            "generator": generator,
            "num_inference_steps": num_inference_steps,
            "output_type": output_type,
176
            "use_resolution_binning": False,
Sayak Paul's avatar
Sayak Paul committed
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
        }

        output_loaded = pipe_loaded(**inputs)[0]

        max_diff = np.abs(to_np(output) - to_np(output_loaded)).max()
        self.assertLess(max_diff, 1e-4)

    def test_inference(self):
        device = "cpu"

        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)
        image = pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1]

        self.assertEqual(image.shape, (1, 8, 8, 3))
197
        expected_slice = np.array([0.6319, 0.3526, 0.3806, 0.6327, 0.4639, 0.483, 0.2583, 0.5331, 0.4852])
Sayak Paul's avatar
Sayak Paul committed
198
199
200
        max_diff = np.abs(image_slice.flatten() - expected_slice).max()
        self.assertLessEqual(max_diff, 1e-3)

201
202
203
204
205
206
207
208
209
210
211
212
    def test_inference_non_square_images(self):
        device = "cpu"

        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)
        image = pipe(**inputs, height=32, width=48).images
        image_slice = image[0, -3:, -3:, -1]
        self.assertEqual(image.shape, (1, 32, 48, 3))
213

214
        expected_slice = np.array([0.6493, 0.537, 0.4081, 0.4762, 0.3695, 0.4711, 0.3026, 0.5218, 0.5263])
215
216
217
        max_diff = np.abs(image_slice.flatten() - expected_slice).max()
        self.assertLessEqual(max_diff, 1e-3)

218
219
220
221
222
223
224
225
226
227
228
229
230
    def test_inference_with_embeddings_and_multiple_images(self):
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)

        prompt = inputs["prompt"]
        generator = inputs["generator"]
        num_inference_steps = inputs["num_inference_steps"]
        output_type = inputs["output_type"]

231
        prompt_embeds, prompt_attn_mask, negative_prompt_embeds, neg_prompt_attn_mask = pipe.encode_prompt(prompt)
232
233
234
235

        # inputs with prompt converted to embeddings
        inputs = {
            "prompt_embeds": prompt_embeds,
236
            "prompt_attention_mask": prompt_attn_mask,
237
238
            "negative_prompt": None,
            "negative_prompt_embeds": negative_prompt_embeds,
239
            "negative_prompt_attention_mask": neg_prompt_attn_mask,
240
241
242
243
            "generator": generator,
            "num_inference_steps": num_inference_steps,
            "output_type": output_type,
            "num_images_per_prompt": 2,
244
            "use_resolution_binning": False,
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
        }

        # set all optional components to None
        for optional_component in pipe._optional_components:
            setattr(pipe, optional_component, None)

        output = pipe(**inputs)[0]

        with tempfile.TemporaryDirectory() as tmpdir:
            pipe.save_pretrained(tmpdir)
            pipe_loaded = self.pipeline_class.from_pretrained(tmpdir)
            pipe_loaded.to(torch_device)
            pipe_loaded.set_progress_bar_config(disable=None)

        for optional_component in pipe._optional_components:
            self.assertTrue(
                getattr(pipe_loaded, optional_component) is None,
                f"`{optional_component}` did not stay set to None after loading.",
            )

        inputs = self.get_dummy_inputs(torch_device)

        generator = inputs["generator"]
        num_inference_steps = inputs["num_inference_steps"]
        output_type = inputs["output_type"]

        # inputs with prompt converted to embeddings
        inputs = {
            "prompt_embeds": prompt_embeds,
274
            "prompt_attention_mask": prompt_attn_mask,
275
276
            "negative_prompt": None,
            "negative_prompt_embeds": negative_prompt_embeds,
277
            "negative_prompt_attention_mask": neg_prompt_attn_mask,
278
279
280
281
            "generator": generator,
            "num_inference_steps": num_inference_steps,
            "output_type": output_type,
            "num_images_per_prompt": 2,
282
            "use_resolution_binning": False,
283
284
285
286
287
288
289
        }

        output_loaded = pipe_loaded(**inputs)[0]

        max_diff = np.abs(to_np(output) - to_np(output_loaded)).max()
        self.assertLess(max_diff, 1e-4)

290
291
292
293
294
295
296
297
298
299
300
301
302
303
    def test_inference_with_multiple_images_per_prompt(self):
        device = "cpu"

        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)
        inputs["num_images_per_prompt"] = 2
        image = pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1]

        self.assertEqual(image.shape, (2, 8, 8, 3))
304
        expected_slice = np.array([0.6319, 0.3526, 0.3806, 0.6327, 0.4639, 0.483, 0.2583, 0.5331, 0.4852])
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
        max_diff = np.abs(image_slice.flatten() - expected_slice).max()
        self.assertLessEqual(max_diff, 1e-3)

    def test_raises_warning_for_mask_feature(self):
        device = "cpu"

        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)
        inputs.update({"mask_feature": True})

        with self.assertWarns(FutureWarning) as warning_ctx:
            _ = pipe(**inputs).images

        assert "mask_feature" in str(warning_ctx.warning)

Sayak Paul's avatar
Sayak Paul committed
324
325
326
    def test_inference_batch_single_identical(self):
        self._test_inference_batch_single_identical(expected_max_diff=1e-3)

327
328
329
330
    # PixArt transformer model does not work with sequential offload so skip it for now
    def test_sequential_offload_forward_pass_twice(self):
        pass

Sayak Paul's avatar
Sayak Paul committed
331
332
333
334

@slow
@require_torch_gpu
class PixArtAlphaPipelineIntegrationTests(unittest.TestCase):
335
336
337
338
    ckpt_id_1024 = "PixArt-alpha/PixArt-XL-2-1024-MS"
    ckpt_id_512 = "PixArt-alpha/PixArt-XL-2-512x512"
    prompt = "A small cactus with a happy face in the Sahara desert."

339
340
341
342
343
    def setUp(self):
        super().setUp()
        gc.collect()
        torch.cuda.empty_cache()

Sayak Paul's avatar
Sayak Paul committed
344
345
346
347
348
349
    def tearDown(self):
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

    def test_pixart_1024(self):
Dhruv Nair's avatar
Dhruv Nair committed
350
        generator = torch.Generator("cpu").manual_seed(0)
Sayak Paul's avatar
Sayak Paul committed
351

352
        pipe = PixArtAlphaPipeline.from_pretrained(self.ckpt_id_1024, torch_dtype=torch.float16)
Sayak Paul's avatar
Sayak Paul committed
353
        pipe.enable_model_cpu_offload()
354
        prompt = self.prompt
Sayak Paul's avatar
Sayak Paul committed
355

Dhruv Nair's avatar
Dhruv Nair committed
356
        image = pipe(prompt, generator=generator, num_inference_steps=2, output_type="np").images
Sayak Paul's avatar
Sayak Paul committed
357
358

        image_slice = image[0, -3:, -3:, -1]
Dhruv Nair's avatar
Dhruv Nair committed
359
        expected_slice = np.array([0.0742, 0.0835, 0.2114, 0.0295, 0.0784, 0.2361, 0.1738, 0.2251, 0.3589])
Sayak Paul's avatar
Sayak Paul committed
360

Dhruv Nair's avatar
Dhruv Nair committed
361
362
        max_diff = numpy_cosine_similarity_distance(image_slice.flatten(), expected_slice)
        self.assertLessEqual(max_diff, 1e-4)
Sayak Paul's avatar
Sayak Paul committed
363
364

    def test_pixart_512(self):
Dhruv Nair's avatar
Dhruv Nair committed
365
        generator = torch.Generator("cpu").manual_seed(0)
Sayak Paul's avatar
Sayak Paul committed
366

367
        pipe = PixArtAlphaPipeline.from_pretrained(self.ckpt_id_512, torch_dtype=torch.float16)
Sayak Paul's avatar
Sayak Paul committed
368
369
        pipe.enable_model_cpu_offload()

370
        prompt = self.prompt
Sayak Paul's avatar
Sayak Paul committed
371

Dhruv Nair's avatar
Dhruv Nair committed
372
        image = pipe(prompt, generator=generator, num_inference_steps=2, output_type="np").images
Sayak Paul's avatar
Sayak Paul committed
373
374

        image_slice = image[0, -3:, -3:, -1]
Dhruv Nair's avatar
Dhruv Nair committed
375
        expected_slice = np.array([0.3477, 0.3882, 0.4541, 0.3413, 0.3821, 0.4463, 0.4001, 0.4409, 0.4958])
Sayak Paul's avatar
Sayak Paul committed
376

Dhruv Nair's avatar
Dhruv Nair committed
377
378
        max_diff = numpy_cosine_similarity_distance(image_slice.flatten(), expected_slice)
        self.assertLessEqual(max_diff, 1e-4)
379
380
381
382

    def test_pixart_1024_without_resolution_binning(self):
        generator = torch.manual_seed(0)

383
        pipe = PixArtAlphaPipeline.from_pretrained(self.ckpt_id_1024, torch_dtype=torch.float16)
384
385
        pipe.enable_model_cpu_offload()

386
387
        prompt = self.prompt
        height, width = 1024, 768
Dhruv Nair's avatar
Dhruv Nair committed
388
        num_inference_steps = 2
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410

        image = pipe(
            prompt,
            height=height,
            width=width,
            generator=generator,
            num_inference_steps=num_inference_steps,
            output_type="np",
        ).images
        image_slice = image[0, -3:, -3:, -1]

        generator = torch.manual_seed(0)
        no_res_bin_image = pipe(
            prompt,
            height=height,
            width=width,
            generator=generator,
            num_inference_steps=num_inference_steps,
            output_type="np",
            use_resolution_binning=False,
        ).images
        no_res_bin_image_slice = no_res_bin_image[0, -3:, -3:, -1]
411

412
413
414
415
416
417
418
419
420
421
        assert not np.allclose(image_slice, no_res_bin_image_slice, atol=1e-4, rtol=1e-4)

    def test_pixart_512_without_resolution_binning(self):
        generator = torch.manual_seed(0)

        pipe = PixArtAlphaPipeline.from_pretrained(self.ckpt_id_512, torch_dtype=torch.float16)
        pipe.enable_model_cpu_offload()

        prompt = self.prompt
        height, width = 512, 768
Dhruv Nair's avatar
Dhruv Nair committed
422
        num_inference_steps = 2
423
424
425
426
427
428
429
430
431

        image = pipe(
            prompt,
            height=height,
            width=width,
            generator=generator,
            num_inference_steps=num_inference_steps,
            output_type="np",
        ).images
432
433
434
435
        image_slice = image[0, -3:, -3:, -1]

        generator = torch.manual_seed(0)
        no_res_bin_image = pipe(
436
437
438
439
440
441
442
            prompt,
            height=height,
            width=width,
            generator=generator,
            num_inference_steps=num_inference_steps,
            output_type="np",
            use_resolution_binning=False,
443
444
445
446
        ).images
        no_res_bin_image_slice = no_res_bin_image[0, -3:, -3:, -1]

        assert not np.allclose(image_slice, no_res_bin_image_slice, atol=1e-4, rtol=1e-4)