lora_pipeline.py 281 KB
Newer Older
1
# Copyright 2024 The HuggingFace Team. All rights reserved.
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aryan's avatar
Aryan committed
14

15
16
17
18
import os
from typing import Callable, Dict, List, Optional, Union

import torch
19
from huggingface_hub.utils import validate_hf_hub_args
20
21
22

from ..utils import (
    USE_PEFT_BACKEND,
23
    deprecate,
24
    get_submodule_by_name,
hlky's avatar
hlky committed
25
26
    is_bitsandbytes_available,
    is_gguf_available,
27
    is_peft_available,
28
    is_peft_version,
29
    is_torch_version,
30
    is_transformers_available,
31
    is_transformers_version,
32
33
    logging,
)
34
35
36
37
38
39
from .lora_base import (  # noqa
    LORA_WEIGHT_NAME,
    LORA_WEIGHT_NAME_SAFE,
    LoraBaseMixin,
    _fetch_state_dict,
    _load_lora_into_text_encoder,
40
    _pack_dict_with_prefix,
41
)
42
from .lora_conversion_utils import (
Aryan's avatar
Aryan committed
43
    _convert_bfl_flux_control_lora_to_diffusers,
44
    _convert_hunyuan_video_lora_to_diffusers,
45
    _convert_kohya_flux_lora_to_diffusers,
46
    _convert_musubi_wan_lora_to_diffusers,
47
    _convert_non_diffusers_hidream_lora_to_diffusers,
48
    _convert_non_diffusers_lora_to_diffusers,
49
    _convert_non_diffusers_ltxv_lora_to_diffusers,
50
    _convert_non_diffusers_lumina2_lora_to_diffusers,
51
    _convert_non_diffusers_wan_lora_to_diffusers,
52
53
54
    _convert_xlabs_flux_lora_to_diffusers,
    _maybe_map_sgm_blocks_to_diffusers,
)
55
56


57
58
59
60
61
62
63
64
65
66
67
_LOW_CPU_MEM_USAGE_DEFAULT_LORA = False
if is_torch_version(">=", "1.9.0"):
    if (
        is_peft_available()
        and is_peft_version(">=", "0.13.1")
        and is_transformers_available()
        and is_transformers_version(">", "4.45.2")
    ):
        _LOW_CPU_MEM_USAGE_DEFAULT_LORA = True


68
69
70
71
logger = logging.get_logger(__name__)

TEXT_ENCODER_NAME = "text_encoder"
UNET_NAME = "unet"
Will Berman's avatar
Will Berman committed
72
TRANSFORMER_NAME = "transformer"
73

Aryan's avatar
Aryan committed
74
75
_MODULE_NAME_TO_ATTRIBUTE_MAP_FLUX = {"x_embedder": "in_channels"}

76

hlky's avatar
hlky committed
77
78
79
80
81
82
83
84
def _maybe_dequantize_weight_for_expanded_lora(model, module):
    if is_bitsandbytes_available():
        from ..quantizers.bitsandbytes import dequantize_bnb_weight

    if is_gguf_available():
        from ..quantizers.gguf.utils import dequantize_gguf_tensor

    is_bnb_4bit_quantized = module.weight.__class__.__name__ == "Params4bit"
85
    is_bnb_8bit_quantized = module.weight.__class__.__name__ == "Int8Params"
hlky's avatar
hlky committed
86
87
88
89
90
91
    is_gguf_quantized = module.weight.__class__.__name__ == "GGUFParameter"

    if is_bnb_4bit_quantized and not is_bitsandbytes_available():
        raise ValueError(
            "The checkpoint seems to have been quantized with `bitsandbytes` (4bits). Install `bitsandbytes` to load quantized checkpoints."
        )
92
93
94
95
    if is_bnb_8bit_quantized and not is_bitsandbytes_available():
        raise ValueError(
            "The checkpoint seems to have been quantized with `bitsandbytes` (8bits). Install `bitsandbytes` to load quantized checkpoints."
        )
hlky's avatar
hlky committed
96
97
98
99
100
101
    if is_gguf_quantized and not is_gguf_available():
        raise ValueError(
            "The checkpoint seems to have been quantized with `gguf`. Install `gguf` to load quantized checkpoints."
        )

    weight_on_cpu = False
102
    if module.weight.device.type == "cpu":
hlky's avatar
hlky committed
103
104
        weight_on_cpu = True

105
    device = torch.accelerator.current_accelerator().type if hasattr(torch, "accelerator") else "cuda"
106
    if is_bnb_4bit_quantized or is_bnb_8bit_quantized:
hlky's avatar
hlky committed
107
        module_weight = dequantize_bnb_weight(
108
            module.weight.to(device) if weight_on_cpu else module.weight,
109
            state=module.weight.quant_state if is_bnb_4bit_quantized else module.state,
hlky's avatar
hlky committed
110
111
112
113
            dtype=model.dtype,
        ).data
    elif is_gguf_quantized:
        module_weight = dequantize_gguf_tensor(
114
            module.weight.to(device) if weight_on_cpu else module.weight,
hlky's avatar
hlky committed
115
116
117
118
119
120
121
122
123
124
125
        )
        module_weight = module_weight.to(model.dtype)
    else:
        module_weight = module.weight.data

    if weight_on_cpu:
        module_weight = module_weight.cpu()

    return module_weight


126
class StableDiffusionLoraLoaderMixin(LoraBaseMixin):
127
    r"""
128
    Load LoRA layers into Stable Diffusion [`UNet2DConditionModel`] and
129
    [`CLIPTextModel`](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel).
130
    """
131

132
    _lora_loadable_modules = ["unet", "text_encoder"]
133
    unet_name = UNET_NAME
134
    text_encoder_name = TEXT_ENCODER_NAME
135
136

    def load_lora_weights(
137
138
        self,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
139
        adapter_name: Optional[str] = None,
140
141
        hotswap: bool = False,
        **kwargs,
142
    ):
143
        """Load LoRA weights specified in `pretrained_model_name_or_path_or_dict` into `self.unet` and
144
145
146
147
        `self.text_encoder`.

        All kwargs are forwarded to `self.lora_state_dict`.

148
149
        See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details on how the state dict is
        loaded.
150

151
152
        See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_unet`] for more details on how the state dict is
        loaded into `self.unet`.
153

154
155
        See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_text_encoder`] for more details on how the state
        dict is loaded into `self.text_encoder`.
156
157
158

        Parameters:
            pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
159
                See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`].
160
            adapter_name (`str`, *optional*):
161
162
                Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
                `default_{i}` where i is the total number of adapters being loaded.
163
164
165
            low_cpu_mem_usage (`bool`, *optional*):
                Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
                weights.
166
            hotswap (`bool`, *optional*):
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
                Defaults to `False`. Whether to substitute an existing (LoRA) adapter with the newly loaded adapter
                in-place. This means that, instead of loading an additional adapter, this will take the existing
                adapter weights and replace them with the weights of the new adapter. This can be faster and more
                memory efficient. However, the main advantage of hotswapping is that when the model is compiled with
                torch.compile, loading the new adapter does not require recompilation of the model. When using
                hotswapping, the passed `adapter_name` should be the name of an already loaded adapter.

                If the new adapter and the old adapter have different ranks and/or LoRA alphas (i.e. scaling), you need
                to call an additional method before loading the adapter:

                ```py
                pipeline = ...  # load diffusers pipeline
                max_rank = ...  # the highest rank among all LoRAs that you want to load
                # call *before* compiling and loading the LoRA adapter
                pipeline.enable_lora_hotswap(target_rank=max_rank)
                pipeline.load_lora_weights(file_name)
                # optionally compile the model now
                ```

                Note that hotswapping adapters of the text encoder is not yet supported. There are some further
                limitations to this technique, which are documented here:
                https://huggingface.co/docs/peft/main/en/package_reference/hotswap
189
190
            kwargs (`dict`, *optional*):
                See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`].
191
        """
192
193
194
        if not USE_PEFT_BACKEND:
            raise ValueError("PEFT backend is required for this method.")

195
196
197
198
199
200
        low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT_LORA)
        if low_cpu_mem_usage and not is_peft_version(">=", "0.13.1"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

201
202
203
204
        # if a dict is passed, copy it instead of modifying it inplace
        if isinstance(pretrained_model_name_or_path_or_dict, dict):
            pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy()

205
        # First, ensure that the checkpoint is a compatible one and can be successfully loaded.
206
207
        kwargs["return_lora_metadata"] = True
        state_dict, network_alphas, metadata = self.lora_state_dict(pretrained_model_name_or_path_or_dict, **kwargs)
208

Sayak Paul's avatar
Sayak Paul committed
209
        is_correct_format = all("lora" in key for key in state_dict.keys())
210
211
212
213
214
215
216
217
        if not is_correct_format:
            raise ValueError("Invalid LoRA checkpoint.")

        self.load_lora_into_unet(
            state_dict,
            network_alphas=network_alphas,
            unet=getattr(self, self.unet_name) if not hasattr(self, "unet") else self.unet,
            adapter_name=adapter_name,
218
            metadata=metadata,
219
            _pipeline=self,
220
            low_cpu_mem_usage=low_cpu_mem_usage,
221
            hotswap=hotswap,
222
223
224
225
226
227
228
229
230
231
        )
        self.load_lora_into_text_encoder(
            state_dict,
            network_alphas=network_alphas,
            text_encoder=getattr(self, self.text_encoder_name)
            if not hasattr(self, "text_encoder")
            else self.text_encoder,
            lora_scale=self.lora_scale,
            adapter_name=adapter_name,
            _pipeline=self,
232
            metadata=metadata,
233
            low_cpu_mem_usage=low_cpu_mem_usage,
234
            hotswap=hotswap,
235
236
237
        )

    @classmethod
238
    @validate_hf_hub_args
239
240
241
242
243
244
    def lora_state_dict(
        cls,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        **kwargs,
    ):
        r"""
245
246
247
248
249
250
251
252
253
        Return state dict for lora weights and the network alphas.

        <Tip warning={true}>

        We support loading A1111 formatted LoRA checkpoints in a limited capacity.

        This function is experimental and might change in the future.

        </Tip>
254
255
256
257
258
259
260

        Parameters:
            pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
                Can be either:

                    - A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
                      the Hub.
261
262
                    - A path to a *directory* (for example `./my_model_directory`) containing the model weights saved
                      with [`ModelMixin.save_pretrained`].
263
264
265
266
267
268
269
270
271
                    - A [torch state
                      dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).

            cache_dir (`Union[str, os.PathLike]`, *optional*):
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
272

273
274
275
276
277
278
            proxies (`Dict[str, str]`, *optional*):
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            local_files_only (`bool`, *optional*, defaults to `False`):
                Whether to only load local model weights and configuration files or not. If set to `True`, the model
                won't be downloaded from the Hub.
279
            token (`str` or *bool*, *optional*):
280
281
282
283
284
285
286
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
            revision (`str`, *optional*, defaults to `"main"`):
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
            subfolder (`str`, *optional*, defaults to `""`):
                The subfolder location of a model file within a larger model repository on the Hub or locally.
287
288
            weight_name (`str`, *optional*, defaults to None):
                Name of the serialized state dict file.
289
290
            return_lora_metadata (`bool`, *optional*, defaults to False):
                When enabled, additionally return the LoRA adapter metadata, typically found in the state dict.
291
292
293
        """
        # Load the main state dict first which has the LoRA layers for either of
        # UNet and text encoder or both.
294
        cache_dir = kwargs.pop("cache_dir", None)
295
296
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
297
298
        local_files_only = kwargs.pop("local_files_only", None)
        token = kwargs.pop("token", None)
299
300
301
302
303
        revision = kwargs.pop("revision", None)
        subfolder = kwargs.pop("subfolder", None)
        weight_name = kwargs.pop("weight_name", None)
        unet_config = kwargs.pop("unet_config", None)
        use_safetensors = kwargs.pop("use_safetensors", None)
304
        return_lora_metadata = kwargs.pop("return_lora_metadata", False)
305
306
307
308
309
310

        allow_pickle = False
        if use_safetensors is None:
            use_safetensors = True
            allow_pickle = True

311
        user_agent = {"file_type": "attn_procs_weights", "framework": "pytorch"}
312

313
        state_dict, metadata = _fetch_state_dict(
314
315
316
317
318
319
320
321
322
323
324
325
326
            pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict,
            weight_name=weight_name,
            use_safetensors=use_safetensors,
            local_files_only=local_files_only,
            cache_dir=cache_dir,
            force_download=force_download,
            proxies=proxies,
            token=token,
            revision=revision,
            subfolder=subfolder,
            user_agent=user_agent,
            allow_pickle=allow_pickle,
        )
Sayak Paul's avatar
Sayak Paul committed
327
328
329
330
331
        is_dora_scale_present = any("dora_scale" in k for k in state_dict)
        if is_dora_scale_present:
            warn_msg = "It seems like you are using a DoRA checkpoint that is not compatible in Diffusers at the moment. So, we are going to filter out the keys associated to 'dora_scale` from the state dict. If you think this is a mistake please open an issue https://github.com/huggingface/diffusers/issues/new."
            logger.warning(warn_msg)
            state_dict = {k: v for k, v in state_dict.items() if "dora_scale" not in k}
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346

        network_alphas = None
        # TODO: replace it with a method from `state_dict_utils`
        if all(
            (
                k.startswith("lora_te_")
                or k.startswith("lora_unet_")
                or k.startswith("lora_te1_")
                or k.startswith("lora_te2_")
            )
            for k in state_dict.keys()
        ):
            # Map SDXL blocks correctly.
            if unet_config is not None:
                # use unet config to remap block numbers
347
                state_dict = _maybe_map_sgm_blocks_to_diffusers(state_dict, unet_config)
348
            state_dict, network_alphas = _convert_non_diffusers_lora_to_diffusers(state_dict)
349

350
351
        out = (state_dict, network_alphas, metadata) if return_lora_metadata else (state_dict, network_alphas)
        return out
352
353

    @classmethod
354
    def load_lora_into_unet(
355
356
357
358
359
360
361
362
        cls,
        state_dict,
        network_alphas,
        unet,
        adapter_name=None,
        _pipeline=None,
        low_cpu_mem_usage=False,
        hotswap: bool = False,
363
        metadata=None,
364
    ):
365
        """
366
        This will load the LoRA layers specified in `state_dict` into `unet`.
367
368
369

        Parameters:
            state_dict (`dict`):
370
371
372
                A standard state dict containing the lora layer parameters. The keys can either be indexed directly
                into the unet or prefixed with an additional `unet` which can be used to distinguish between text
                encoder lora layers.
373
            network_alphas (`Dict[str, float]`):
374
375
376
                The value of the network alpha used for stable learning and preventing underflow. This value has the
                same meaning as the `--network_alpha` option in the kohya-ss trainer script. Refer to [this
                link](https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning).
377
378
379
            unet (`UNet2DConditionModel`):
                The UNet model to load the LoRA layers into.
            adapter_name (`str`, *optional*):
380
381
                Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
                `default_{i}` where i is the total number of adapters being loaded.
382
383
384
            low_cpu_mem_usage (`bool`, *optional*):
                Speed up model loading only loading the pretrained LoRA weights and not initializing the random
                weights.
385
386
            hotswap (`bool`, *optional*):
                See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`].
387
388
389
            metadata (`dict`):
                Optional LoRA adapter metadata. When supplied, the `LoraConfig` arguments of `peft` won't be derived
                from the state dict.
390
        """
391
392
393
        if not USE_PEFT_BACKEND:
            raise ValueError("PEFT backend is required for this method.")

394
395
396
397
398
        if low_cpu_mem_usage and not is_peft_version(">=", "0.13.1"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

399
400
401
        # If the serialization format is new (introduced in https://github.com/huggingface/diffusers/pull/2918),
        # then the `state_dict` keys should have `cls.unet_name` and/or `cls.text_encoder_name` as
        # their prefixes.
402
403
404
405
406
407
        logger.info(f"Loading {cls.unet_name}.")
        unet.load_lora_adapter(
            state_dict,
            prefix=cls.unet_name,
            network_alphas=network_alphas,
            adapter_name=adapter_name,
408
            metadata=metadata,
409
410
            _pipeline=_pipeline,
            low_cpu_mem_usage=low_cpu_mem_usage,
411
            hotswap=hotswap,
412
        )
413

414
415
416
417
418
419
420
421
422
423
    @classmethod
    def load_lora_into_text_encoder(
        cls,
        state_dict,
        network_alphas,
        text_encoder,
        prefix=None,
        lora_scale=1.0,
        adapter_name=None,
        _pipeline=None,
424
        low_cpu_mem_usage=False,
425
        hotswap: bool = False,
426
        metadata=None,
427
428
429
430
431
432
433
434
435
    ):
        """
        This will load the LoRA layers specified in `state_dict` into `text_encoder`

        Parameters:
            state_dict (`dict`):
                A standard state dict containing the lora layer parameters. The key should be prefixed with an
                additional `text_encoder` to distinguish between unet lora layers.
            network_alphas (`Dict[str, float]`):
436
437
438
                The value of the network alpha used for stable learning and preventing underflow. This value has the
                same meaning as the `--network_alpha` option in the kohya-ss trainer script. Refer to [this
                link](https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning).
439
440
441
442
443
444
445
446
447
448
            text_encoder (`CLIPTextModel`):
                The text encoder model to load the LoRA layers into.
            prefix (`str`):
                Expected prefix of the `text_encoder` in the `state_dict`.
            lora_scale (`float`):
                How much to scale the output of the lora linear layer before it is added with the output of the regular
                lora layer.
            adapter_name (`str`, *optional*):
                Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
                `default_{i}` where i is the total number of adapters being loaded.
449
450
451
            low_cpu_mem_usage (`bool`, *optional*):
                Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
                weights.
452
453
            hotswap (`bool`, *optional*):
                See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`].
454
455
456
            metadata (`dict`):
                Optional LoRA adapter metadata. When supplied, the `LoraConfig` arguments of `peft` won't be derived
                from the state dict.
457
        """
458
459
460
461
462
463
464
465
        _load_lora_into_text_encoder(
            state_dict=state_dict,
            network_alphas=network_alphas,
            lora_scale=lora_scale,
            text_encoder=text_encoder,
            prefix=prefix,
            text_encoder_name=cls.text_encoder_name,
            adapter_name=adapter_name,
466
            metadata=metadata,
467
468
            _pipeline=_pipeline,
            low_cpu_mem_usage=low_cpu_mem_usage,
469
            hotswap=hotswap,
470
        )
471

472
473
474
475
476
477
478
479
480
481
    @classmethod
    def save_lora_weights(
        cls,
        save_directory: Union[str, os.PathLike],
        unet_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
        text_encoder_lora_layers: Dict[str, torch.nn.Module] = None,
        is_main_process: bool = True,
        weight_name: str = None,
        save_function: Callable = None,
        safe_serialization: bool = True,
482
483
        unet_lora_adapter_metadata=None,
        text_encoder_lora_adapter_metadata=None,
484
485
    ):
        r"""
486
        Save the LoRA parameters corresponding to the UNet and text encoder.
487
488
489

        Arguments:
            save_directory (`str` or `os.PathLike`):
490
                Directory to save LoRA parameters to. Will be created if it doesn't exist.
491
492
493
494
495
496
497
498
499
500
            unet_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
                State dict of the LoRA layers corresponding to the `unet`.
            text_encoder_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
                State dict of the LoRA layers corresponding to the `text_encoder`. Must explicitly pass the text
                encoder LoRA state dict because it comes from 🤗 Transformers.
            is_main_process (`bool`, *optional*, defaults to `True`):
                Whether the process calling this is the main process or not. Useful during distributed training and you
                need to call this function on all processes. In this case, set `is_main_process=True` only on the main
                process to avoid race conditions.
            save_function (`Callable`):
501
502
                The function to use to save the state dictionary. Useful during distributed training when you need to
                replace `torch.save` with another method. Can be configured with the environment variable
503
504
                `DIFFUSERS_SAVE_MODE`.
            safe_serialization (`bool`, *optional*, defaults to `True`):
505
                Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`.
506
507
508
509
            unet_lora_adapter_metadata:
                LoRA adapter metadata associated with the unet to be serialized with the state dict.
            text_encoder_lora_adapter_metadata:
                LoRA adapter metadata associated with the text encoder to be serialized with the state dict.
510
511
        """
        state_dict = {}
512
        lora_adapter_metadata = {}
513

514
515
        if not (unet_lora_layers or text_encoder_lora_layers):
            raise ValueError("You must pass at least one of `unet_lora_layers` and `text_encoder_lora_layers`.")
516

517
        if unet_lora_layers:
518
            state_dict.update(cls.pack_weights(unet_lora_layers, cls.unet_name))
519

520
        if text_encoder_lora_layers:
521
            state_dict.update(cls.pack_weights(text_encoder_lora_layers, cls.text_encoder_name))
Will Berman's avatar
Will Berman committed
522

523
524
525
526
527
528
529
530
        if unet_lora_adapter_metadata:
            lora_adapter_metadata.update(_pack_dict_with_prefix(unet_lora_adapter_metadata, cls.unet_name))

        if text_encoder_lora_adapter_metadata:
            lora_adapter_metadata.update(
                _pack_dict_with_prefix(text_encoder_lora_adapter_metadata, cls.text_encoder_name)
            )

531
532
533
534
535
536
537
538
        # Save the model
        cls.write_lora_layers(
            state_dict=state_dict,
            save_directory=save_directory,
            is_main_process=is_main_process,
            weight_name=weight_name,
            save_function=save_function,
            safe_serialization=safe_serialization,
539
            lora_adapter_metadata=lora_adapter_metadata,
540
541
        )

542
543
    def fuse_lora(
        self,
544
        components: List[str] = ["unet", "text_encoder"],
545
546
547
        lora_scale: float = 1.0,
        safe_fusing: bool = False,
        adapter_names: Optional[List[str]] = None,
548
        **kwargs,
549
550
551
552
553
554
555
556
557
558
559
    ):
        r"""
        Fuses the LoRA parameters into the original parameters of the corresponding blocks.

        <Tip warning={true}>

        This is an experimental API.

        </Tip>

        Args:
560
            components: (`List[str]`): List of LoRA-injectable components to fuse the LoRAs into.
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
            lora_scale (`float`, defaults to 1.0):
                Controls how much to influence the outputs with the LoRA parameters.
            safe_fusing (`bool`, defaults to `False`):
                Whether to check fused weights for NaN values before fusing and if values are NaN not fusing them.
            adapter_names (`List[str]`, *optional*):
                Adapter names to be used for fusing. If nothing is passed, all active adapters will be fused.

        Example:

        ```py
        from diffusers import DiffusionPipeline
        import torch

        pipeline = DiffusionPipeline.from_pretrained(
            "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
        ).to("cuda")
        pipeline.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel")
        pipeline.fuse_lora(lora_scale=0.7)
        ```
        """
581
        super().fuse_lora(
582
583
584
585
586
            components=components,
            lora_scale=lora_scale,
            safe_fusing=safe_fusing,
            adapter_names=adapter_names,
            **kwargs,
587
        )
588

589
    def unfuse_lora(self, components: List[str] = ["unet", "text_encoder"], **kwargs):
590
591
        r"""
        Reverses the effect of
592
        [`pipe.fuse_lora()`](https://huggingface.co/docs/diffusers/main/en/api/loaders#diffusers.loaders.LoraBaseMixin.fuse_lora).
593
594
595
596
597
598
599
600

        <Tip warning={true}>

        This is an experimental API.

        </Tip>

        Args:
601
            components (`List[str]`): List of LoRA-injectable components to unfuse LoRA from.
602
603
604
605
606
            unfuse_unet (`bool`, defaults to `True`): Whether to unfuse the UNet LoRA parameters.
            unfuse_text_encoder (`bool`, defaults to `True`):
                Whether to unfuse the text encoder LoRA parameters. If the text encoder wasn't monkey-patched with the
                LoRA parameters then it won't have any effect.
        """
607
        super().unfuse_lora(components=components, **kwargs)
608
609


610
611
612
613
614
615
class StableDiffusionXLLoraLoaderMixin(LoraBaseMixin):
    r"""
    Load LoRA layers into Stable Diffusion XL [`UNet2DConditionModel`],
    [`CLIPTextModel`](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), and
    [`CLIPTextModelWithProjection`](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection).
    """
616

617
618
619
    _lora_loadable_modules = ["unet", "text_encoder", "text_encoder_2"]
    unet_name = UNET_NAME
    text_encoder_name = TEXT_ENCODER_NAME
620

621
622
623
624
    def load_lora_weights(
        self,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        adapter_name: Optional[str] = None,
625
        hotswap: bool = False,
626
627
628
629
630
631
632
633
        **kwargs,
    ):
        """
        Load LoRA weights specified in `pretrained_model_name_or_path_or_dict` into `self.unet` and
        `self.text_encoder`.

        All kwargs are forwarded to `self.lora_state_dict`.

634
635
        See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details on how the state dict is
        loaded.
636

637
638
        See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_unet`] for more details on how the state dict is
        loaded into `self.unet`.
639

640
641
        See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_text_encoder`] for more details on how the state
        dict is loaded into `self.text_encoder`.
642
643
644

        Parameters:
            pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
645
                See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`].
Steven Liu's avatar
Steven Liu committed
646
            adapter_name (`str`, *optional*):
647
648
                Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
                `default_{i}` where i is the total number of adapters being loaded.
649
650
651
            low_cpu_mem_usage (`bool`, *optional*):
                Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
                weights.
652
653
            hotswap (`bool`, *optional*):
                See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`].
654
            kwargs (`dict`, *optional*):
655
                See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`].
656
        """
657
658
659
        if not USE_PEFT_BACKEND:
            raise ValueError("PEFT backend is required for this method.")

660
661
662
663
664
665
        low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT_LORA)
        if low_cpu_mem_usage and not is_peft_version(">=", "0.13.1"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

666
667
668
669
        # We could have accessed the unet config from `lora_state_dict()` too. We pass
        # it here explicitly to be able to tell that it's coming from an SDXL
        # pipeline.

670
671
672
673
        # if a dict is passed, copy it instead of modifying it inplace
        if isinstance(pretrained_model_name_or_path_or_dict, dict):
            pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy()

674
        # First, ensure that the checkpoint is a compatible one and can be successfully loaded.
675
676
        kwargs["return_lora_metadata"] = True
        state_dict, network_alphas, metadata = self.lora_state_dict(
677
678
679
680
            pretrained_model_name_or_path_or_dict,
            unet_config=self.unet.config,
            **kwargs,
        )
Sayak Paul's avatar
Sayak Paul committed
681
682

        is_correct_format = all("lora" in key for key in state_dict.keys())
683
684
685
686
        if not is_correct_format:
            raise ValueError("Invalid LoRA checkpoint.")

        self.load_lora_into_unet(
687
688
689
690
            state_dict,
            network_alphas=network_alphas,
            unet=self.unet,
            adapter_name=adapter_name,
691
            metadata=metadata,
692
693
            _pipeline=self,
            low_cpu_mem_usage=low_cpu_mem_usage,
694
            hotswap=hotswap,
695
        )
696
697
698
699
700
701
702
        self.load_lora_into_text_encoder(
            state_dict,
            network_alphas=network_alphas,
            text_encoder=self.text_encoder,
            prefix=self.text_encoder_name,
            lora_scale=self.lora_scale,
            adapter_name=adapter_name,
703
            metadata=metadata,
704
705
            _pipeline=self,
            low_cpu_mem_usage=low_cpu_mem_usage,
706
            hotswap=hotswap,
707
708
709
710
711
712
713
714
        )
        self.load_lora_into_text_encoder(
            state_dict,
            network_alphas=network_alphas,
            text_encoder=self.text_encoder_2,
            prefix=f"{self.text_encoder_name}_2",
            lora_scale=self.lora_scale,
            adapter_name=adapter_name,
715
            metadata=metadata,
716
717
            _pipeline=self,
            low_cpu_mem_usage=low_cpu_mem_usage,
718
            hotswap=hotswap,
719
        )
720
721

    @classmethod
722
723
724
    @validate_hf_hub_args
    # Copied from diffusers.loaders.lora_pipeline.StableDiffusionLoraLoaderMixin.lora_state_dict
    def lora_state_dict(
725
726
727
728
        cls,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        **kwargs,
    ):
729
        r"""
730
        Return state dict for lora weights and the network alphas.
731
732

        <Tip warning={true}>
Dhruv Nair's avatar
Dhruv Nair committed
733

734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
        We support loading A1111 formatted LoRA checkpoints in a limited capacity.

        This function is experimental and might change in the future.

        </Tip>

        Parameters:
            pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
                Can be either:

                    - A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
                      the Hub.
                    - A path to a *directory* (for example `./my_model_directory`) containing the model weights saved
                      with [`ModelMixin.save_pretrained`].
                    - A [torch state
                      dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).

            cache_dir (`Union[str, os.PathLike]`, *optional*):
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.

            proxies (`Dict[str, str]`, *optional*):
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            local_files_only (`bool`, *optional*, defaults to `False`):
                Whether to only load local model weights and configuration files or not. If set to `True`, the model
                won't be downloaded from the Hub.
            token (`str` or *bool*, *optional*):
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
            revision (`str`, *optional*, defaults to `"main"`):
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
            subfolder (`str`, *optional*, defaults to `""`):
                The subfolder location of a model file within a larger model repository on the Hub or locally.
772
773
            weight_name (`str`, *optional*, defaults to None):
                Name of the serialized state dict file.
774
775
            return_lora_metadata (`bool`, *optional*, defaults to False):
                When enabled, additionally return the LoRA adapter metadata, typically found in the state dict.
776
777
778
779
780
781
782
783
784
785
786
        """
        # Load the main state dict first which has the LoRA layers for either of
        # UNet and text encoder or both.
        cache_dir = kwargs.pop("cache_dir", None)
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", None)
        token = kwargs.pop("token", None)
        revision = kwargs.pop("revision", None)
        subfolder = kwargs.pop("subfolder", None)
        weight_name = kwargs.pop("weight_name", None)
787
        unet_config = kwargs.pop("unet_config", None)
788
        use_safetensors = kwargs.pop("use_safetensors", None)
789
        return_lora_metadata = kwargs.pop("return_lora_metadata", False)
Dhruv Nair's avatar
Dhruv Nair committed
790

791
792
793
794
795
        allow_pickle = False
        if use_safetensors is None:
            use_safetensors = True
            allow_pickle = True

796
        user_agent = {"file_type": "attn_procs_weights", "framework": "pytorch"}
797

798
        state_dict, metadata = _fetch_state_dict(
799
800
801
802
803
804
805
806
807
808
809
810
811
            pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict,
            weight_name=weight_name,
            use_safetensors=use_safetensors,
            local_files_only=local_files_only,
            cache_dir=cache_dir,
            force_download=force_download,
            proxies=proxies,
            token=token,
            revision=revision,
            subfolder=subfolder,
            user_agent=user_agent,
            allow_pickle=allow_pickle,
        )
Sayak Paul's avatar
Sayak Paul committed
812
813
814
815
816
        is_dora_scale_present = any("dora_scale" in k for k in state_dict)
        if is_dora_scale_present:
            warn_msg = "It seems like you are using a DoRA checkpoint that is not compatible in Diffusers at the moment. So, we are going to filter out the keys associated to 'dora_scale` from the state dict. If you think this is a mistake please open an issue https://github.com/huggingface/diffusers/issues/new."
            logger.warning(warn_msg)
            state_dict = {k: v for k, v in state_dict.items() if "dora_scale" not in k}
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834

        network_alphas = None
        # TODO: replace it with a method from `state_dict_utils`
        if all(
            (
                k.startswith("lora_te_")
                or k.startswith("lora_unet_")
                or k.startswith("lora_te1_")
                or k.startswith("lora_te2_")
            )
            for k in state_dict.keys()
        ):
            # Map SDXL blocks correctly.
            if unet_config is not None:
                # use unet config to remap block numbers
                state_dict = _maybe_map_sgm_blocks_to_diffusers(state_dict, unet_config)
            state_dict, network_alphas = _convert_non_diffusers_lora_to_diffusers(state_dict)

835
836
        out = (state_dict, network_alphas, metadata) if return_lora_metadata else (state_dict, network_alphas)
        return out
837
838
839

    @classmethod
    # Copied from diffusers.loaders.lora_pipeline.StableDiffusionLoraLoaderMixin.load_lora_into_unet
840
    def load_lora_into_unet(
841
842
843
844
845
846
847
848
        cls,
        state_dict,
        network_alphas,
        unet,
        adapter_name=None,
        _pipeline=None,
        low_cpu_mem_usage=False,
        hotswap: bool = False,
849
        metadata=None,
850
    ):
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
        """
        This will load the LoRA layers specified in `state_dict` into `unet`.

        Parameters:
            state_dict (`dict`):
                A standard state dict containing the lora layer parameters. The keys can either be indexed directly
                into the unet or prefixed with an additional `unet` which can be used to distinguish between text
                encoder lora layers.
            network_alphas (`Dict[str, float]`):
                The value of the network alpha used for stable learning and preventing underflow. This value has the
                same meaning as the `--network_alpha` option in the kohya-ss trainer script. Refer to [this
                link](https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning).
            unet (`UNet2DConditionModel`):
                The UNet model to load the LoRA layers into.
            adapter_name (`str`, *optional*):
                Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
                `default_{i}` where i is the total number of adapters being loaded.
868
869
870
            low_cpu_mem_usage (`bool`, *optional*):
                Speed up model loading only loading the pretrained LoRA weights and not initializing the random
                weights.
871
872
            hotswap (`bool`, *optional*):
                See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`].
873
874
875
            metadata (`dict`):
                Optional LoRA adapter metadata. When supplied, the `LoraConfig` arguments of `peft` won't be derived
                from the state dict.
876
877
878
879
        """
        if not USE_PEFT_BACKEND:
            raise ValueError("PEFT backend is required for this method.")

880
881
882
883
884
        if low_cpu_mem_usage and not is_peft_version(">=", "0.13.1"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

885
886
887
        # If the serialization format is new (introduced in https://github.com/huggingface/diffusers/pull/2918),
        # then the `state_dict` keys should have `cls.unet_name` and/or `cls.text_encoder_name` as
        # their prefixes.
888
889
890
891
892
893
        logger.info(f"Loading {cls.unet_name}.")
        unet.load_lora_adapter(
            state_dict,
            prefix=cls.unet_name,
            network_alphas=network_alphas,
            adapter_name=adapter_name,
894
            metadata=metadata,
895
896
            _pipeline=_pipeline,
            low_cpu_mem_usage=low_cpu_mem_usage,
897
            hotswap=hotswap,
898
        )
899
900
901
902
903
904
905
906
907
908
909
910

    @classmethod
    # Copied from diffusers.loaders.lora_pipeline.StableDiffusionLoraLoaderMixin.load_lora_into_text_encoder
    def load_lora_into_text_encoder(
        cls,
        state_dict,
        network_alphas,
        text_encoder,
        prefix=None,
        lora_scale=1.0,
        adapter_name=None,
        _pipeline=None,
911
        low_cpu_mem_usage=False,
912
        hotswap: bool = False,
913
        metadata=None,
914
915
916
917
918
919
920
921
922
    ):
        """
        This will load the LoRA layers specified in `state_dict` into `text_encoder`

        Parameters:
            state_dict (`dict`):
                A standard state dict containing the lora layer parameters. The key should be prefixed with an
                additional `text_encoder` to distinguish between unet lora layers.
            network_alphas (`Dict[str, float]`):
923
924
925
                The value of the network alpha used for stable learning and preventing underflow. This value has the
                same meaning as the `--network_alpha` option in the kohya-ss trainer script. Refer to [this
                link](https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning).
926
927
928
929
930
931
932
933
934
935
            text_encoder (`CLIPTextModel`):
                The text encoder model to load the LoRA layers into.
            prefix (`str`):
                Expected prefix of the `text_encoder` in the `state_dict`.
            lora_scale (`float`):
                How much to scale the output of the lora linear layer before it is added with the output of the regular
                lora layer.
            adapter_name (`str`, *optional*):
                Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
                `default_{i}` where i is the total number of adapters being loaded.
936
937
938
            low_cpu_mem_usage (`bool`, *optional*):
                Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
                weights.
939
940
            hotswap (`bool`, *optional*):
                See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`].
941
942
943
            metadata (`dict`):
                Optional LoRA adapter metadata. When supplied, the `LoraConfig` arguments of `peft` won't be derived
                from the state dict.
944
        """
945
946
947
948
949
950
951
952
        _load_lora_into_text_encoder(
            state_dict=state_dict,
            network_alphas=network_alphas,
            lora_scale=lora_scale,
            text_encoder=text_encoder,
            prefix=prefix,
            text_encoder_name=cls.text_encoder_name,
            adapter_name=adapter_name,
953
            metadata=metadata,
954
955
            _pipeline=_pipeline,
            low_cpu_mem_usage=low_cpu_mem_usage,
956
            hotswap=hotswap,
957
        )
958
959
960
961
962
963
964
965
966
967
968
969

    @classmethod
    def save_lora_weights(
        cls,
        save_directory: Union[str, os.PathLike],
        unet_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
        text_encoder_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
        text_encoder_2_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
        is_main_process: bool = True,
        weight_name: str = None,
        save_function: Callable = None,
        safe_serialization: bool = True,
970
971
972
        unet_lora_adapter_metadata=None,
        text_encoder_lora_adapter_metadata=None,
        text_encoder_2_lora_adapter_metadata=None,
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
    ):
        r"""
        Save the LoRA parameters corresponding to the UNet and text encoder.

        Arguments:
            save_directory (`str` or `os.PathLike`):
                Directory to save LoRA parameters to. Will be created if it doesn't exist.
            unet_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
                State dict of the LoRA layers corresponding to the `unet`.
            text_encoder_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
                State dict of the LoRA layers corresponding to the `text_encoder`. Must explicitly pass the text
                encoder LoRA state dict because it comes from 🤗 Transformers.
            text_encoder_2_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
                State dict of the LoRA layers corresponding to the `text_encoder_2`. Must explicitly pass the text
                encoder LoRA state dict because it comes from 🤗 Transformers.
            is_main_process (`bool`, *optional*, defaults to `True`):
                Whether the process calling this is the main process or not. Useful during distributed training and you
                need to call this function on all processes. In this case, set `is_main_process=True` only on the main
                process to avoid race conditions.
            save_function (`Callable`):
                The function to use to save the state dictionary. Useful during distributed training when you need to
                replace `torch.save` with another method. Can be configured with the environment variable
                `DIFFUSERS_SAVE_MODE`.
            safe_serialization (`bool`, *optional*, defaults to `True`):
                Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`.
998
999
1000
1001
1002
1003
            unet_lora_adapter_metadata:
                LoRA adapter metadata associated with the unet to be serialized with the state dict.
            text_encoder_lora_adapter_metadata:
                LoRA adapter metadata associated with the text encoder to be serialized with the state dict.
            text_encoder_2_lora_adapter_metadata:
                LoRA adapter metadata associated with the second text encoder to be serialized with the state dict.
1004
1005
        """
        state_dict = {}
1006
        lora_adapter_metadata = {}
1007
1008
1009

        if not (unet_lora_layers or text_encoder_lora_layers or text_encoder_2_lora_layers):
            raise ValueError(
1010
                "You must pass at least one of `unet_lora_layers`, `text_encoder_lora_layers`, `text_encoder_2_lora_layers`."
1011
1012
1013
            )

        if unet_lora_layers:
1014
            state_dict.update(cls.pack_weights(unet_lora_layers, cls.unet_name))
1015
1016
1017
1018
1019
1020
1021

        if text_encoder_lora_layers:
            state_dict.update(cls.pack_weights(text_encoder_lora_layers, "text_encoder"))

        if text_encoder_2_lora_layers:
            state_dict.update(cls.pack_weights(text_encoder_2_lora_layers, "text_encoder_2"))

1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
        if unet_lora_adapter_metadata is not None:
            lora_adapter_metadata.update(_pack_dict_with_prefix(unet_lora_adapter_metadata, cls.unet_name))

        if text_encoder_lora_adapter_metadata:
            lora_adapter_metadata.update(
                _pack_dict_with_prefix(text_encoder_lora_adapter_metadata, cls.text_encoder_name)
            )

        if text_encoder_2_lora_adapter_metadata:
            lora_adapter_metadata.update(
                _pack_dict_with_prefix(text_encoder_2_lora_adapter_metadata, "text_encoder_2")
            )

1035
1036
1037
1038
1039
1040
1041
        cls.write_lora_layers(
            state_dict=state_dict,
            save_directory=save_directory,
            is_main_process=is_main_process,
            weight_name=weight_name,
            save_function=save_function,
            safe_serialization=safe_serialization,
1042
            lora_adapter_metadata=lora_adapter_metadata,
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
        )

    def fuse_lora(
        self,
        components: List[str] = ["unet", "text_encoder", "text_encoder_2"],
        lora_scale: float = 1.0,
        safe_fusing: bool = False,
        adapter_names: Optional[List[str]] = None,
        **kwargs,
    ):
        r"""
        Fuses the LoRA parameters into the original parameters of the corresponding blocks.

        <Tip warning={true}>

        This is an experimental API.

        </Tip>

        Args:
            components: (`List[str]`): List of LoRA-injectable components to fuse the LoRAs into.
            lora_scale (`float`, defaults to 1.0):
                Controls how much to influence the outputs with the LoRA parameters.
            safe_fusing (`bool`, defaults to `False`):
                Whether to check fused weights for NaN values before fusing and if values are NaN not fusing them.
            adapter_names (`List[str]`, *optional*):
                Adapter names to be used for fusing. If nothing is passed, all active adapters will be fused.

        Example:

        ```py
        from diffusers import DiffusionPipeline
        import torch

        pipeline = DiffusionPipeline.from_pretrained(
            "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
        ).to("cuda")
        pipeline.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel")
        pipeline.fuse_lora(lora_scale=0.7)
        ```
        """
        super().fuse_lora(
1085
1086
1087
1088
1089
            components=components,
            lora_scale=lora_scale,
            safe_fusing=safe_fusing,
            adapter_names=adapter_names,
            **kwargs,
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
        )

    def unfuse_lora(self, components: List[str] = ["unet", "text_encoder", "text_encoder_2"], **kwargs):
        r"""
        Reverses the effect of
        [`pipe.fuse_lora()`](https://huggingface.co/docs/diffusers/main/en/api/loaders#diffusers.loaders.LoraBaseMixin.fuse_lora).

        <Tip warning={true}>

        This is an experimental API.

        </Tip>

        Args:
            components (`List[str]`): List of LoRA-injectable components to unfuse LoRA from.
            unfuse_unet (`bool`, defaults to `True`): Whether to unfuse the UNet LoRA parameters.
            unfuse_text_encoder (`bool`, defaults to `True`):
                Whether to unfuse the text encoder LoRA parameters. If the text encoder wasn't monkey-patched with the
                LoRA parameters then it won't have any effect.
        """
1110
        super().unfuse_lora(components=components, **kwargs)
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175


class SD3LoraLoaderMixin(LoraBaseMixin):
    r"""
    Load LoRA layers into [`SD3Transformer2DModel`],
    [`CLIPTextModel`](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), and
    [`CLIPTextModelWithProjection`](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection).

    Specific to [`StableDiffusion3Pipeline`].
    """

    _lora_loadable_modules = ["transformer", "text_encoder", "text_encoder_2"]
    transformer_name = TRANSFORMER_NAME
    text_encoder_name = TEXT_ENCODER_NAME

    @classmethod
    @validate_hf_hub_args
    def lora_state_dict(
        cls,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        **kwargs,
    ):
        r"""
        Return state dict for lora weights and the network alphas.

        <Tip warning={true}>

        We support loading A1111 formatted LoRA checkpoints in a limited capacity.

        This function is experimental and might change in the future.

        </Tip>

        Parameters:
            pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
                Can be either:

                    - A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
                      the Hub.
                    - A path to a *directory* (for example `./my_model_directory`) containing the model weights saved
                      with [`ModelMixin.save_pretrained`].
                    - A [torch state
                      dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).

            cache_dir (`Union[str, os.PathLike]`, *optional*):
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.

            proxies (`Dict[str, str]`, *optional*):
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            local_files_only (`bool`, *optional*, defaults to `False`):
                Whether to only load local model weights and configuration files or not. If set to `True`, the model
                won't be downloaded from the Hub.
            token (`str` or *bool*, *optional*):
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
            revision (`str`, *optional*, defaults to `"main"`):
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
            subfolder (`str`, *optional*, defaults to `""`):
                The subfolder location of a model file within a larger model repository on the Hub or locally.
1176
1177
            return_lora_metadata (`bool`, *optional*, defaults to False):
                When enabled, additionally return the LoRA adapter metadata, typically found in the state dict.
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190

        """
        # Load the main state dict first which has the LoRA layers for either of
        # transformer and text encoder or both.
        cache_dir = kwargs.pop("cache_dir", None)
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", None)
        token = kwargs.pop("token", None)
        revision = kwargs.pop("revision", None)
        subfolder = kwargs.pop("subfolder", None)
        weight_name = kwargs.pop("weight_name", None)
        use_safetensors = kwargs.pop("use_safetensors", None)
1191
        return_lora_metadata = kwargs.pop("return_lora_metadata", False)
1192
1193
1194
1195
1196
1197

        allow_pickle = False
        if use_safetensors is None:
            use_safetensors = True
            allow_pickle = True

1198
        user_agent = {"file_type": "attn_procs_weights", "framework": "pytorch"}
1199

1200
        state_dict, metadata = _fetch_state_dict(
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
            pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict,
            weight_name=weight_name,
            use_safetensors=use_safetensors,
            local_files_only=local_files_only,
            cache_dir=cache_dir,
            force_download=force_download,
            proxies=proxies,
            token=token,
            revision=revision,
            subfolder=subfolder,
            user_agent=user_agent,
            allow_pickle=allow_pickle,
        )

Sayak Paul's avatar
Sayak Paul committed
1215
1216
1217
1218
1219
1220
        is_dora_scale_present = any("dora_scale" in k for k in state_dict)
        if is_dora_scale_present:
            warn_msg = "It seems like you are using a DoRA checkpoint that is not compatible in Diffusers at the moment. So, we are going to filter out the keys associated to 'dora_scale` from the state dict. If you think this is a mistake please open an issue https://github.com/huggingface/diffusers/issues/new."
            logger.warning(warn_msg)
            state_dict = {k: v for k, v in state_dict.items() if "dora_scale" not in k}

1221
1222
        out = (state_dict, metadata) if return_lora_metadata else state_dict
        return out
1223
1224

    def load_lora_weights(
1225
1226
1227
1228
1229
        self,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        adapter_name=None,
        hotswap: bool = False,
        **kwargs,
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
    ):
        """
        Load LoRA weights specified in `pretrained_model_name_or_path_or_dict` into `self.unet` and
        `self.text_encoder`.

        All kwargs are forwarded to `self.lora_state_dict`.

        See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details on how the state dict is
        loaded.

        See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_transformer`] for more details on how the state
        dict is loaded into `self.transformer`.

        Parameters:
            pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
                See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`].
            adapter_name (`str`, *optional*):
                Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
                `default_{i}` where i is the total number of adapters being loaded.
1249
1250
1251
            low_cpu_mem_usage (`bool`, *optional*):
                Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
                weights.
1252
1253
            hotswap (`bool`, *optional*):
                See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`].
1254
1255
            kwargs (`dict`, *optional*):
                See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`].
1256
1257
1258
1259
        """
        if not USE_PEFT_BACKEND:
            raise ValueError("PEFT backend is required for this method.")

1260
1261
1262
1263
1264
1265
        low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT_LORA)
        if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

1266
1267
1268
1269
1270
        # if a dict is passed, copy it instead of modifying it inplace
        if isinstance(pretrained_model_name_or_path_or_dict, dict):
            pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy()

        # First, ensure that the checkpoint is a compatible one and can be successfully loaded.
1271
1272
        kwargs["return_lora_metadata"] = True
        state_dict, metadata = self.lora_state_dict(pretrained_model_name_or_path_or_dict, **kwargs)
1273

Sayak Paul's avatar
Sayak Paul committed
1274
        is_correct_format = all("lora" in key for key in state_dict.keys())
1275
1276
1277
        if not is_correct_format:
            raise ValueError("Invalid LoRA checkpoint.")

1278
1279
1280
1281
        self.load_lora_into_transformer(
            state_dict,
            transformer=getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer,
            adapter_name=adapter_name,
1282
            metadata=metadata,
1283
1284
            _pipeline=self,
            low_cpu_mem_usage=low_cpu_mem_usage,
1285
            hotswap=hotswap,
1286
1287
1288
1289
1290
1291
1292
1293
        )
        self.load_lora_into_text_encoder(
            state_dict,
            network_alphas=None,
            text_encoder=self.text_encoder,
            prefix=self.text_encoder_name,
            lora_scale=self.lora_scale,
            adapter_name=adapter_name,
1294
            metadata=metadata,
1295
1296
            _pipeline=self,
            low_cpu_mem_usage=low_cpu_mem_usage,
1297
            hotswap=hotswap,
1298
1299
1300
1301
1302
1303
1304
1305
        )
        self.load_lora_into_text_encoder(
            state_dict,
            network_alphas=None,
            text_encoder=self.text_encoder_2,
            prefix=f"{self.text_encoder_name}_2",
            lora_scale=self.lora_scale,
            adapter_name=adapter_name,
1306
            metadata=metadata,
1307
1308
            _pipeline=self,
            low_cpu_mem_usage=low_cpu_mem_usage,
1309
            hotswap=hotswap,
1310
        )
1311
1312

    @classmethod
1313
    def load_lora_into_transformer(
1314
1315
1316
1317
1318
1319
1320
1321
        cls,
        state_dict,
        transformer,
        adapter_name=None,
        _pipeline=None,
        low_cpu_mem_usage=False,
        hotswap: bool = False,
        metadata=None,
1322
    ):
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
        """
        This will load the LoRA layers specified in `state_dict` into `transformer`.

        Parameters:
            state_dict (`dict`):
                A standard state dict containing the lora layer parameters. The keys can either be indexed directly
                into the unet or prefixed with an additional `unet` which can be used to distinguish between text
                encoder lora layers.
            transformer (`SD3Transformer2DModel`):
                The Transformer model to load the LoRA layers into.
            adapter_name (`str`, *optional*):
                Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
                `default_{i}` where i is the total number of adapters being loaded.
1336
1337
1338
            low_cpu_mem_usage (`bool`, *optional*):
                Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
                weights.
1339
1340
            hotswap (`bool`, *optional*):
                See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`].
1341
1342
1343
            metadata (`dict`):
                Optional LoRA adapter metadata. When supplied, the `LoraConfig` arguments of `peft` won't be derived
                from the state dict.
1344
        """
1345
1346
1347
1348
1349
        if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

1350
1351
1352
1353
1354
1355
        # Load the layers corresponding to transformer.
        logger.info(f"Loading {cls.transformer_name}.")
        transformer.load_lora_adapter(
            state_dict,
            network_alphas=None,
            adapter_name=adapter_name,
1356
            metadata=metadata,
1357
1358
            _pipeline=_pipeline,
            low_cpu_mem_usage=low_cpu_mem_usage,
1359
            hotswap=hotswap,
1360
        )
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372

    @classmethod
    # Copied from diffusers.loaders.lora_pipeline.StableDiffusionLoraLoaderMixin.load_lora_into_text_encoder
    def load_lora_into_text_encoder(
        cls,
        state_dict,
        network_alphas,
        text_encoder,
        prefix=None,
        lora_scale=1.0,
        adapter_name=None,
        _pipeline=None,
1373
        low_cpu_mem_usage=False,
1374
        hotswap: bool = False,
1375
        metadata=None,
1376
1377
1378
1379
1380
1381
1382
1383
1384
    ):
        """
        This will load the LoRA layers specified in `state_dict` into `text_encoder`

        Parameters:
            state_dict (`dict`):
                A standard state dict containing the lora layer parameters. The key should be prefixed with an
                additional `text_encoder` to distinguish between unet lora layers.
            network_alphas (`Dict[str, float]`):
1385
1386
1387
                The value of the network alpha used for stable learning and preventing underflow. This value has the
                same meaning as the `--network_alpha` option in the kohya-ss trainer script. Refer to [this
                link](https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning).
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
            text_encoder (`CLIPTextModel`):
                The text encoder model to load the LoRA layers into.
            prefix (`str`):
                Expected prefix of the `text_encoder` in the `state_dict`.
            lora_scale (`float`):
                How much to scale the output of the lora linear layer before it is added with the output of the regular
                lora layer.
            adapter_name (`str`, *optional*):
                Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
                `default_{i}` where i is the total number of adapters being loaded.
1398
1399
1400
            low_cpu_mem_usage (`bool`, *optional*):
                Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
                weights.
1401
1402
            hotswap (`bool`, *optional*):
                See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`].
1403
1404
1405
            metadata (`dict`):
                Optional LoRA adapter metadata. When supplied, the `LoraConfig` arguments of `peft` won't be derived
                from the state dict.
1406
        """
1407
1408
1409
1410
1411
1412
1413
1414
        _load_lora_into_text_encoder(
            state_dict=state_dict,
            network_alphas=network_alphas,
            lora_scale=lora_scale,
            text_encoder=text_encoder,
            prefix=prefix,
            text_encoder_name=cls.text_encoder_name,
            adapter_name=adapter_name,
1415
            metadata=metadata,
1416
1417
            _pipeline=_pipeline,
            low_cpu_mem_usage=low_cpu_mem_usage,
1418
            hotswap=hotswap,
1419
        )
1420
1421

    @classmethod
1422
    # Copied from diffusers.loaders.lora_pipeline.StableDiffusionXLLoraLoaderMixin.save_lora_weights with unet->transformer
1423
1424
1425
    def save_lora_weights(
        cls,
        save_directory: Union[str, os.PathLike],
1426
        transformer_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
1427
1428
1429
1430
1431
1432
        text_encoder_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
        text_encoder_2_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
        is_main_process: bool = True,
        weight_name: str = None,
        save_function: Callable = None,
        safe_serialization: bool = True,
1433
1434
1435
        transformer_lora_adapter_metadata=None,
        text_encoder_lora_adapter_metadata=None,
        text_encoder_2_lora_adapter_metadata=None,
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
    ):
        r"""
        Save the LoRA parameters corresponding to the UNet and text encoder.

        Arguments:
            save_directory (`str` or `os.PathLike`):
                Directory to save LoRA parameters to. Will be created if it doesn't exist.
            transformer_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
                State dict of the LoRA layers corresponding to the `transformer`.
            text_encoder_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
                State dict of the LoRA layers corresponding to the `text_encoder`. Must explicitly pass the text
                encoder LoRA state dict because it comes from 🤗 Transformers.
            text_encoder_2_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
                State dict of the LoRA layers corresponding to the `text_encoder_2`. Must explicitly pass the text
                encoder LoRA state dict because it comes from 🤗 Transformers.
            is_main_process (`bool`, *optional*, defaults to `True`):
                Whether the process calling this is the main process or not. Useful during distributed training and you
                need to call this function on all processes. In this case, set `is_main_process=True` only on the main
                process to avoid race conditions.
            save_function (`Callable`):
                The function to use to save the state dictionary. Useful during distributed training when you need to
                replace `torch.save` with another method. Can be configured with the environment variable
                `DIFFUSERS_SAVE_MODE`.
            safe_serialization (`bool`, *optional*, defaults to `True`):
                Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`.
1461
1462
1463
1464
1465
1466
            transformer_lora_adapter_metadata:
                LoRA adapter metadata associated with the transformer to be serialized with the state dict.
            text_encoder_lora_adapter_metadata:
                LoRA adapter metadata associated with the text encoder to be serialized with the state dict.
            text_encoder_2_lora_adapter_metadata:
                LoRA adapter metadata associated with the second text encoder to be serialized with the state dict.
1467
1468
        """
        state_dict = {}
1469
        lora_adapter_metadata = {}
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484

        if not (transformer_lora_layers or text_encoder_lora_layers or text_encoder_2_lora_layers):
            raise ValueError(
                "You must pass at least one of `transformer_lora_layers`, `text_encoder_lora_layers`, `text_encoder_2_lora_layers`."
            )

        if transformer_lora_layers:
            state_dict.update(cls.pack_weights(transformer_lora_layers, cls.transformer_name))

        if text_encoder_lora_layers:
            state_dict.update(cls.pack_weights(text_encoder_lora_layers, "text_encoder"))

        if text_encoder_2_lora_layers:
            state_dict.update(cls.pack_weights(text_encoder_2_lora_layers, "text_encoder_2"))

1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
        if transformer_lora_adapter_metadata is not None:
            lora_adapter_metadata.update(
                _pack_dict_with_prefix(transformer_lora_adapter_metadata, cls.transformer_name)
            )

        if text_encoder_lora_adapter_metadata:
            lora_adapter_metadata.update(
                _pack_dict_with_prefix(text_encoder_lora_adapter_metadata, cls.text_encoder_name)
            )

        if text_encoder_2_lora_adapter_metadata:
            lora_adapter_metadata.update(
                _pack_dict_with_prefix(text_encoder_2_lora_adapter_metadata, "text_encoder_2")
            )

1500
1501
1502
1503
1504
1505
1506
        cls.write_lora_layers(
            state_dict=state_dict,
            save_directory=save_directory,
            is_main_process=is_main_process,
            weight_name=weight_name,
            save_function=save_function,
            safe_serialization=safe_serialization,
1507
            lora_adapter_metadata=lora_adapter_metadata,
1508
1509
        )

1510
    # Copied from diffusers.loaders.lora_pipeline.StableDiffusionXLLoraLoaderMixin.fuse_lora with unet->transformer
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
    def fuse_lora(
        self,
        components: List[str] = ["transformer", "text_encoder", "text_encoder_2"],
        lora_scale: float = 1.0,
        safe_fusing: bool = False,
        adapter_names: Optional[List[str]] = None,
        **kwargs,
    ):
        r"""
        Fuses the LoRA parameters into the original parameters of the corresponding blocks.

        <Tip warning={true}>

        This is an experimental API.

        </Tip>

        Args:
            components: (`List[str]`): List of LoRA-injectable components to fuse the LoRAs into.
            lora_scale (`float`, defaults to 1.0):
                Controls how much to influence the outputs with the LoRA parameters.
            safe_fusing (`bool`, defaults to `False`):
                Whether to check fused weights for NaN values before fusing and if values are NaN not fusing them.
            adapter_names (`List[str]`, *optional*):
                Adapter names to be used for fusing. If nothing is passed, all active adapters will be fused.

        Example:

        ```py
        from diffusers import DiffusionPipeline
        import torch

        pipeline = DiffusionPipeline.from_pretrained(
            "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
        ).to("cuda")
        pipeline.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel")
        pipeline.fuse_lora(lora_scale=0.7)
        ```
        """
        super().fuse_lora(
1551
1552
1553
1554
1555
            components=components,
            lora_scale=lora_scale,
            safe_fusing=safe_fusing,
            adapter_names=adapter_names,
            **kwargs,
1556
1557
        )

1558
    # Copied from diffusers.loaders.lora_pipeline.StableDiffusionXLLoraLoaderMixin.unfuse_lora with unet->transformer
1559
1560
1561
1562
1563
1564
    def unfuse_lora(self, components: List[str] = ["transformer", "text_encoder", "text_encoder_2"], **kwargs):
        r"""
        Reverses the effect of
        [`pipe.fuse_lora()`](https://huggingface.co/docs/diffusers/main/en/api/loaders#diffusers.loaders.LoraBaseMixin.fuse_lora).

        <Tip warning={true}>
Dhruv Nair's avatar
Dhruv Nair committed
1565

1566
        This is an experimental API.
1567

1568
        </Tip>
1569

1570
1571
        Args:
            components (`List[str]`): List of LoRA-injectable components to unfuse LoRA from.
1572
            unfuse_transformer (`bool`, defaults to `True`): Whether to unfuse the UNet LoRA parameters.
1573
1574
1575
1576
            unfuse_text_encoder (`bool`, defaults to `True`):
                Whether to unfuse the text encoder LoRA parameters. If the text encoder wasn't monkey-patched with the
                LoRA parameters then it won't have any effect.
        """
1577
        super().unfuse_lora(components=components, **kwargs)
1578
1579


1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
class AuraFlowLoraLoaderMixin(LoraBaseMixin):
    r"""
    Load LoRA layers into [`AuraFlowTransformer2DModel`] Specific to [`AuraFlowPipeline`].
    """

    _lora_loadable_modules = ["transformer"]
    transformer_name = TRANSFORMER_NAME

    @classmethod
    @validate_hf_hub_args
    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.lora_state_dict
    def lora_state_dict(
        cls,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        **kwargs,
    ):
        r"""
        Return state dict for lora weights and the network alphas.

        <Tip warning={true}>

        We support loading A1111 formatted LoRA checkpoints in a limited capacity.

        This function is experimental and might change in the future.

        </Tip>

        Parameters:
            pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
                Can be either:

                    - A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
                      the Hub.
                    - A path to a *directory* (for example `./my_model_directory`) containing the model weights saved
                      with [`ModelMixin.save_pretrained`].
                    - A [torch state
                      dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).

            cache_dir (`Union[str, os.PathLike]`, *optional*):
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.

            proxies (`Dict[str, str]`, *optional*):
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            local_files_only (`bool`, *optional*, defaults to `False`):
                Whether to only load local model weights and configuration files or not. If set to `True`, the model
                won't be downloaded from the Hub.
            token (`str` or *bool*, *optional*):
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
            revision (`str`, *optional*, defaults to `"main"`):
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
            subfolder (`str`, *optional*, defaults to `""`):
                The subfolder location of a model file within a larger model repository on the Hub or locally.
1639
1640
            return_lora_metadata (`bool`, *optional*, defaults to False):
                When enabled, additionally return the LoRA adapter metadata, typically found in the state dict.
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653

        """
        # Load the main state dict first which has the LoRA layers for either of
        # transformer and text encoder or both.
        cache_dir = kwargs.pop("cache_dir", None)
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", None)
        token = kwargs.pop("token", None)
        revision = kwargs.pop("revision", None)
        subfolder = kwargs.pop("subfolder", None)
        weight_name = kwargs.pop("weight_name", None)
        use_safetensors = kwargs.pop("use_safetensors", None)
1654
        return_lora_metadata = kwargs.pop("return_lora_metadata", False)
1655
1656
1657
1658
1659
1660

        allow_pickle = False
        if use_safetensors is None:
            use_safetensors = True
            allow_pickle = True

1661
        user_agent = {"file_type": "attn_procs_weights", "framework": "pytorch"}
1662

1663
        state_dict, metadata = _fetch_state_dict(
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
            pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict,
            weight_name=weight_name,
            use_safetensors=use_safetensors,
            local_files_only=local_files_only,
            cache_dir=cache_dir,
            force_download=force_download,
            proxies=proxies,
            token=token,
            revision=revision,
            subfolder=subfolder,
            user_agent=user_agent,
            allow_pickle=allow_pickle,
        )

        is_dora_scale_present = any("dora_scale" in k for k in state_dict)
        if is_dora_scale_present:
            warn_msg = "It seems like you are using a DoRA checkpoint that is not compatible in Diffusers at the moment. So, we are going to filter out the keys associated to 'dora_scale` from the state dict. If you think this is a mistake please open an issue https://github.com/huggingface/diffusers/issues/new."
            logger.warning(warn_msg)
            state_dict = {k: v for k, v in state_dict.items() if "dora_scale" not in k}

1684
1685
        out = (state_dict, metadata) if return_lora_metadata else state_dict
        return out
1686
1687
1688

    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.load_lora_weights
    def load_lora_weights(
1689
1690
1691
1692
1693
        self,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        adapter_name: Optional[str] = None,
        hotswap: bool = False,
        **kwargs,
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
    ):
        """
        Load LoRA weights specified in `pretrained_model_name_or_path_or_dict` into `self.transformer` and
        `self.text_encoder`. All kwargs are forwarded to `self.lora_state_dict`. See
        [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details on how the state dict is loaded.
        See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_transformer`] for more details on how the state
        dict is loaded into `self.transformer`.

        Parameters:
            pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
                See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`].
            adapter_name (`str`, *optional*):
                Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
                `default_{i}` where i is the total number of adapters being loaded.
            low_cpu_mem_usage (`bool`, *optional*):
                Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
                weights.
1711
1712
            hotswap (`bool`, *optional*):
                See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`].
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
            kwargs (`dict`, *optional*):
                See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`].
        """
        if not USE_PEFT_BACKEND:
            raise ValueError("PEFT backend is required for this method.")

        low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT_LORA)
        if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

        # if a dict is passed, copy it instead of modifying it inplace
        if isinstance(pretrained_model_name_or_path_or_dict, dict):
            pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy()

        # First, ensure that the checkpoint is a compatible one and can be successfully loaded.
1730
1731
        kwargs["return_lora_metadata"] = True
        state_dict, metadata = self.lora_state_dict(pretrained_model_name_or_path_or_dict, **kwargs)
1732
1733
1734
1735
1736
1737
1738
1739
1740

        is_correct_format = all("lora" in key for key in state_dict.keys())
        if not is_correct_format:
            raise ValueError("Invalid LoRA checkpoint.")

        self.load_lora_into_transformer(
            state_dict,
            transformer=getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer,
            adapter_name=adapter_name,
1741
            metadata=metadata,
1742
1743
            _pipeline=self,
            low_cpu_mem_usage=low_cpu_mem_usage,
1744
            hotswap=hotswap,
1745
1746
1747
1748
1749
        )

    @classmethod
    # Copied from diffusers.loaders.lora_pipeline.SD3LoraLoaderMixin.load_lora_into_transformer with SD3Transformer2DModel->AuraFlowTransformer2DModel
    def load_lora_into_transformer(
1750
1751
1752
1753
1754
1755
1756
1757
        cls,
        state_dict,
        transformer,
        adapter_name=None,
        _pipeline=None,
        low_cpu_mem_usage=False,
        hotswap: bool = False,
        metadata=None,
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
    ):
        """
        This will load the LoRA layers specified in `state_dict` into `transformer`.

        Parameters:
            state_dict (`dict`):
                A standard state dict containing the lora layer parameters. The keys can either be indexed directly
                into the unet or prefixed with an additional `unet` which can be used to distinguish between text
                encoder lora layers.
            transformer (`AuraFlowTransformer2DModel`):
                The Transformer model to load the LoRA layers into.
            adapter_name (`str`, *optional*):
                Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
                `default_{i}` where i is the total number of adapters being loaded.
            low_cpu_mem_usage (`bool`, *optional*):
                Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
                weights.
1775
1776
            hotswap (`bool`, *optional*):
                See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`].
1777
1778
1779
            metadata (`dict`):
                Optional LoRA adapter metadata. When supplied, the `LoraConfig` arguments of `peft` won't be derived
                from the state dict.
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
        """
        if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

        # Load the layers corresponding to transformer.
        logger.info(f"Loading {cls.transformer_name}.")
        transformer.load_lora_adapter(
            state_dict,
            network_alphas=None,
            adapter_name=adapter_name,
1792
            metadata=metadata,
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
            _pipeline=_pipeline,
            low_cpu_mem_usage=low_cpu_mem_usage,
            hotswap=hotswap,
        )

    @classmethod
    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.save_lora_weights
    def save_lora_weights(
        cls,
        save_directory: Union[str, os.PathLike],
        transformer_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
        is_main_process: bool = True,
        weight_name: str = None,
        save_function: Callable = None,
        safe_serialization: bool = True,
1808
        transformer_lora_adapter_metadata: Optional[dict] = None,
1809
1810
    ):
        r"""
1811
        Save the LoRA parameters corresponding to the transformer.
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827

        Arguments:
            save_directory (`str` or `os.PathLike`):
                Directory to save LoRA parameters to. Will be created if it doesn't exist.
            transformer_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
                State dict of the LoRA layers corresponding to the `transformer`.
            is_main_process (`bool`, *optional*, defaults to `True`):
                Whether the process calling this is the main process or not. Useful during distributed training and you
                need to call this function on all processes. In this case, set `is_main_process=True` only on the main
                process to avoid race conditions.
            save_function (`Callable`):
                The function to use to save the state dictionary. Useful during distributed training when you need to
                replace `torch.save` with another method. Can be configured with the environment variable
                `DIFFUSERS_SAVE_MODE`.
            safe_serialization (`bool`, *optional*, defaults to `True`):
                Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`.
1828
1829
            transformer_lora_adapter_metadata:
                LoRA adapter metadata associated with the transformer to be serialized with the state dict.
1830
1831
        """
        state_dict = {}
1832
        lora_adapter_metadata = {}
1833
1834
1835
1836

        if not transformer_lora_layers:
            raise ValueError("You must pass `transformer_lora_layers`.")

1837
1838
1839
1840
1841
1842
        state_dict.update(cls.pack_weights(transformer_lora_layers, cls.transformer_name))

        if transformer_lora_adapter_metadata is not None:
            lora_adapter_metadata.update(
                _pack_dict_with_prefix(transformer_lora_adapter_metadata, cls.transformer_name)
            )
1843
1844
1845
1846
1847
1848
1849
1850
1851

        # Save the model
        cls.write_lora_layers(
            state_dict=state_dict,
            save_directory=save_directory,
            is_main_process=is_main_process,
            weight_name=weight_name,
            save_function=save_function,
            safe_serialization=safe_serialization,
1852
            lora_adapter_metadata=lora_adapter_metadata,
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
        )

    # Copied from diffusers.loaders.lora_pipeline.SanaLoraLoaderMixin.fuse_lora
    def fuse_lora(
        self,
        components: List[str] = ["transformer"],
        lora_scale: float = 1.0,
        safe_fusing: bool = False,
        adapter_names: Optional[List[str]] = None,
        **kwargs,
    ):
        r"""
        Fuses the LoRA parameters into the original parameters of the corresponding blocks.

        <Tip warning={true}>

        This is an experimental API.

        </Tip>

        Args:
            components: (`List[str]`): List of LoRA-injectable components to fuse the LoRAs into.
            lora_scale (`float`, defaults to 1.0):
                Controls how much to influence the outputs with the LoRA parameters.
            safe_fusing (`bool`, defaults to `False`):
                Whether to check fused weights for NaN values before fusing and if values are NaN not fusing them.
            adapter_names (`List[str]`, *optional*):
                Adapter names to be used for fusing. If nothing is passed, all active adapters will be fused.

        Example:

        ```py
        from diffusers import DiffusionPipeline
        import torch

        pipeline = DiffusionPipeline.from_pretrained(
            "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
        ).to("cuda")
        pipeline.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel")
        pipeline.fuse_lora(lora_scale=0.7)
        ```
        """
        super().fuse_lora(
            components=components,
            lora_scale=lora_scale,
            safe_fusing=safe_fusing,
            adapter_names=adapter_names,
            **kwargs,
        )

    # Copied from diffusers.loaders.lora_pipeline.SanaLoraLoaderMixin.unfuse_lora
    def unfuse_lora(self, components: List[str] = ["transformer", "text_encoder"], **kwargs):
        r"""
        Reverses the effect of
        [`pipe.fuse_lora()`](https://huggingface.co/docs/diffusers/main/en/api/loaders#diffusers.loaders.LoraBaseMixin.fuse_lora).

        <Tip warning={true}>

        This is an experimental API.

        </Tip>

        Args:
            components (`List[str]`): List of LoRA-injectable components to unfuse LoRA from.
            unfuse_transformer (`bool`, defaults to `True`): Whether to unfuse the UNet LoRA parameters.
        """
        super().unfuse_lora(components=components, **kwargs)


Sayak Paul's avatar
Sayak Paul committed
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
class FluxLoraLoaderMixin(LoraBaseMixin):
    r"""
    Load LoRA layers into [`FluxTransformer2DModel`],
    [`CLIPTextModel`](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel).

    Specific to [`StableDiffusion3Pipeline`].
    """

    _lora_loadable_modules = ["transformer", "text_encoder"]
    transformer_name = TRANSFORMER_NAME
    text_encoder_name = TEXT_ENCODER_NAME
Aryan's avatar
Aryan committed
1933
    _control_lora_supported_norm_keys = ["norm_q", "norm_k", "norm_added_q", "norm_added_k"]
Sayak Paul's avatar
Sayak Paul committed
1934
1935
1936
1937
1938
1939

    @classmethod
    @validate_hf_hub_args
    def lora_state_dict(
        cls,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
1940
        return_alphas: bool = False,
Sayak Paul's avatar
Sayak Paul committed
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
        **kwargs,
    ):
        r"""
        Return state dict for lora weights and the network alphas.

        <Tip warning={true}>

        We support loading A1111 formatted LoRA checkpoints in a limited capacity.

        This function is experimental and might change in the future.

        </Tip>

        Parameters:
            pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
                Can be either:

                    - A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
                      the Hub.
                    - A path to a *directory* (for example `./my_model_directory`) containing the model weights saved
                      with [`ModelMixin.save_pretrained`].
                    - A [torch state
                      dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).

            cache_dir (`Union[str, os.PathLike]`, *optional*):
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.

            proxies (`Dict[str, str]`, *optional*):
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            local_files_only (`bool`, *optional*, defaults to `False`):
                Whether to only load local model weights and configuration files or not. If set to `True`, the model
                won't be downloaded from the Hub.
            token (`str` or *bool*, *optional*):
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
            revision (`str`, *optional*, defaults to `"main"`):
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
            subfolder (`str`, *optional*, defaults to `""`):
                The subfolder location of a model file within a larger model repository on the Hub or locally.
1986
1987
            return_lora_metadata (`bool`, *optional*, defaults to False):
                When enabled, additionally return the LoRA adapter metadata, typically found in the state dict.
Sayak Paul's avatar
Sayak Paul committed
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
        """
        # Load the main state dict first which has the LoRA layers for either of
        # transformer and text encoder or both.
        cache_dir = kwargs.pop("cache_dir", None)
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", None)
        token = kwargs.pop("token", None)
        revision = kwargs.pop("revision", None)
        subfolder = kwargs.pop("subfolder", None)
        weight_name = kwargs.pop("weight_name", None)
        use_safetensors = kwargs.pop("use_safetensors", None)
2000
        return_lora_metadata = kwargs.pop("return_lora_metadata", False)
Sayak Paul's avatar
Sayak Paul committed
2001
2002
2003
2004
2005
2006

        allow_pickle = False
        if use_safetensors is None:
            use_safetensors = True
            allow_pickle = True

2007
        user_agent = {"file_type": "attn_procs_weights", "framework": "pytorch"}
Sayak Paul's avatar
Sayak Paul committed
2008

2009
        state_dict, metadata = _fetch_state_dict(
Sayak Paul's avatar
Sayak Paul committed
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
            pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict,
            weight_name=weight_name,
            use_safetensors=use_safetensors,
            local_files_only=local_files_only,
            cache_dir=cache_dir,
            force_download=force_download,
            proxies=proxies,
            token=token,
            revision=revision,
            subfolder=subfolder,
            user_agent=user_agent,
            allow_pickle=allow_pickle,
        )
Sayak Paul's avatar
Sayak Paul committed
2023
2024
2025
2026
2027
        is_dora_scale_present = any("dora_scale" in k for k in state_dict)
        if is_dora_scale_present:
            warn_msg = "It seems like you are using a DoRA checkpoint that is not compatible in Diffusers at the moment. So, we are going to filter out the keys associated to 'dora_scale` from the state dict. If you think this is a mistake please open an issue https://github.com/huggingface/diffusers/issues/new."
            logger.warning(warn_msg)
            state_dict = {k: v for k, v in state_dict.items() if "dora_scale" not in k}
Sayak Paul's avatar
Sayak Paul committed
2028

2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
        # TODO (sayakpaul): to a follow-up to clean and try to unify the conditions.
        is_kohya = any(".lora_down.weight" in k for k in state_dict)
        if is_kohya:
            state_dict = _convert_kohya_flux_lora_to_diffusers(state_dict)
            # Kohya already takes care of scaling the LoRA parameters with alpha.
            return (state_dict, None) if return_alphas else state_dict

        is_xlabs = any("processor" in k for k in state_dict)
        if is_xlabs:
            state_dict = _convert_xlabs_flux_lora_to_diffusers(state_dict)
            # xlabs doesn't use `alpha`.
            return (state_dict, None) if return_alphas else state_dict

Aryan's avatar
Aryan committed
2042
2043
2044
2045
2046
        is_bfl_control = any("query_norm.scale" in k for k in state_dict)
        if is_bfl_control:
            state_dict = _convert_bfl_flux_control_lora_to_diffusers(state_dict)
            return (state_dict, None) if return_alphas else state_dict

2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
        # For state dicts like
        # https://huggingface.co/TheLastBen/Jon_Snow_Flux_LoRA
        keys = list(state_dict.keys())
        network_alphas = {}
        for k in keys:
            if "alpha" in k:
                alpha_value = state_dict.get(k)
                if (torch.is_tensor(alpha_value) and torch.is_floating_point(alpha_value)) or isinstance(
                    alpha_value, float
                ):
                    network_alphas[k] = state_dict.pop(k)
                else:
                    raise ValueError(
                        f"The alpha key ({k}) seems to be incorrect. If you think this error is unexpected, please open as issue."
                    )

2063
2064
2065
2066
2067
2068
2069
        if return_alphas or return_lora_metadata:
            outputs = [state_dict]
            if return_alphas:
                outputs.append(network_alphas)
            if return_lora_metadata:
                outputs.append(metadata)
            return tuple(outputs)
2070
2071
        else:
            return state_dict
Sayak Paul's avatar
Sayak Paul committed
2072
2073

    def load_lora_weights(
2074
2075
        self,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
2076
        adapter_name: Optional[str] = None,
2077
2078
        hotswap: bool = False,
        **kwargs,
Sayak Paul's avatar
Sayak Paul committed
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
    ):
        """
        Load LoRA weights specified in `pretrained_model_name_or_path_or_dict` into `self.transformer` and
        `self.text_encoder`.

        All kwargs are forwarded to `self.lora_state_dict`.

        See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details on how the state dict is
        loaded.

        See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_transformer`] for more details on how the state
        dict is loaded into `self.transformer`.

        Parameters:
            pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
                See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`].
            adapter_name (`str`, *optional*):
                Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
                `default_{i}` where i is the total number of adapters being loaded.
2098
2099
2100
            low_cpu_mem_usage (`bool`, *optional*):
                `Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
                weights.
2101
2102
2103
2104
            hotswap (`bool`, *optional*):
                See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`].
            kwargs (`dict`, *optional*):
                See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`].
Sayak Paul's avatar
Sayak Paul committed
2105
2106
2107
2108
        """
        if not USE_PEFT_BACKEND:
            raise ValueError("PEFT backend is required for this method.")

2109
2110
2111
2112
2113
2114
        low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT_LORA)
        if low_cpu_mem_usage and not is_peft_version(">=", "0.13.1"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

Sayak Paul's avatar
Sayak Paul committed
2115
2116
2117
2118
2119
        # if a dict is passed, copy it instead of modifying it inplace
        if isinstance(pretrained_model_name_or_path_or_dict, dict):
            pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy()

        # First, ensure that the checkpoint is a compatible one and can be successfully loaded.
2120
2121
        kwargs["return_lora_metadata"] = True
        state_dict, network_alphas, metadata = self.lora_state_dict(
2122
2123
            pretrained_model_name_or_path_or_dict, return_alphas=True, **kwargs
        )
Sayak Paul's avatar
Sayak Paul committed
2124

Aryan's avatar
Aryan committed
2125
2126
2127
2128
2129
2130
2131
2132
        has_lora_keys = any("lora" in key for key in state_dict.keys())

        # Flux Control LoRAs also have norm keys
        has_norm_keys = any(
            norm_key in key for key in state_dict.keys() for norm_key in self._control_lora_supported_norm_keys
        )

        if not (has_lora_keys or has_norm_keys):
Sayak Paul's avatar
Sayak Paul committed
2133
2134
            raise ValueError("Invalid LoRA checkpoint.")

Aryan's avatar
Aryan committed
2135
        transformer_lora_state_dict = {
2136
2137
2138
            k: state_dict.get(k)
            for k in list(state_dict.keys())
            if k.startswith(f"{self.transformer_name}.") and "lora" in k
Aryan's avatar
Aryan committed
2139
2140
2141
2142
        }
        transformer_norm_state_dict = {
            k: state_dict.pop(k)
            for k in list(state_dict.keys())
2143
2144
            if k.startswith(f"{self.transformer_name}.")
            and any(norm_key in k for norm_key in self._control_lora_supported_norm_keys)
Aryan's avatar
Aryan committed
2145
2146
2147
        }

        transformer = getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer
2148
2149
2150
2151
2152
        has_param_with_expanded_shape = False
        if len(transformer_lora_state_dict) > 0:
            has_param_with_expanded_shape = self._maybe_expand_transformer_param_shape_or_error_(
                transformer, transformer_lora_state_dict, transformer_norm_state_dict
            )
Aryan's avatar
Aryan committed
2153
2154
2155
2156
2157
2158
2159
2160

        if has_param_with_expanded_shape:
            logger.info(
                "The LoRA weights contain parameters that have different shapes that expected by the transformer. "
                "As a result, the state_dict of the transformer has been expanded to match the LoRA parameter shapes. "
                "To get a comprehensive list of parameter names that were modified, enable debug logging."
            )
        if len(transformer_lora_state_dict) > 0:
2161
2162
            transformer_lora_state_dict = self._maybe_expand_lora_state_dict(
                transformer=transformer, lora_state_dict=transformer_lora_state_dict
2163
            )
2164
2165
2166
2167
2168
2169
2170
2171
            for k in transformer_lora_state_dict:
                state_dict.update({k: transformer_lora_state_dict[k]})

        self.load_lora_into_transformer(
            state_dict,
            network_alphas=network_alphas,
            transformer=transformer,
            adapter_name=adapter_name,
2172
            metadata=metadata,
2173
2174
            _pipeline=self,
            low_cpu_mem_usage=low_cpu_mem_usage,
2175
            hotswap=hotswap,
2176
        )
Sayak Paul's avatar
Sayak Paul committed
2177

Aryan's avatar
Aryan committed
2178
2179
2180
2181
2182
2183
2184
        if len(transformer_norm_state_dict) > 0:
            transformer._transformer_norm_layers = self._load_norm_into_transformer(
                transformer_norm_state_dict,
                transformer=transformer,
                discard_original_layers=False,
            )

2185
2186
2187
2188
2189
2190
2191
        self.load_lora_into_text_encoder(
            state_dict,
            network_alphas=network_alphas,
            text_encoder=self.text_encoder,
            prefix=self.text_encoder_name,
            lora_scale=self.lora_scale,
            adapter_name=adapter_name,
2192
            metadata=metadata,
2193
2194
            _pipeline=self,
            low_cpu_mem_usage=low_cpu_mem_usage,
2195
            hotswap=hotswap,
2196
        )
Sayak Paul's avatar
Sayak Paul committed
2197
2198

    @classmethod
2199
    def load_lora_into_transformer(
2200
2201
2202
2203
2204
        cls,
        state_dict,
        network_alphas,
        transformer,
        adapter_name=None,
2205
        metadata=None,
2206
2207
2208
        _pipeline=None,
        low_cpu_mem_usage=False,
        hotswap: bool = False,
2209
    ):
Sayak Paul's avatar
Sayak Paul committed
2210
2211
2212
2213
2214
2215
2216
2217
        """
        This will load the LoRA layers specified in `state_dict` into `transformer`.

        Parameters:
            state_dict (`dict`):
                A standard state dict containing the lora layer parameters. The keys can either be indexed directly
                into the unet or prefixed with an additional `unet` which can be used to distinguish between text
                encoder lora layers.
2218
2219
2220
2221
            network_alphas (`Dict[str, float]`):
                The value of the network alpha used for stable learning and preventing underflow. This value has the
                same meaning as the `--network_alpha` option in the kohya-ss trainer script. Refer to [this
                link](https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning).
2222
            transformer (`FluxTransformer2DModel`):
Sayak Paul's avatar
Sayak Paul committed
2223
2224
2225
2226
                The Transformer model to load the LoRA layers into.
            adapter_name (`str`, *optional*):
                Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
                `default_{i}` where i is the total number of adapters being loaded.
2227
2228
2229
            low_cpu_mem_usage (`bool`, *optional*):
                Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
                weights.
2230
2231
            hotswap (`bool`, *optional*):
                See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`].
2232
2233
2234
            metadata (`dict`):
                Optional LoRA adapter metadata. When supplied, the `LoraConfig` arguments of `peft` won't be derived
                from the state dict.
Sayak Paul's avatar
Sayak Paul committed
2235
        """
2236
2237
2238
2239
2240
        if low_cpu_mem_usage and not is_peft_version(">=", "0.13.1"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

2241
        # Load the layers corresponding to transformer.
2242
2243
2244
2245
2246
        logger.info(f"Loading {cls.transformer_name}.")
        transformer.load_lora_adapter(
            state_dict,
            network_alphas=network_alphas,
            adapter_name=adapter_name,
2247
            metadata=metadata,
2248
2249
            _pipeline=_pipeline,
            low_cpu_mem_usage=low_cpu_mem_usage,
2250
            hotswap=hotswap,
2251
        )
Sayak Paul's avatar
Sayak Paul committed
2252

Aryan's avatar
Aryan committed
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
    @classmethod
    def _load_norm_into_transformer(
        cls,
        state_dict,
        transformer,
        prefix=None,
        discard_original_layers=False,
    ) -> Dict[str, torch.Tensor]:
        # Remove prefix if present
        prefix = prefix or cls.transformer_name
        for key in list(state_dict.keys()):
            if key.split(".")[0] == prefix:
2265
                state_dict[key.removeprefix(f"{prefix}.")] = state_dict.pop(key)
Aryan's avatar
Aryan committed
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306

        # Find invalid keys
        transformer_state_dict = transformer.state_dict()
        transformer_keys = set(transformer_state_dict.keys())
        state_dict_keys = set(state_dict.keys())
        extra_keys = list(state_dict_keys - transformer_keys)

        if extra_keys:
            logger.warning(
                f"Unsupported keys found in state dict when trying to load normalization layers into the transformer. The following keys will be ignored:\n{extra_keys}."
            )

        for key in extra_keys:
            state_dict.pop(key)

        # Save the layers that are going to be overwritten so that unload_lora_weights can work as expected
        overwritten_layers_state_dict = {}
        if not discard_original_layers:
            for key in state_dict.keys():
                overwritten_layers_state_dict[key] = transformer_state_dict[key].clone()

        logger.info(
            "The provided state dict contains normalization layers in addition to LoRA layers. The normalization layers will directly update the state_dict of the transformer "
            'as opposed to the LoRA layers that will co-exist separately until the "fuse_lora()" method is called. That is to say, the normalization layers will always be directly '
            "fused into the transformer and can only be unfused if `discard_original_layers=True` is passed. This might also have implications when dealing with multiple LoRAs. "
            "If you notice something unexpected, please open an issue: https://github.com/huggingface/diffusers/issues."
        )

        # We can't load with strict=True because the current state_dict does not contain all the transformer keys
        incompatible_keys = transformer.load_state_dict(state_dict, strict=False)
        unexpected_keys = getattr(incompatible_keys, "unexpected_keys", None)

        # We shouldn't expect to see the supported norm keys here being present in the unexpected keys.
        if unexpected_keys:
            if any(norm_key in k for k in unexpected_keys for norm_key in cls._control_lora_supported_norm_keys):
                raise ValueError(
                    f"Found {unexpected_keys} as unexpected keys while trying to load norm layers into the transformer."
                )

        return overwritten_layers_state_dict

Sayak Paul's avatar
Sayak Paul committed
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
    @classmethod
    # Copied from diffusers.loaders.lora_pipeline.StableDiffusionLoraLoaderMixin.load_lora_into_text_encoder
    def load_lora_into_text_encoder(
        cls,
        state_dict,
        network_alphas,
        text_encoder,
        prefix=None,
        lora_scale=1.0,
        adapter_name=None,
        _pipeline=None,
2318
        low_cpu_mem_usage=False,
2319
        hotswap: bool = False,
2320
        metadata=None,
Sayak Paul's avatar
Sayak Paul committed
2321
2322
2323
2324
2325
2326
2327
2328
2329
    ):
        """
        This will load the LoRA layers specified in `state_dict` into `text_encoder`

        Parameters:
            state_dict (`dict`):
                A standard state dict containing the lora layer parameters. The key should be prefixed with an
                additional `text_encoder` to distinguish between unet lora layers.
            network_alphas (`Dict[str, float]`):
2330
2331
2332
                The value of the network alpha used for stable learning and preventing underflow. This value has the
                same meaning as the `--network_alpha` option in the kohya-ss trainer script. Refer to [this
                link](https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning).
Sayak Paul's avatar
Sayak Paul committed
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
            text_encoder (`CLIPTextModel`):
                The text encoder model to load the LoRA layers into.
            prefix (`str`):
                Expected prefix of the `text_encoder` in the `state_dict`.
            lora_scale (`float`):
                How much to scale the output of the lora linear layer before it is added with the output of the regular
                lora layer.
            adapter_name (`str`, *optional*):
                Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
                `default_{i}` where i is the total number of adapters being loaded.
2343
2344
2345
            low_cpu_mem_usage (`bool`, *optional*):
                Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
                weights.
2346
2347
            hotswap (`bool`, *optional*):
                See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`].
2348
2349
2350
            metadata (`dict`):
                Optional LoRA adapter metadata. When supplied, the `LoraConfig` arguments of `peft` won't be derived
                from the state dict.
Sayak Paul's avatar
Sayak Paul committed
2351
        """
2352
2353
2354
2355
2356
2357
2358
2359
        _load_lora_into_text_encoder(
            state_dict=state_dict,
            network_alphas=network_alphas,
            lora_scale=lora_scale,
            text_encoder=text_encoder,
            prefix=prefix,
            text_encoder_name=cls.text_encoder_name,
            adapter_name=adapter_name,
2360
            metadata=metadata,
2361
2362
            _pipeline=_pipeline,
            low_cpu_mem_usage=low_cpu_mem_usage,
2363
            hotswap=hotswap,
2364
        )
Sayak Paul's avatar
Sayak Paul committed
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376

    @classmethod
    # Copied from diffusers.loaders.lora_pipeline.StableDiffusionLoraLoaderMixin.save_lora_weights with unet->transformer
    def save_lora_weights(
        cls,
        save_directory: Union[str, os.PathLike],
        transformer_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
        text_encoder_lora_layers: Dict[str, torch.nn.Module] = None,
        is_main_process: bool = True,
        weight_name: str = None,
        save_function: Callable = None,
        safe_serialization: bool = True,
2377
2378
        transformer_lora_adapter_metadata=None,
        text_encoder_lora_adapter_metadata=None,
Sayak Paul's avatar
Sayak Paul committed
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
    ):
        r"""
        Save the LoRA parameters corresponding to the UNet and text encoder.

        Arguments:
            save_directory (`str` or `os.PathLike`):
                Directory to save LoRA parameters to. Will be created if it doesn't exist.
            transformer_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
                State dict of the LoRA layers corresponding to the `transformer`.
            text_encoder_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
                State dict of the LoRA layers corresponding to the `text_encoder`. Must explicitly pass the text
                encoder LoRA state dict because it comes from 🤗 Transformers.
            is_main_process (`bool`, *optional*, defaults to `True`):
                Whether the process calling this is the main process or not. Useful during distributed training and you
                need to call this function on all processes. In this case, set `is_main_process=True` only on the main
                process to avoid race conditions.
            save_function (`Callable`):
                The function to use to save the state dictionary. Useful during distributed training when you need to
                replace `torch.save` with another method. Can be configured with the environment variable
                `DIFFUSERS_SAVE_MODE`.
            safe_serialization (`bool`, *optional*, defaults to `True`):
                Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`.
2401
2402
2403
2404
            transformer_lora_adapter_metadata:
                LoRA adapter metadata associated with the transformer to be serialized with the state dict.
            text_encoder_lora_adapter_metadata:
                LoRA adapter metadata associated with the text encoder to be serialized with the state dict.
Sayak Paul's avatar
Sayak Paul committed
2405
2406
        """
        state_dict = {}
2407
        lora_adapter_metadata = {}
Sayak Paul's avatar
Sayak Paul committed
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417

        if not (transformer_lora_layers or text_encoder_lora_layers):
            raise ValueError("You must pass at least one of `transformer_lora_layers` and `text_encoder_lora_layers`.")

        if transformer_lora_layers:
            state_dict.update(cls.pack_weights(transformer_lora_layers, cls.transformer_name))

        if text_encoder_lora_layers:
            state_dict.update(cls.pack_weights(text_encoder_lora_layers, cls.text_encoder_name))

2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
        if transformer_lora_adapter_metadata:
            lora_adapter_metadata.update(
                _pack_dict_with_prefix(transformer_lora_adapter_metadata, cls.transformer_name)
            )

        if text_encoder_lora_adapter_metadata:
            lora_adapter_metadata.update(
                _pack_dict_with_prefix(text_encoder_lora_adapter_metadata, cls.text_encoder_name)
            )

Sayak Paul's avatar
Sayak Paul committed
2428
2429
2430
2431
2432
2433
2434
2435
        # Save the model
        cls.write_lora_layers(
            state_dict=state_dict,
            save_directory=save_directory,
            is_main_process=is_main_process,
            weight_name=weight_name,
            save_function=save_function,
            safe_serialization=safe_serialization,
2436
            lora_adapter_metadata=lora_adapter_metadata,
Sayak Paul's avatar
Sayak Paul committed
2437
2438
2439
2440
        )

    def fuse_lora(
        self,
2441
        components: List[str] = ["transformer"],
Sayak Paul's avatar
Sayak Paul committed
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
        lora_scale: float = 1.0,
        safe_fusing: bool = False,
        adapter_names: Optional[List[str]] = None,
        **kwargs,
    ):
        r"""
        Fuses the LoRA parameters into the original parameters of the corresponding blocks.

        <Tip warning={true}>

        This is an experimental API.

        </Tip>

        Args:
            components: (`List[str]`): List of LoRA-injectable components to fuse the LoRAs into.
            lora_scale (`float`, defaults to 1.0):
                Controls how much to influence the outputs with the LoRA parameters.
            safe_fusing (`bool`, defaults to `False`):
                Whether to check fused weights for NaN values before fusing and if values are NaN not fusing them.
            adapter_names (`List[str]`, *optional*):
                Adapter names to be used for fusing. If nothing is passed, all active adapters will be fused.

        Example:

        ```py
        from diffusers import DiffusionPipeline
        import torch

        pipeline = DiffusionPipeline.from_pretrained(
            "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
        ).to("cuda")
        pipeline.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel")
        pipeline.fuse_lora(lora_scale=0.7)
        ```
        """
Aryan's avatar
Aryan committed
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490

        transformer = getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer
        if (
            hasattr(transformer, "_transformer_norm_layers")
            and isinstance(transformer._transformer_norm_layers, dict)
            and len(transformer._transformer_norm_layers.keys()) > 0
        ):
            logger.info(
                "The provided state dict contains normalization layers in addition to LoRA layers. The normalization layers will be directly updated the state_dict of the transformer "
                "as opposed to the LoRA layers that will co-exist separately until the 'fuse_lora()' method is called. That is to say, the normalization layers will always be directly "
                "fused into the transformer and can only be unfused if `discard_original_layers=True` is passed."
            )

Sayak Paul's avatar
Sayak Paul committed
2491
        super().fuse_lora(
2492
2493
2494
2495
2496
            components=components,
            lora_scale=lora_scale,
            safe_fusing=safe_fusing,
            adapter_names=adapter_names,
            **kwargs,
Sayak Paul's avatar
Sayak Paul committed
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
        )

    def unfuse_lora(self, components: List[str] = ["transformer", "text_encoder"], **kwargs):
        r"""
        Reverses the effect of
        [`pipe.fuse_lora()`](https://huggingface.co/docs/diffusers/main/en/api/loaders#diffusers.loaders.LoraBaseMixin.fuse_lora).

        <Tip warning={true}>

        This is an experimental API.

        </Tip>

        Args:
            components (`List[str]`): List of LoRA-injectable components to unfuse LoRA from.
        """
Aryan's avatar
Aryan committed
2513
2514
2515
2516
        transformer = getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer
        if hasattr(transformer, "_transformer_norm_layers") and transformer._transformer_norm_layers:
            transformer.load_state_dict(transformer._transformer_norm_layers, strict=False)

2517
        super().unfuse_lora(components=components, **kwargs)
Sayak Paul's avatar
Sayak Paul committed
2518

2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
    # We override this here account for `_transformer_norm_layers` and `_overwritten_params`.
    def unload_lora_weights(self, reset_to_overwritten_params=False):
        """
        Unloads the LoRA parameters.

        Args:
            reset_to_overwritten_params (`bool`, defaults to `False`): Whether to reset the LoRA-loaded modules
                to their original params. Refer to the [Flux
                documentation](https://huggingface.co/docs/diffusers/main/en/api/pipelines/flux) to learn more.

        Examples:

        ```python
        >>> # Assuming `pipeline` is already loaded with the LoRA parameters.
        >>> pipeline.unload_lora_weights()
        >>> ...
        ```
        """
Aryan's avatar
Aryan committed
2537
2538
2539
2540
2541
2542
2543
        super().unload_lora_weights()

        transformer = getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer
        if hasattr(transformer, "_transformer_norm_layers") and transformer._transformer_norm_layers:
            transformer.load_state_dict(transformer._transformer_norm_layers, strict=False)
            transformer._transformer_norm_layers = None

2544
        if reset_to_overwritten_params and getattr(transformer, "_overwritten_params", None) is not None:
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
            overwritten_params = transformer._overwritten_params
            module_names = set()

            for param_name in overwritten_params:
                if param_name.endswith(".weight"):
                    module_names.add(param_name.replace(".weight", ""))

            for name, module in transformer.named_modules():
                if isinstance(module, torch.nn.Linear) and name in module_names:
                    module_weight = module.weight.data
                    module_bias = module.bias.data if module.bias is not None else None
                    bias = module_bias is not None

                    parent_module_name, _, current_module_name = name.rpartition(".")
                    parent_module = transformer.get_submodule(parent_module_name)

                    current_param_weight = overwritten_params[f"{name}.weight"]
                    in_features, out_features = current_param_weight.shape[1], current_param_weight.shape[0]
                    with torch.device("meta"):
                        original_module = torch.nn.Linear(
                            in_features,
                            out_features,
                            bias=bias,
                            dtype=module_weight.dtype,
                        )

                    tmp_state_dict = {"weight": current_param_weight}
                    if module_bias is not None:
                        tmp_state_dict.update({"bias": overwritten_params[f"{name}.bias"]})
                    original_module.load_state_dict(tmp_state_dict, assign=True, strict=True)
                    setattr(parent_module, current_module_name, original_module)

                    del tmp_state_dict

                    if current_module_name in _MODULE_NAME_TO_ATTRIBUTE_MAP_FLUX:
                        attribute_name = _MODULE_NAME_TO_ATTRIBUTE_MAP_FLUX[current_module_name]
                        new_value = int(current_param_weight.shape[1])
                        old_value = getattr(transformer.config, attribute_name)
                        setattr(transformer.config, attribute_name, new_value)
                        logger.info(
                            f"Set the {attribute_name} attribute of the model to {new_value} from {old_value}."
                        )

Aryan's avatar
Aryan committed
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
    @classmethod
    def _maybe_expand_transformer_param_shape_or_error_(
        cls,
        transformer: torch.nn.Module,
        lora_state_dict=None,
        norm_state_dict=None,
        prefix=None,
    ) -> bool:
        """
        Control LoRA expands the shape of the input layer from (3072, 64) to (3072, 128). This method handles that and
2598
        generalizes things a bit so that any parameter that needs expansion receives appropriate treatment.
Aryan's avatar
Aryan committed
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
        """
        state_dict = {}
        if lora_state_dict is not None:
            state_dict.update(lora_state_dict)
        if norm_state_dict is not None:
            state_dict.update(norm_state_dict)

        # Remove prefix if present
        prefix = prefix or cls.transformer_name
        for key in list(state_dict.keys()):
            if key.split(".")[0] == prefix:
2610
                state_dict[key.removeprefix(f"{prefix}.")] = state_dict.pop(key)
Aryan's avatar
Aryan committed
2611
2612
2613

        # Expand transformer parameter shapes if they don't match lora
        has_param_with_shape_update = False
2614
2615
        overwritten_params = {}

2616
        is_peft_loaded = getattr(transformer, "peft_config", None) is not None
hlky's avatar
hlky committed
2617
        is_quantized = hasattr(transformer, "hf_quantizer")
Aryan's avatar
Aryan committed
2618
2619
2620
        for name, module in transformer.named_modules():
            if isinstance(module, torch.nn.Linear):
                module_weight = module.weight.data
2621
                module_bias = module.bias.data if module.bias is not None else None
Aryan's avatar
Aryan committed
2622
2623
                bias = module_bias is not None

2624
2625
2626
2627
                lora_base_name = name.replace(".base_layer", "") if is_peft_loaded else name
                lora_A_weight_name = f"{lora_base_name}.lora_A.weight"
                lora_B_weight_name = f"{lora_base_name}.lora_B.weight"
                if lora_A_weight_name not in state_dict:
Aryan's avatar
Aryan committed
2628
2629
2630
2631
2632
                    continue

                in_features = state_dict[lora_A_weight_name].shape[1]
                out_features = state_dict[lora_B_weight_name].shape[0]

2633
2634
2635
2636
2637
                # Model maybe loaded with different quantization schemes which may flatten the params.
                # `bitsandbytes`, for example, flatten the weights when using 4bit. 8bit bnb models
                # preserve weight shape.
                module_weight_shape = cls._calculate_module_shape(model=transformer, base_module=module)

Aryan's avatar
Aryan committed
2638
                # This means there's no need for an expansion in the params, so we simply skip.
2639
                if tuple(module_weight_shape) == (out_features, in_features):
Aryan's avatar
Aryan committed
2640
2641
                    continue

hlky's avatar
hlky committed
2642
                module_out_features, module_in_features = module_weight_shape
2643
2644
2645
2646
2647
2648
                debug_message = ""
                if in_features > module_in_features:
                    debug_message += (
                        f'Expanding the nn.Linear input/output features for module="{name}" because the provided LoRA '
                        f"checkpoint contains higher number of features than expected. The number of input_features will be "
                        f"expanded from {module_in_features} to {in_features}"
Aryan's avatar
Aryan committed
2649
                    )
2650
                if out_features > module_out_features:
2651
2652
2653
2654
2655
2656
                    debug_message += (
                        ", and the number of output features will be "
                        f"expanded from {module_out_features} to {out_features}."
                    )
                else:
                    debug_message += "."
2657
2658
2659
2660
2661
2662
2663
2664
                if debug_message:
                    logger.debug(debug_message)

                if out_features > module_out_features or in_features > module_in_features:
                    has_param_with_shape_update = True
                    parent_module_name, _, current_module_name = name.rpartition(".")
                    parent_module = transformer.get_submodule(parent_module_name)

hlky's avatar
hlky committed
2665
2666
2667
2668
                    if is_quantized:
                        module_weight = _maybe_dequantize_weight_for_expanded_lora(transformer, module)

                    # TODO: consider if this layer needs to be a quantized layer as well if `is_quantized` is True.
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
                    with torch.device("meta"):
                        expanded_module = torch.nn.Linear(
                            in_features, out_features, bias=bias, dtype=module_weight.dtype
                        )
                    # Only weights are expanded and biases are not. This is because only the input dimensions
                    # are changed while the output dimensions remain the same. The shape of the weight tensor
                    # is (out_features, in_features), while the shape of bias tensor is (out_features,), which
                    # explains the reason why only weights are expanded.
                    new_weight = torch.zeros_like(
                        expanded_module.weight.data, device=module_weight.device, dtype=module_weight.dtype
                    )
hlky's avatar
hlky committed
2680
                    slices = tuple(slice(0, dim) for dim in module_weight_shape)
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
                    new_weight[slices] = module_weight
                    tmp_state_dict = {"weight": new_weight}
                    if module_bias is not None:
                        tmp_state_dict["bias"] = module_bias
                    expanded_module.load_state_dict(tmp_state_dict, strict=True, assign=True)

                    setattr(parent_module, current_module_name, expanded_module)

                    del tmp_state_dict

                    if current_module_name in _MODULE_NAME_TO_ATTRIBUTE_MAP_FLUX:
                        attribute_name = _MODULE_NAME_TO_ATTRIBUTE_MAP_FLUX[current_module_name]
                        new_value = int(expanded_module.weight.data.shape[1])
                        old_value = getattr(transformer.config, attribute_name)
                        setattr(transformer.config, attribute_name, new_value)
                        logger.info(
                            f"Set the {attribute_name} attribute of the model to {new_value} from {old_value}."
                        )
Aryan's avatar
Aryan committed
2699

2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
                    # For `unload_lora_weights()`.
                    # TODO: this could lead to more memory overhead if the number of overwritten params
                    # are large. Should be revisited later and tackled through a `discard_original_layers` arg.
                    overwritten_params[f"{current_module_name}.weight"] = module_weight
                    if module_bias is not None:
                        overwritten_params[f"{current_module_name}.bias"] = module_bias

        if len(overwritten_params) > 0:
            transformer._overwritten_params = overwritten_params

2710
        return has_param_with_shape_update
Aryan's avatar
Aryan committed
2711

2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
    @classmethod
    def _maybe_expand_lora_state_dict(cls, transformer, lora_state_dict):
        expanded_module_names = set()
        transformer_state_dict = transformer.state_dict()
        prefix = f"{cls.transformer_name}."

        lora_module_names = [
            key[: -len(".lora_A.weight")] for key in lora_state_dict if key.endswith(".lora_A.weight")
        ]
        lora_module_names = [name[len(prefix) :] for name in lora_module_names if name.startswith(prefix)]
        lora_module_names = sorted(set(lora_module_names))
        transformer_module_names = sorted({name for name, _ in transformer.named_modules()})
        unexpected_modules = set(lora_module_names) - set(transformer_module_names)
        if unexpected_modules:
            logger.debug(f"Found unexpected modules: {unexpected_modules}. These will be ignored.")

        for k in lora_module_names:
            if k in unexpected_modules:
                continue

            base_param_name = (
2733
                f"{k.replace(prefix, '')}.base_layer.weight"
2734
                if f"{k.replace(prefix, '')}.base_layer.weight" in transformer_state_dict
2735
                else f"{k.replace(prefix, '')}.weight"
2736
2737
2738
2739
            )
            base_weight_param = transformer_state_dict[base_param_name]
            lora_A_param = lora_state_dict[f"{prefix}{k}.lora_A.weight"]

2740
2741
2742
2743
            # TODO (sayakpaul): Handle the cases when we actually need to expand when using quantization.
            base_module_shape = cls._calculate_module_shape(model=transformer, base_weight_param_name=base_param_name)

            if base_module_shape[1] > lora_A_param.shape[1]:
2744
2745
2746
2747
2748
                shape = (lora_A_param.shape[0], base_weight_param.shape[1])
                expanded_state_dict_weight = torch.zeros(shape, device=base_weight_param.device)
                expanded_state_dict_weight[:, : lora_A_param.shape[1]].copy_(lora_A_param)
                lora_state_dict[f"{prefix}{k}.lora_A.weight"] = expanded_state_dict_weight
                expanded_module_names.add(k)
2749
            elif base_module_shape[1] < lora_A_param.shape[1]:
2750
2751
                raise NotImplementedError(
                    f"This LoRA param ({k}.lora_A.weight) has an incompatible shape {lora_A_param.shape}. Please open an issue to file for a feature request - https://github.com/huggingface/diffusers/issues/new."
Aryan's avatar
Aryan committed
2752
2753
                )

2754
2755
2756
2757
        if expanded_module_names:
            logger.info(
                f"The following LoRA modules were zero padded to match the state dict of {cls.transformer_name}: {expanded_module_names}. Please open an issue if you think this was unexpected - https://github.com/huggingface/diffusers/issues/new."
            )
Aryan's avatar
Aryan committed
2758

2759
        return lora_state_dict
Aryan's avatar
Aryan committed
2760

2761
2762
2763
2764
2765
2766
2767
    @staticmethod
    def _calculate_module_shape(
        model: "torch.nn.Module",
        base_module: "torch.nn.Linear" = None,
        base_weight_param_name: str = None,
    ) -> "torch.Size":
        def _get_weight_shape(weight: torch.Tensor):
hlky's avatar
hlky committed
2768
2769
2770
2771
2772
2773
            if weight.__class__.__name__ == "Params4bit":
                return weight.quant_state.shape
            elif weight.__class__.__name__ == "GGUFParameter":
                return weight.quant_shape
            else:
                return weight.shape
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787

        if base_module is not None:
            return _get_weight_shape(base_module.weight)
        elif base_weight_param_name is not None:
            if not base_weight_param_name.endswith(".weight"):
                raise ValueError(
                    f"Invalid `base_weight_param_name` passed as it does not end with '.weight' {base_weight_param_name=}."
                )
            module_path = base_weight_param_name.rsplit(".weight", 1)[0]
            submodule = get_submodule_by_name(model, module_path)
            return _get_weight_shape(submodule.weight)

        raise ValueError("Either `base_module` or `base_weight_param_name` must be provided.")

Sayak Paul's avatar
Sayak Paul committed
2788

2789
2790
2791
2792
2793
2794
# The reason why we subclass from `StableDiffusionLoraLoaderMixin` here is because Amused initially
# relied on `StableDiffusionLoraLoaderMixin` for its LoRA support.
class AmusedLoraLoaderMixin(StableDiffusionLoraLoaderMixin):
    _lora_loadable_modules = ["transformer", "text_encoder"]
    transformer_name = TRANSFORMER_NAME
    text_encoder_name = TEXT_ENCODER_NAME
Dhruv Nair's avatar
Dhruv Nair committed
2795
2796

    @classmethod
2797
2798
    # Copied from diffusers.loaders.lora_pipeline.FluxLoraLoaderMixin.load_lora_into_transformer with FluxTransformer2DModel->UVit2DModel
    def load_lora_into_transformer(
2799
2800
2801
2802
2803
        cls,
        state_dict,
        network_alphas,
        transformer,
        adapter_name=None,
2804
        metadata=None,
2805
2806
2807
        _pipeline=None,
        low_cpu_mem_usage=False,
        hotswap: bool = False,
2808
    ):
Dhruv Nair's avatar
Dhruv Nair committed
2809
2810
2811
2812
2813
2814
2815
2816
        """
        This will load the LoRA layers specified in `state_dict` into `transformer`.

        Parameters:
            state_dict (`dict`):
                A standard state dict containing the lora layer parameters. The keys can either be indexed directly
                into the unet or prefixed with an additional `unet` which can be used to distinguish between text
                encoder lora layers.
2817
            network_alphas (`Dict[str, float]`):
2818
                The value of the network alpha used for stable learning and preventing underflow. This value has the
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
                same meaning as the `--network_alpha` option in the kohya-ss trainer script. Refer to [this
                link](https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning).
            transformer (`UVit2DModel`):
                The Transformer model to load the LoRA layers into.
            adapter_name (`str`, *optional*):
                Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
                `default_{i}` where i is the total number of adapters being loaded.
            low_cpu_mem_usage (`bool`, *optional*):
                Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
                weights.
            hotswap (`bool`, *optional*):
                See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`].
2831
2832
2833
            metadata (`dict`):
                Optional LoRA adapter metadata. When supplied, the `LoraConfig` arguments of `peft` won't be derived
                from the state dict.
Dhruv Nair's avatar
Dhruv Nair committed
2834
        """
2835
2836
2837
2838
        if low_cpu_mem_usage and not is_peft_version(">=", "0.13.1"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )
Dhruv Nair's avatar
Dhruv Nair committed
2839

2840
        # Load the layers corresponding to transformer.
2841
2842
2843
2844
2845
        logger.info(f"Loading {cls.transformer_name}.")
        transformer.load_lora_adapter(
            state_dict,
            network_alphas=network_alphas,
            adapter_name=adapter_name,
2846
            metadata=metadata,
2847
2848
            _pipeline=_pipeline,
            low_cpu_mem_usage=low_cpu_mem_usage,
2849
            hotswap=hotswap,
2850
        )
Dhruv Nair's avatar
Dhruv Nair committed
2851

2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
    @classmethod
    # Copied from diffusers.loaders.lora_pipeline.StableDiffusionLoraLoaderMixin.load_lora_into_text_encoder
    def load_lora_into_text_encoder(
        cls,
        state_dict,
        network_alphas,
        text_encoder,
        prefix=None,
        lora_scale=1.0,
        adapter_name=None,
        _pipeline=None,
2863
        low_cpu_mem_usage=False,
2864
        hotswap: bool = False,
2865
        metadata=None,
2866
2867
2868
2869
2870
2871
2872
2873
2874
    ):
        """
        This will load the LoRA layers specified in `state_dict` into `text_encoder`

        Parameters:
            state_dict (`dict`):
                A standard state dict containing the lora layer parameters. The key should be prefixed with an
                additional `text_encoder` to distinguish between unet lora layers.
            network_alphas (`Dict[str, float]`):
2875
2876
2877
                The value of the network alpha used for stable learning and preventing underflow. This value has the
                same meaning as the `--network_alpha` option in the kohya-ss trainer script. Refer to [this
                link](https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning).
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
            text_encoder (`CLIPTextModel`):
                The text encoder model to load the LoRA layers into.
            prefix (`str`):
                Expected prefix of the `text_encoder` in the `state_dict`.
            lora_scale (`float`):
                How much to scale the output of the lora linear layer before it is added with the output of the regular
                lora layer.
            adapter_name (`str`, *optional*):
                Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
                `default_{i}` where i is the total number of adapters being loaded.
2888
2889
2890
            low_cpu_mem_usage (`bool`, *optional*):
                Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
                weights.
2891
2892
            hotswap (`bool`, *optional*):
                See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`].
2893
2894
2895
            metadata (`dict`):
                Optional LoRA adapter metadata. When supplied, the `LoraConfig` arguments of `peft` won't be derived
                from the state dict.
2896
        """
2897
2898
2899
2900
2901
2902
2903
2904
        _load_lora_into_text_encoder(
            state_dict=state_dict,
            network_alphas=network_alphas,
            lora_scale=lora_scale,
            text_encoder=text_encoder,
            prefix=prefix,
            text_encoder_name=cls.text_encoder_name,
            adapter_name=adapter_name,
2905
            metadata=metadata,
2906
2907
            _pipeline=_pipeline,
            low_cpu_mem_usage=low_cpu_mem_usage,
2908
            hotswap=hotswap,
2909
        )
2910

Dhruv Nair's avatar
Dhruv Nair committed
2911
2912
2913
2914
    @classmethod
    def save_lora_weights(
        cls,
        save_directory: Union[str, os.PathLike],
2915
        text_encoder_lora_layers: Dict[str, torch.nn.Module] = None,
Dhruv Nair's avatar
Dhruv Nair committed
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
        transformer_lora_layers: Dict[str, torch.nn.Module] = None,
        is_main_process: bool = True,
        weight_name: str = None,
        save_function: Callable = None,
        safe_serialization: bool = True,
    ):
        r"""
        Save the LoRA parameters corresponding to the UNet and text encoder.

        Arguments:
            save_directory (`str` or `os.PathLike`):
                Directory to save LoRA parameters to. Will be created if it doesn't exist.
2928
2929
2930
2931
2932
            unet_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
                State dict of the LoRA layers corresponding to the `unet`.
            text_encoder_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
                State dict of the LoRA layers corresponding to the `text_encoder`. Must explicitly pass the text
                encoder LoRA state dict because it comes from 🤗 Transformers.
Dhruv Nair's avatar
Dhruv Nair committed
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
            is_main_process (`bool`, *optional*, defaults to `True`):
                Whether the process calling this is the main process or not. Useful during distributed training and you
                need to call this function on all processes. In this case, set `is_main_process=True` only on the main
                process to avoid race conditions.
            save_function (`Callable`):
                The function to use to save the state dictionary. Useful during distributed training when you need to
                replace `torch.save` with another method. Can be configured with the environment variable
                `DIFFUSERS_SAVE_MODE`.
            safe_serialization (`bool`, *optional*, defaults to `True`):
                Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`.
        """
        state_dict = {}

2946
2947
        if not (transformer_lora_layers or text_encoder_lora_layers):
            raise ValueError("You must pass at least one of `transformer_lora_layers` or `text_encoder_lora_layers`.")
Dhruv Nair's avatar
Dhruv Nair committed
2948
2949

        if transformer_lora_layers:
2950
            state_dict.update(cls.pack_weights(transformer_lora_layers, cls.transformer_name))
Dhruv Nair's avatar
Dhruv Nair committed
2951

2952
        if text_encoder_lora_layers:
2953
            state_dict.update(cls.pack_weights(text_encoder_lora_layers, cls.text_encoder_name))
2954

Dhruv Nair's avatar
Dhruv Nair committed
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
        # Save the model
        cls.write_lora_layers(
            state_dict=state_dict,
            save_directory=save_directory,
            is_main_process=is_main_process,
            weight_name=weight_name,
            save_function=save_function,
            safe_serialization=safe_serialization,
        )

2965

Aryan's avatar
Aryan committed
2966
2967
class CogVideoXLoraLoaderMixin(LoraBaseMixin):
    r"""
2968
    Load LoRA layers into [`CogVideoXTransformer3DModel`]. Specific to [`CogVideoXPipeline`].
Aryan's avatar
Aryan committed
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
    """

    _lora_loadable_modules = ["transformer"]
    transformer_name = TRANSFORMER_NAME

    @classmethod
    @validate_hf_hub_args
    # Copied from diffusers.loaders.lora_pipeline.SD3LoraLoaderMixin.lora_state_dict
    def lora_state_dict(
        cls,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        **kwargs,
    ):
        r"""
        Return state dict for lora weights and the network alphas.

        <Tip warning={true}>

        We support loading A1111 formatted LoRA checkpoints in a limited capacity.

        This function is experimental and might change in the future.

        </Tip>

        Parameters:
            pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
                Can be either:

                    - A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
                      the Hub.
                    - A path to a *directory* (for example `./my_model_directory`) containing the model weights saved
                      with [`ModelMixin.save_pretrained`].
                    - A [torch state
                      dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).

            cache_dir (`Union[str, os.PathLike]`, *optional*):
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.

            proxies (`Dict[str, str]`, *optional*):
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            local_files_only (`bool`, *optional*, defaults to `False`):
                Whether to only load local model weights and configuration files or not. If set to `True`, the model
                won't be downloaded from the Hub.
            token (`str` or *bool*, *optional*):
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
            revision (`str`, *optional*, defaults to `"main"`):
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
            subfolder (`str`, *optional*, defaults to `""`):
                The subfolder location of a model file within a larger model repository on the Hub or locally.
3025
3026
            return_lora_metadata (`bool`, *optional*, defaults to False):
                When enabled, additionally return the LoRA adapter metadata, typically found in the state dict.
Aryan's avatar
Aryan committed
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039

        """
        # Load the main state dict first which has the LoRA layers for either of
        # transformer and text encoder or both.
        cache_dir = kwargs.pop("cache_dir", None)
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", None)
        token = kwargs.pop("token", None)
        revision = kwargs.pop("revision", None)
        subfolder = kwargs.pop("subfolder", None)
        weight_name = kwargs.pop("weight_name", None)
        use_safetensors = kwargs.pop("use_safetensors", None)
3040
        return_lora_metadata = kwargs.pop("return_lora_metadata", False)
Aryan's avatar
Aryan committed
3041
3042
3043
3044
3045
3046

        allow_pickle = False
        if use_safetensors is None:
            use_safetensors = True
            allow_pickle = True

3047
        user_agent = {"file_type": "attn_procs_weights", "framework": "pytorch"}
Aryan's avatar
Aryan committed
3048

3049
        state_dict, metadata = _fetch_state_dict(
Aryan's avatar
Aryan committed
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
            pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict,
            weight_name=weight_name,
            use_safetensors=use_safetensors,
            local_files_only=local_files_only,
            cache_dir=cache_dir,
            force_download=force_download,
            proxies=proxies,
            token=token,
            revision=revision,
            subfolder=subfolder,
            user_agent=user_agent,
            allow_pickle=allow_pickle,
        )

Sayak Paul's avatar
Sayak Paul committed
3064
3065
3066
3067
3068
3069
        is_dora_scale_present = any("dora_scale" in k for k in state_dict)
        if is_dora_scale_present:
            warn_msg = "It seems like you are using a DoRA checkpoint that is not compatible in Diffusers at the moment. So, we are going to filter out the keys associated to 'dora_scale` from the state dict. If you think this is a mistake please open an issue https://github.com/huggingface/diffusers/issues/new."
            logger.warning(warn_msg)
            state_dict = {k: v for k, v in state_dict.items() if "dora_scale" not in k}

3070
3071
        out = (state_dict, metadata) if return_lora_metadata else state_dict
        return out
Aryan's avatar
Aryan committed
3072
3073

    def load_lora_weights(
3074
3075
3076
3077
3078
        self,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        adapter_name: Optional[str] = None,
        hotswap: bool = False,
        **kwargs,
Aryan's avatar
Aryan committed
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
    ):
        """
        Load LoRA weights specified in `pretrained_model_name_or_path_or_dict` into `self.transformer` and
        `self.text_encoder`. All kwargs are forwarded to `self.lora_state_dict`. See
        [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details on how the state dict is loaded.
        See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_transformer`] for more details on how the state
        dict is loaded into `self.transformer`.

        Parameters:
            pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
                See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`].
            adapter_name (`str`, *optional*):
                Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
                `default_{i}` where i is the total number of adapters being loaded.
3093
3094
3095
            low_cpu_mem_usage (`bool`, *optional*):
                Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
                weights.
3096
3097
            hotswap (`bool`, *optional*):
                See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`].
3098
3099
            kwargs (`dict`, *optional*):
                See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`].
Aryan's avatar
Aryan committed
3100
3101
3102
3103
        """
        if not USE_PEFT_BACKEND:
            raise ValueError("PEFT backend is required for this method.")

3104
3105
3106
3107
3108
3109
        low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT_LORA)
        if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

Aryan's avatar
Aryan committed
3110
3111
3112
3113
3114
        # if a dict is passed, copy it instead of modifying it inplace
        if isinstance(pretrained_model_name_or_path_or_dict, dict):
            pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy()

        # First, ensure that the checkpoint is a compatible one and can be successfully loaded.
3115
3116
        kwargs["return_lora_metadata"] = True
        state_dict, metadata = self.lora_state_dict(pretrained_model_name_or_path_or_dict, **kwargs)
Aryan's avatar
Aryan committed
3117

Sayak Paul's avatar
Sayak Paul committed
3118
        is_correct_format = all("lora" in key for key in state_dict.keys())
Aryan's avatar
Aryan committed
3119
3120
3121
3122
3123
3124
3125
        if not is_correct_format:
            raise ValueError("Invalid LoRA checkpoint.")

        self.load_lora_into_transformer(
            state_dict,
            transformer=getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer,
            adapter_name=adapter_name,
3126
            metadata=metadata,
Aryan's avatar
Aryan committed
3127
            _pipeline=self,
3128
            low_cpu_mem_usage=low_cpu_mem_usage,
3129
            hotswap=hotswap,
Aryan's avatar
Aryan committed
3130
3131
3132
        )

    @classmethod
3133
    # Copied from diffusers.loaders.lora_pipeline.SD3LoraLoaderMixin.load_lora_into_transformer with SD3Transformer2DModel->CogVideoXTransformer3DModel
3134
    def load_lora_into_transformer(
3135
3136
3137
3138
3139
3140
3141
3142
        cls,
        state_dict,
        transformer,
        adapter_name=None,
        _pipeline=None,
        low_cpu_mem_usage=False,
        hotswap: bool = False,
        metadata=None,
3143
    ):
Aryan's avatar
Aryan committed
3144
3145
3146
3147
3148
3149
3150
3151
        """
        This will load the LoRA layers specified in `state_dict` into `transformer`.

        Parameters:
            state_dict (`dict`):
                A standard state dict containing the lora layer parameters. The keys can either be indexed directly
                into the unet or prefixed with an additional `unet` which can be used to distinguish between text
                encoder lora layers.
3152
            transformer (`CogVideoXTransformer3DModel`):
Aryan's avatar
Aryan committed
3153
3154
3155
3156
                The Transformer model to load the LoRA layers into.
            adapter_name (`str`, *optional*):
                Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
                `default_{i}` where i is the total number of adapters being loaded.
3157
3158
3159
            low_cpu_mem_usage (`bool`, *optional*):
                Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
                weights.
3160
3161
            hotswap (`bool`, *optional*):
                See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`].
3162
3163
3164
            metadata (`dict`):
                Optional LoRA adapter metadata. When supplied, the `LoraConfig` arguments of `peft` won't be derived
                from the state dict.
Aryan's avatar
Aryan committed
3165
        """
3166
3167
3168
3169
3170
        if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

3171
3172
3173
3174
3175
3176
        # Load the layers corresponding to transformer.
        logger.info(f"Loading {cls.transformer_name}.")
        transformer.load_lora_adapter(
            state_dict,
            network_alphas=None,
            adapter_name=adapter_name,
3177
            metadata=metadata,
3178
3179
            _pipeline=_pipeline,
            low_cpu_mem_usage=low_cpu_mem_usage,
3180
            hotswap=hotswap,
3181
        )
Aryan's avatar
Aryan committed
3182
3183
3184
3185
3186
3187
3188

    @classmethod
    # Adapted from diffusers.loaders.lora_pipeline.StableDiffusionLoraLoaderMixin.save_lora_weights without support for text encoder
    def save_lora_weights(
        cls,
        save_directory: Union[str, os.PathLike],
        transformer_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
3189
3190
3191
3192
        is_main_process: bool = True,
        weight_name: str = None,
        save_function: Callable = None,
        safe_serialization: bool = True,
3193
        transformer_lora_adapter_metadata: Optional[dict] = None,
3194
3195
    ):
        r"""
3196
        Save the LoRA parameters corresponding to the transformer.
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212

        Arguments:
            save_directory (`str` or `os.PathLike`):
                Directory to save LoRA parameters to. Will be created if it doesn't exist.
            transformer_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
                State dict of the LoRA layers corresponding to the `transformer`.
            is_main_process (`bool`, *optional*, defaults to `True`):
                Whether the process calling this is the main process or not. Useful during distributed training and you
                need to call this function on all processes. In this case, set `is_main_process=True` only on the main
                process to avoid race conditions.
            save_function (`Callable`):
                The function to use to save the state dictionary. Useful during distributed training when you need to
                replace `torch.save` with another method. Can be configured with the environment variable
                `DIFFUSERS_SAVE_MODE`.
            safe_serialization (`bool`, *optional*, defaults to `True`):
                Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`.
3213
3214
            transformer_lora_adapter_metadata:
                LoRA adapter metadata associated with the transformer to be serialized with the state dict.
3215
3216
        """
        state_dict = {}
3217
        lora_adapter_metadata = {}
3218
3219
3220
3221

        if not transformer_lora_layers:
            raise ValueError("You must pass `transformer_lora_layers`.")

3222
3223
3224
3225
3226
3227
        state_dict.update(cls.pack_weights(transformer_lora_layers, cls.transformer_name))

        if transformer_lora_adapter_metadata is not None:
            lora_adapter_metadata.update(
                _pack_dict_with_prefix(transformer_lora_adapter_metadata, cls.transformer_name)
            )
3228
3229
3230
3231
3232
3233
3234
3235
3236

        # Save the model
        cls.write_lora_layers(
            state_dict=state_dict,
            save_directory=save_directory,
            is_main_process=is_main_process,
            weight_name=weight_name,
            save_function=save_function,
            safe_serialization=safe_serialization,
3237
            lora_adapter_metadata=lora_adapter_metadata,
3238
3239
3240
3241
        )

    def fuse_lora(
        self,
3242
        components: List[str] = ["transformer"],
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
        lora_scale: float = 1.0,
        safe_fusing: bool = False,
        adapter_names: Optional[List[str]] = None,
        **kwargs,
    ):
        r"""
        Fuses the LoRA parameters into the original parameters of the corresponding blocks.

        <Tip warning={true}>

        This is an experimental API.

        </Tip>

        Args:
            components: (`List[str]`): List of LoRA-injectable components to fuse the LoRAs into.
            lora_scale (`float`, defaults to 1.0):
                Controls how much to influence the outputs with the LoRA parameters.
            safe_fusing (`bool`, defaults to `False`):
                Whether to check fused weights for NaN values before fusing and if values are NaN not fusing them.
            adapter_names (`List[str]`, *optional*):
                Adapter names to be used for fusing. If nothing is passed, all active adapters will be fused.

        Example:

        ```py
        from diffusers import DiffusionPipeline
        import torch

        pipeline = DiffusionPipeline.from_pretrained(
            "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
        ).to("cuda")
        pipeline.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel")
        pipeline.fuse_lora(lora_scale=0.7)
        ```
        """
        super().fuse_lora(
3280
3281
3282
3283
3284
            components=components,
            lora_scale=lora_scale,
            safe_fusing=safe_fusing,
            adapter_names=adapter_names,
            **kwargs,
3285
3286
        )

3287
    def unfuse_lora(self, components: List[str] = ["transformer"], **kwargs):
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
        r"""
        Reverses the effect of
        [`pipe.fuse_lora()`](https://huggingface.co/docs/diffusers/main/en/api/loaders#diffusers.loaders.LoraBaseMixin.fuse_lora).

        <Tip warning={true}>

        This is an experimental API.

        </Tip>

        Args:
            components (`List[str]`): List of LoRA-injectable components to unfuse LoRA from.
            unfuse_transformer (`bool`, defaults to `True`): Whether to unfuse the UNet LoRA parameters.
        """
3302
        super().unfuse_lora(components=components, **kwargs)
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363


class Mochi1LoraLoaderMixin(LoraBaseMixin):
    r"""
    Load LoRA layers into [`MochiTransformer3DModel`]. Specific to [`MochiPipeline`].
    """

    _lora_loadable_modules = ["transformer"]
    transformer_name = TRANSFORMER_NAME

    @classmethod
    @validate_hf_hub_args
    # Copied from diffusers.loaders.lora_pipeline.SD3LoraLoaderMixin.lora_state_dict
    def lora_state_dict(
        cls,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        **kwargs,
    ):
        r"""
        Return state dict for lora weights and the network alphas.

        <Tip warning={true}>

        We support loading A1111 formatted LoRA checkpoints in a limited capacity.

        This function is experimental and might change in the future.

        </Tip>

        Parameters:
            pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
                Can be either:

                    - A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
                      the Hub.
                    - A path to a *directory* (for example `./my_model_directory`) containing the model weights saved
                      with [`ModelMixin.save_pretrained`].
                    - A [torch state
                      dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).

            cache_dir (`Union[str, os.PathLike]`, *optional*):
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.

            proxies (`Dict[str, str]`, *optional*):
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            local_files_only (`bool`, *optional*, defaults to `False`):
                Whether to only load local model weights and configuration files or not. If set to `True`, the model
                won't be downloaded from the Hub.
            token (`str` or *bool*, *optional*):
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
            revision (`str`, *optional*, defaults to `"main"`):
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
            subfolder (`str`, *optional*, defaults to `""`):
                The subfolder location of a model file within a larger model repository on the Hub or locally.
3364
3365
            return_lora_metadata (`bool`, *optional*, defaults to False):
                When enabled, additionally return the LoRA adapter metadata, typically found in the state dict.
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378

        """
        # Load the main state dict first which has the LoRA layers for either of
        # transformer and text encoder or both.
        cache_dir = kwargs.pop("cache_dir", None)
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", None)
        token = kwargs.pop("token", None)
        revision = kwargs.pop("revision", None)
        subfolder = kwargs.pop("subfolder", None)
        weight_name = kwargs.pop("weight_name", None)
        use_safetensors = kwargs.pop("use_safetensors", None)
3379
        return_lora_metadata = kwargs.pop("return_lora_metadata", False)
3380
3381
3382
3383
3384
3385

        allow_pickle = False
        if use_safetensors is None:
            use_safetensors = True
            allow_pickle = True

3386
        user_agent = {"file_type": "attn_procs_weights", "framework": "pytorch"}
3387

3388
        state_dict, metadata = _fetch_state_dict(
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
            pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict,
            weight_name=weight_name,
            use_safetensors=use_safetensors,
            local_files_only=local_files_only,
            cache_dir=cache_dir,
            force_download=force_download,
            proxies=proxies,
            token=token,
            revision=revision,
            subfolder=subfolder,
            user_agent=user_agent,
            allow_pickle=allow_pickle,
        )

        is_dora_scale_present = any("dora_scale" in k for k in state_dict)
        if is_dora_scale_present:
            warn_msg = "It seems like you are using a DoRA checkpoint that is not compatible in Diffusers at the moment. So, we are going to filter out the keys associated to 'dora_scale` from the state dict. If you think this is a mistake please open an issue https://github.com/huggingface/diffusers/issues/new."
            logger.warning(warn_msg)
            state_dict = {k: v for k, v in state_dict.items() if "dora_scale" not in k}

3409
3410
        out = (state_dict, metadata) if return_lora_metadata else state_dict
        return out
3411
3412
3413

    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.load_lora_weights
    def load_lora_weights(
3414
3415
3416
3417
3418
        self,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        adapter_name: Optional[str] = None,
        hotswap: bool = False,
        **kwargs,
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
    ):
        """
        Load LoRA weights specified in `pretrained_model_name_or_path_or_dict` into `self.transformer` and
        `self.text_encoder`. All kwargs are forwarded to `self.lora_state_dict`. See
        [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details on how the state dict is loaded.
        See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_transformer`] for more details on how the state
        dict is loaded into `self.transformer`.

        Parameters:
            pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
                See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`].
            adapter_name (`str`, *optional*):
                Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
                `default_{i}` where i is the total number of adapters being loaded.
            low_cpu_mem_usage (`bool`, *optional*):
                Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
                weights.
3436
3437
            hotswap (`bool`, *optional*):
                See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`].
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
            kwargs (`dict`, *optional*):
                See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`].
        """
        if not USE_PEFT_BACKEND:
            raise ValueError("PEFT backend is required for this method.")

        low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT_LORA)
        if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

        # if a dict is passed, copy it instead of modifying it inplace
        if isinstance(pretrained_model_name_or_path_or_dict, dict):
            pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy()

        # First, ensure that the checkpoint is a compatible one and can be successfully loaded.
3455
3456
        kwargs["return_lora_metadata"] = True
        state_dict, metadata = self.lora_state_dict(pretrained_model_name_or_path_or_dict, **kwargs)
3457
3458
3459
3460
3461
3462
3463
3464
3465

        is_correct_format = all("lora" in key for key in state_dict.keys())
        if not is_correct_format:
            raise ValueError("Invalid LoRA checkpoint.")

        self.load_lora_into_transformer(
            state_dict,
            transformer=getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer,
            adapter_name=adapter_name,
3466
            metadata=metadata,
3467
3468
            _pipeline=self,
            low_cpu_mem_usage=low_cpu_mem_usage,
3469
            hotswap=hotswap,
3470
3471
3472
        )

    @classmethod
3473
    # Copied from diffusers.loaders.lora_pipeline.SD3LoraLoaderMixin.load_lora_into_transformer with SD3Transformer2DModel->MochiTransformer3DModel
3474
    def load_lora_into_transformer(
3475
3476
3477
3478
3479
3480
3481
3482
        cls,
        state_dict,
        transformer,
        adapter_name=None,
        _pipeline=None,
        low_cpu_mem_usage=False,
        hotswap: bool = False,
        metadata=None,
3483
3484
3485
3486
3487
3488
3489
3490
3491
    ):
        """
        This will load the LoRA layers specified in `state_dict` into `transformer`.

        Parameters:
            state_dict (`dict`):
                A standard state dict containing the lora layer parameters. The keys can either be indexed directly
                into the unet or prefixed with an additional `unet` which can be used to distinguish between text
                encoder lora layers.
3492
            transformer (`MochiTransformer3DModel`):
3493
3494
3495
3496
3497
                The Transformer model to load the LoRA layers into.
            adapter_name (`str`, *optional*):
                Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
                `default_{i}` where i is the total number of adapters being loaded.
            low_cpu_mem_usage (`bool`, *optional*):
Aryan's avatar
Aryan committed
3498
3499
                Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
                weights.
3500
3501
            hotswap (`bool`, *optional*):
                See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`].
3502
3503
3504
            metadata (`dict`):
                Optional LoRA adapter metadata. When supplied, the `LoraConfig` arguments of `peft` won't be derived
                from the state dict.
Aryan's avatar
Aryan committed
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
        """
        if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

        # Load the layers corresponding to transformer.
        logger.info(f"Loading {cls.transformer_name}.")
        transformer.load_lora_adapter(
            state_dict,
            network_alphas=None,
            adapter_name=adapter_name,
3517
            metadata=metadata,
Aryan's avatar
Aryan committed
3518
3519
            _pipeline=_pipeline,
            low_cpu_mem_usage=low_cpu_mem_usage,
3520
            hotswap=hotswap,
Aryan's avatar
Aryan committed
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
        )

    @classmethod
    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.save_lora_weights
    def save_lora_weights(
        cls,
        save_directory: Union[str, os.PathLike],
        transformer_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
        is_main_process: bool = True,
        weight_name: str = None,
        save_function: Callable = None,
        safe_serialization: bool = True,
3533
        transformer_lora_adapter_metadata: Optional[dict] = None,
Aryan's avatar
Aryan committed
3534
3535
    ):
        r"""
3536
        Save the LoRA parameters corresponding to the transformer.
Aryan's avatar
Aryan committed
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552

        Arguments:
            save_directory (`str` or `os.PathLike`):
                Directory to save LoRA parameters to. Will be created if it doesn't exist.
            transformer_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
                State dict of the LoRA layers corresponding to the `transformer`.
            is_main_process (`bool`, *optional*, defaults to `True`):
                Whether the process calling this is the main process or not. Useful during distributed training and you
                need to call this function on all processes. In this case, set `is_main_process=True` only on the main
                process to avoid race conditions.
            save_function (`Callable`):
                The function to use to save the state dictionary. Useful during distributed training when you need to
                replace `torch.save` with another method. Can be configured with the environment variable
                `DIFFUSERS_SAVE_MODE`.
            safe_serialization (`bool`, *optional*, defaults to `True`):
                Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`.
3553
3554
            transformer_lora_adapter_metadata:
                LoRA adapter metadata associated with the transformer to be serialized with the state dict.
Aryan's avatar
Aryan committed
3555
3556
        """
        state_dict = {}
3557
        lora_adapter_metadata = {}
Aryan's avatar
Aryan committed
3558
3559
3560
3561

        if not transformer_lora_layers:
            raise ValueError("You must pass `transformer_lora_layers`.")

3562
3563
3564
3565
3566
3567
        state_dict.update(cls.pack_weights(transformer_lora_layers, cls.transformer_name))

        if transformer_lora_adapter_metadata is not None:
            lora_adapter_metadata.update(
                _pack_dict_with_prefix(transformer_lora_adapter_metadata, cls.transformer_name)
            )
Aryan's avatar
Aryan committed
3568
3569
3570
3571
3572
3573
3574
3575
3576

        # Save the model
        cls.write_lora_layers(
            state_dict=state_dict,
            save_directory=save_directory,
            is_main_process=is_main_process,
            weight_name=weight_name,
            save_function=save_function,
            safe_serialization=safe_serialization,
3577
            lora_adapter_metadata=lora_adapter_metadata,
Aryan's avatar
Aryan committed
3578
3579
        )

3580
    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.fuse_lora
Aryan's avatar
Aryan committed
3581
3582
    def fuse_lora(
        self,
3583
        components: List[str] = ["transformer"],
Aryan's avatar
Aryan committed
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
        lora_scale: float = 1.0,
        safe_fusing: bool = False,
        adapter_names: Optional[List[str]] = None,
        **kwargs,
    ):
        r"""
        Fuses the LoRA parameters into the original parameters of the corresponding blocks.

        <Tip warning={true}>

        This is an experimental API.

        </Tip>

        Args:
            components: (`List[str]`): List of LoRA-injectable components to fuse the LoRAs into.
            lora_scale (`float`, defaults to 1.0):
                Controls how much to influence the outputs with the LoRA parameters.
            safe_fusing (`bool`, defaults to `False`):
                Whether to check fused weights for NaN values before fusing and if values are NaN not fusing them.
            adapter_names (`List[str]`, *optional*):
                Adapter names to be used for fusing. If nothing is passed, all active adapters will be fused.

        Example:

        ```py
        from diffusers import DiffusionPipeline
        import torch

        pipeline = DiffusionPipeline.from_pretrained(
            "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
        ).to("cuda")
        pipeline.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel")
        pipeline.fuse_lora(lora_scale=0.7)
        ```
        """
        super().fuse_lora(
3621
3622
3623
3624
3625
            components=components,
            lora_scale=lora_scale,
            safe_fusing=safe_fusing,
            adapter_names=adapter_names,
            **kwargs,
Aryan's avatar
Aryan committed
3626
3627
        )

3628
    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.unfuse_lora
3629
    def unfuse_lora(self, components: List[str] = ["transformer"], **kwargs):
Aryan's avatar
Aryan committed
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
        r"""
        Reverses the effect of
        [`pipe.fuse_lora()`](https://huggingface.co/docs/diffusers/main/en/api/loaders#diffusers.loaders.LoraBaseMixin.fuse_lora).

        <Tip warning={true}>

        This is an experimental API.

        </Tip>

        Args:
            components (`List[str]`): List of LoRA-injectable components to unfuse LoRA from.
            unfuse_transformer (`bool`, defaults to `True`): Whether to unfuse the UNet LoRA parameters.
        """
3644
        super().unfuse_lora(components=components, **kwargs)
Aryan's avatar
Aryan committed
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704


class LTXVideoLoraLoaderMixin(LoraBaseMixin):
    r"""
    Load LoRA layers into [`LTXVideoTransformer3DModel`]. Specific to [`LTXPipeline`].
    """

    _lora_loadable_modules = ["transformer"]
    transformer_name = TRANSFORMER_NAME

    @classmethod
    @validate_hf_hub_args
    def lora_state_dict(
        cls,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        **kwargs,
    ):
        r"""
        Return state dict for lora weights and the network alphas.

        <Tip warning={true}>

        We support loading A1111 formatted LoRA checkpoints in a limited capacity.

        This function is experimental and might change in the future.

        </Tip>

        Parameters:
            pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
                Can be either:

                    - A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
                      the Hub.
                    - A path to a *directory* (for example `./my_model_directory`) containing the model weights saved
                      with [`ModelMixin.save_pretrained`].
                    - A [torch state
                      dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).

            cache_dir (`Union[str, os.PathLike]`, *optional*):
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.

            proxies (`Dict[str, str]`, *optional*):
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            local_files_only (`bool`, *optional*, defaults to `False`):
                Whether to only load local model weights and configuration files or not. If set to `True`, the model
                won't be downloaded from the Hub.
            token (`str` or *bool*, *optional*):
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
            revision (`str`, *optional*, defaults to `"main"`):
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
            subfolder (`str`, *optional*, defaults to `""`):
                The subfolder location of a model file within a larger model repository on the Hub or locally.
3705
3706
            return_lora_metadata (`bool`, *optional*, defaults to False):
                When enabled, additionally return the LoRA adapter metadata, typically found in the state dict.
Aryan's avatar
Aryan committed
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
        """
        # Load the main state dict first which has the LoRA layers for either of
        # transformer and text encoder or both.
        cache_dir = kwargs.pop("cache_dir", None)
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", None)
        token = kwargs.pop("token", None)
        revision = kwargs.pop("revision", None)
        subfolder = kwargs.pop("subfolder", None)
        weight_name = kwargs.pop("weight_name", None)
        use_safetensors = kwargs.pop("use_safetensors", None)
3719
        return_lora_metadata = kwargs.pop("return_lora_metadata", False)
Aryan's avatar
Aryan committed
3720
3721
3722
3723
3724
3725

        allow_pickle = False
        if use_safetensors is None:
            use_safetensors = True
            allow_pickle = True

3726
        user_agent = {"file_type": "attn_procs_weights", "framework": "pytorch"}
Aryan's avatar
Aryan committed
3727

3728
        state_dict, metadata = _fetch_state_dict(
Aryan's avatar
Aryan committed
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
            pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict,
            weight_name=weight_name,
            use_safetensors=use_safetensors,
            local_files_only=local_files_only,
            cache_dir=cache_dir,
            force_download=force_download,
            proxies=proxies,
            token=token,
            revision=revision,
            subfolder=subfolder,
            user_agent=user_agent,
            allow_pickle=allow_pickle,
        )

        is_dora_scale_present = any("dora_scale" in k for k in state_dict)
        if is_dora_scale_present:
            warn_msg = "It seems like you are using a DoRA checkpoint that is not compatible in Diffusers at the moment. So, we are going to filter out the keys associated to 'dora_scale` from the state dict. If you think this is a mistake please open an issue https://github.com/huggingface/diffusers/issues/new."
            logger.warning(warn_msg)
            state_dict = {k: v for k, v in state_dict.items() if "dora_scale" not in k}

3749
3750
3751
3752
        is_non_diffusers_format = any(k.startswith("diffusion_model.") for k in state_dict)
        if is_non_diffusers_format:
            state_dict = _convert_non_diffusers_ltxv_lora_to_diffusers(state_dict)

3753
3754
        out = (state_dict, metadata) if return_lora_metadata else state_dict
        return out
Aryan's avatar
Aryan committed
3755
3756
3757

    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.load_lora_weights
    def load_lora_weights(
3758
3759
3760
3761
3762
        self,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        adapter_name: Optional[str] = None,
        hotswap: bool = False,
        **kwargs,
Aryan's avatar
Aryan committed
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
    ):
        """
        Load LoRA weights specified in `pretrained_model_name_or_path_or_dict` into `self.transformer` and
        `self.text_encoder`. All kwargs are forwarded to `self.lora_state_dict`. See
        [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details on how the state dict is loaded.
        See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_transformer`] for more details on how the state
        dict is loaded into `self.transformer`.

        Parameters:
            pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
                See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`].
            adapter_name (`str`, *optional*):
                Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
                `default_{i}` where i is the total number of adapters being loaded.
            low_cpu_mem_usage (`bool`, *optional*):
                Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
                weights.
3780
3781
            hotswap (`bool`, *optional*):
                See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`].
Aryan's avatar
Aryan committed
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
            kwargs (`dict`, *optional*):
                See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`].
        """
        if not USE_PEFT_BACKEND:
            raise ValueError("PEFT backend is required for this method.")

        low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT_LORA)
        if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

        # if a dict is passed, copy it instead of modifying it inplace
        if isinstance(pretrained_model_name_or_path_or_dict, dict):
            pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy()

        # First, ensure that the checkpoint is a compatible one and can be successfully loaded.
3799
3800
        kwargs["return_lora_metadata"] = True
        state_dict, metadata = self.lora_state_dict(pretrained_model_name_or_path_or_dict, **kwargs)
Aryan's avatar
Aryan committed
3801
3802
3803
3804
3805
3806
3807
3808
3809

        is_correct_format = all("lora" in key for key in state_dict.keys())
        if not is_correct_format:
            raise ValueError("Invalid LoRA checkpoint.")

        self.load_lora_into_transformer(
            state_dict,
            transformer=getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer,
            adapter_name=adapter_name,
3810
            metadata=metadata,
Aryan's avatar
Aryan committed
3811
3812
            _pipeline=self,
            low_cpu_mem_usage=low_cpu_mem_usage,
3813
            hotswap=hotswap,
Aryan's avatar
Aryan committed
3814
3815
3816
3817
3818
        )

    @classmethod
    # Copied from diffusers.loaders.lora_pipeline.SD3LoraLoaderMixin.load_lora_into_transformer with SD3Transformer2DModel->LTXVideoTransformer3DModel
    def load_lora_into_transformer(
3819
3820
3821
3822
3823
3824
3825
3826
        cls,
        state_dict,
        transformer,
        adapter_name=None,
        _pipeline=None,
        low_cpu_mem_usage=False,
        hotswap: bool = False,
        metadata=None,
Aryan's avatar
Aryan committed
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
    ):
        """
        This will load the LoRA layers specified in `state_dict` into `transformer`.

        Parameters:
            state_dict (`dict`):
                A standard state dict containing the lora layer parameters. The keys can either be indexed directly
                into the unet or prefixed with an additional `unet` which can be used to distinguish between text
                encoder lora layers.
            transformer (`LTXVideoTransformer3DModel`):
                The Transformer model to load the LoRA layers into.
            adapter_name (`str`, *optional*):
                Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
                `default_{i}` where i is the total number of adapters being loaded.
            low_cpu_mem_usage (`bool`, *optional*):
3842
3843
                Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
                weights.
3844
3845
            hotswap (`bool`, *optional*):
                See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`].
3846
3847
3848
            metadata (`dict`):
                Optional LoRA adapter metadata. When supplied, the `LoraConfig` arguments of `peft` won't be derived
                from the state dict.
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
        """
        if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

        # Load the layers corresponding to transformer.
        logger.info(f"Loading {cls.transformer_name}.")
        transformer.load_lora_adapter(
            state_dict,
            network_alphas=None,
            adapter_name=adapter_name,
3861
            metadata=metadata,
3862
3863
            _pipeline=_pipeline,
            low_cpu_mem_usage=low_cpu_mem_usage,
3864
            hotswap=hotswap,
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
        )

    @classmethod
    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.save_lora_weights
    def save_lora_weights(
        cls,
        save_directory: Union[str, os.PathLike],
        transformer_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
        is_main_process: bool = True,
        weight_name: str = None,
        save_function: Callable = None,
        safe_serialization: bool = True,
3877
        transformer_lora_adapter_metadata: Optional[dict] = None,
3878
3879
    ):
        r"""
3880
        Save the LoRA parameters corresponding to the transformer.
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896

        Arguments:
            save_directory (`str` or `os.PathLike`):
                Directory to save LoRA parameters to. Will be created if it doesn't exist.
            transformer_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
                State dict of the LoRA layers corresponding to the `transformer`.
            is_main_process (`bool`, *optional*, defaults to `True`):
                Whether the process calling this is the main process or not. Useful during distributed training and you
                need to call this function on all processes. In this case, set `is_main_process=True` only on the main
                process to avoid race conditions.
            save_function (`Callable`):
                The function to use to save the state dictionary. Useful during distributed training when you need to
                replace `torch.save` with another method. Can be configured with the environment variable
                `DIFFUSERS_SAVE_MODE`.
            safe_serialization (`bool`, *optional*, defaults to `True`):
                Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`.
3897
3898
            transformer_lora_adapter_metadata:
                LoRA adapter metadata associated with the transformer to be serialized with the state dict.
3899
3900
        """
        state_dict = {}
3901
        lora_adapter_metadata = {}
3902
3903
3904
3905

        if not transformer_lora_layers:
            raise ValueError("You must pass `transformer_lora_layers`.")

3906
3907
3908
3909
3910
3911
        state_dict.update(cls.pack_weights(transformer_lora_layers, cls.transformer_name))

        if transformer_lora_adapter_metadata is not None:
            lora_adapter_metadata.update(
                _pack_dict_with_prefix(transformer_lora_adapter_metadata, cls.transformer_name)
            )
3912
3913
3914
3915
3916
3917
3918
3919
3920

        # Save the model
        cls.write_lora_layers(
            state_dict=state_dict,
            save_directory=save_directory,
            is_main_process=is_main_process,
            weight_name=weight_name,
            save_function=save_function,
            safe_serialization=safe_serialization,
3921
            lora_adapter_metadata=lora_adapter_metadata,
3922
3923
        )

3924
    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.fuse_lora
3925
3926
    def fuse_lora(
        self,
3927
        components: List[str] = ["transformer"],
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
        lora_scale: float = 1.0,
        safe_fusing: bool = False,
        adapter_names: Optional[List[str]] = None,
        **kwargs,
    ):
        r"""
        Fuses the LoRA parameters into the original parameters of the corresponding blocks.

        <Tip warning={true}>

        This is an experimental API.

        </Tip>

        Args:
            components: (`List[str]`): List of LoRA-injectable components to fuse the LoRAs into.
            lora_scale (`float`, defaults to 1.0):
                Controls how much to influence the outputs with the LoRA parameters.
            safe_fusing (`bool`, defaults to `False`):
                Whether to check fused weights for NaN values before fusing and if values are NaN not fusing them.
            adapter_names (`List[str]`, *optional*):
                Adapter names to be used for fusing. If nothing is passed, all active adapters will be fused.

        Example:

        ```py
        from diffusers import DiffusionPipeline
        import torch

        pipeline = DiffusionPipeline.from_pretrained(
            "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
        ).to("cuda")
        pipeline.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel")
        pipeline.fuse_lora(lora_scale=0.7)
        ```
        """
        super().fuse_lora(
3965
3966
3967
3968
3969
            components=components,
            lora_scale=lora_scale,
            safe_fusing=safe_fusing,
            adapter_names=adapter_names,
            **kwargs,
3970
3971
        )

3972
    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.unfuse_lora
3973
    def unfuse_lora(self, components: List[str] = ["transformer"], **kwargs):
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
        r"""
        Reverses the effect of
        [`pipe.fuse_lora()`](https://huggingface.co/docs/diffusers/main/en/api/loaders#diffusers.loaders.LoraBaseMixin.fuse_lora).

        <Tip warning={true}>

        This is an experimental API.

        </Tip>

        Args:
            components (`List[str]`): List of LoRA-injectable components to unfuse LoRA from.
            unfuse_transformer (`bool`, defaults to `True`): Whether to unfuse the UNet LoRA parameters.
        """
3988
        super().unfuse_lora(components=components, **kwargs)
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049


class SanaLoraLoaderMixin(LoraBaseMixin):
    r"""
    Load LoRA layers into [`SanaTransformer2DModel`]. Specific to [`SanaPipeline`].
    """

    _lora_loadable_modules = ["transformer"]
    transformer_name = TRANSFORMER_NAME

    @classmethod
    @validate_hf_hub_args
    # Copied from diffusers.loaders.lora_pipeline.SD3LoraLoaderMixin.lora_state_dict
    def lora_state_dict(
        cls,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        **kwargs,
    ):
        r"""
        Return state dict for lora weights and the network alphas.

        <Tip warning={true}>

        We support loading A1111 formatted LoRA checkpoints in a limited capacity.

        This function is experimental and might change in the future.

        </Tip>

        Parameters:
            pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
                Can be either:

                    - A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
                      the Hub.
                    - A path to a *directory* (for example `./my_model_directory`) containing the model weights saved
                      with [`ModelMixin.save_pretrained`].
                    - A [torch state
                      dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).

            cache_dir (`Union[str, os.PathLike]`, *optional*):
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.

            proxies (`Dict[str, str]`, *optional*):
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            local_files_only (`bool`, *optional*, defaults to `False`):
                Whether to only load local model weights and configuration files or not. If set to `True`, the model
                won't be downloaded from the Hub.
            token (`str` or *bool*, *optional*):
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
            revision (`str`, *optional*, defaults to `"main"`):
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
            subfolder (`str`, *optional*, defaults to `""`):
                The subfolder location of a model file within a larger model repository on the Hub or locally.
4050
4051
            return_lora_metadata (`bool`, *optional*, defaults to False):
                When enabled, additionally return the LoRA adapter metadata, typically found in the state dict.
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064

        """
        # Load the main state dict first which has the LoRA layers for either of
        # transformer and text encoder or both.
        cache_dir = kwargs.pop("cache_dir", None)
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", None)
        token = kwargs.pop("token", None)
        revision = kwargs.pop("revision", None)
        subfolder = kwargs.pop("subfolder", None)
        weight_name = kwargs.pop("weight_name", None)
        use_safetensors = kwargs.pop("use_safetensors", None)
4065
        return_lora_metadata = kwargs.pop("return_lora_metadata", False)
4066
4067
4068
4069
4070
4071

        allow_pickle = False
        if use_safetensors is None:
            use_safetensors = True
            allow_pickle = True

4072
        user_agent = {"file_type": "attn_procs_weights", "framework": "pytorch"}
4073

4074
        state_dict, metadata = _fetch_state_dict(
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
            pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict,
            weight_name=weight_name,
            use_safetensors=use_safetensors,
            local_files_only=local_files_only,
            cache_dir=cache_dir,
            force_download=force_download,
            proxies=proxies,
            token=token,
            revision=revision,
            subfolder=subfolder,
            user_agent=user_agent,
            allow_pickle=allow_pickle,
        )

        is_dora_scale_present = any("dora_scale" in k for k in state_dict)
        if is_dora_scale_present:
            warn_msg = "It seems like you are using a DoRA checkpoint that is not compatible in Diffusers at the moment. So, we are going to filter out the keys associated to 'dora_scale` from the state dict. If you think this is a mistake please open an issue https://github.com/huggingface/diffusers/issues/new."
            logger.warning(warn_msg)
            state_dict = {k: v for k, v in state_dict.items() if "dora_scale" not in k}

4095
4096
        out = (state_dict, metadata) if return_lora_metadata else state_dict
        return out
4097
4098
4099

    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.load_lora_weights
    def load_lora_weights(
4100
4101
4102
4103
4104
        self,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        adapter_name: Optional[str] = None,
        hotswap: bool = False,
        **kwargs,
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
    ):
        """
        Load LoRA weights specified in `pretrained_model_name_or_path_or_dict` into `self.transformer` and
        `self.text_encoder`. All kwargs are forwarded to `self.lora_state_dict`. See
        [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details on how the state dict is loaded.
        See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_transformer`] for more details on how the state
        dict is loaded into `self.transformer`.

        Parameters:
            pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
                See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`].
            adapter_name (`str`, *optional*):
                Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
                `default_{i}` where i is the total number of adapters being loaded.
            low_cpu_mem_usage (`bool`, *optional*):
                Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
                weights.
4122
4123
            hotswap (`bool`, *optional*):
                See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`].
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
            kwargs (`dict`, *optional*):
                See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`].
        """
        if not USE_PEFT_BACKEND:
            raise ValueError("PEFT backend is required for this method.")

        low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT_LORA)
        if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

        # if a dict is passed, copy it instead of modifying it inplace
        if isinstance(pretrained_model_name_or_path_or_dict, dict):
            pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy()

        # First, ensure that the checkpoint is a compatible one and can be successfully loaded.
4141
4142
        kwargs["return_lora_metadata"] = True
        state_dict, metadata = self.lora_state_dict(pretrained_model_name_or_path_or_dict, **kwargs)
4143
4144
4145
4146
4147
4148
4149
4150
4151

        is_correct_format = all("lora" in key for key in state_dict.keys())
        if not is_correct_format:
            raise ValueError("Invalid LoRA checkpoint.")

        self.load_lora_into_transformer(
            state_dict,
            transformer=getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer,
            adapter_name=adapter_name,
4152
            metadata=metadata,
4153
4154
            _pipeline=self,
            low_cpu_mem_usage=low_cpu_mem_usage,
4155
            hotswap=hotswap,
4156
4157
4158
4159
4160
        )

    @classmethod
    # Copied from diffusers.loaders.lora_pipeline.SD3LoraLoaderMixin.load_lora_into_transformer with SD3Transformer2DModel->SanaTransformer2DModel
    def load_lora_into_transformer(
4161
4162
4163
4164
4165
4166
4167
4168
        cls,
        state_dict,
        transformer,
        adapter_name=None,
        _pipeline=None,
        low_cpu_mem_usage=False,
        hotswap: bool = False,
        metadata=None,
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
    ):
        """
        This will load the LoRA layers specified in `state_dict` into `transformer`.

        Parameters:
            state_dict (`dict`):
                A standard state dict containing the lora layer parameters. The keys can either be indexed directly
                into the unet or prefixed with an additional `unet` which can be used to distinguish between text
                encoder lora layers.
            transformer (`SanaTransformer2DModel`):
                The Transformer model to load the LoRA layers into.
            adapter_name (`str`, *optional*):
                Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
                `default_{i}` where i is the total number of adapters being loaded.
            low_cpu_mem_usage (`bool`, *optional*):
4184
4185
                Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
                weights.
4186
4187
            hotswap (`bool`, *optional*):
                See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`].
4188
4189
4190
            metadata (`dict`):
                Optional LoRA adapter metadata. When supplied, the `LoraConfig` arguments of `peft` won't be derived
                from the state dict.
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
        """
        if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

        # Load the layers corresponding to transformer.
        logger.info(f"Loading {cls.transformer_name}.")
        transformer.load_lora_adapter(
            state_dict,
            network_alphas=None,
            adapter_name=adapter_name,
4203
            metadata=metadata,
4204
4205
            _pipeline=_pipeline,
            low_cpu_mem_usage=low_cpu_mem_usage,
4206
            hotswap=hotswap,
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
        )

    @classmethod
    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.save_lora_weights
    def save_lora_weights(
        cls,
        save_directory: Union[str, os.PathLike],
        transformer_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
        is_main_process: bool = True,
        weight_name: str = None,
        save_function: Callable = None,
        safe_serialization: bool = True,
4219
        transformer_lora_adapter_metadata: Optional[dict] = None,
4220
4221
    ):
        r"""
4222
        Save the LoRA parameters corresponding to the transformer.
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238

        Arguments:
            save_directory (`str` or `os.PathLike`):
                Directory to save LoRA parameters to. Will be created if it doesn't exist.
            transformer_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
                State dict of the LoRA layers corresponding to the `transformer`.
            is_main_process (`bool`, *optional*, defaults to `True`):
                Whether the process calling this is the main process or not. Useful during distributed training and you
                need to call this function on all processes. In this case, set `is_main_process=True` only on the main
                process to avoid race conditions.
            save_function (`Callable`):
                The function to use to save the state dictionary. Useful during distributed training when you need to
                replace `torch.save` with another method. Can be configured with the environment variable
                `DIFFUSERS_SAVE_MODE`.
            safe_serialization (`bool`, *optional*, defaults to `True`):
                Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`.
4239
4240
            transformer_lora_adapter_metadata:
                LoRA adapter metadata associated with the transformer to be serialized with the state dict.
4241
4242
        """
        state_dict = {}
4243
        lora_adapter_metadata = {}
4244
4245
4246
4247

        if not transformer_lora_layers:
            raise ValueError("You must pass `transformer_lora_layers`.")

4248
4249
4250
4251
4252
4253
        state_dict.update(cls.pack_weights(transformer_lora_layers, cls.transformer_name))

        if transformer_lora_adapter_metadata is not None:
            lora_adapter_metadata.update(
                _pack_dict_with_prefix(transformer_lora_adapter_metadata, cls.transformer_name)
            )
4254
4255
4256
4257
4258
4259
4260
4261
4262

        # Save the model
        cls.write_lora_layers(
            state_dict=state_dict,
            save_directory=save_directory,
            is_main_process=is_main_process,
            weight_name=weight_name,
            save_function=save_function,
            safe_serialization=safe_serialization,
4263
            lora_adapter_metadata=lora_adapter_metadata,
4264
4265
        )

4266
    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.fuse_lora
4267
4268
    def fuse_lora(
        self,
4269
        components: List[str] = ["transformer"],
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
        lora_scale: float = 1.0,
        safe_fusing: bool = False,
        adapter_names: Optional[List[str]] = None,
        **kwargs,
    ):
        r"""
        Fuses the LoRA parameters into the original parameters of the corresponding blocks.

        <Tip warning={true}>

        This is an experimental API.

        </Tip>

        Args:
            components: (`List[str]`): List of LoRA-injectable components to fuse the LoRAs into.
            lora_scale (`float`, defaults to 1.0):
                Controls how much to influence the outputs with the LoRA parameters.
            safe_fusing (`bool`, defaults to `False`):
                Whether to check fused weights for NaN values before fusing and if values are NaN not fusing them.
            adapter_names (`List[str]`, *optional*):
                Adapter names to be used for fusing. If nothing is passed, all active adapters will be fused.

        Example:

        ```py
        from diffusers import DiffusionPipeline
        import torch

        pipeline = DiffusionPipeline.from_pretrained(
            "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
        ).to("cuda")
        pipeline.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel")
        pipeline.fuse_lora(lora_scale=0.7)
        ```
        """
        super().fuse_lora(
4307
4308
4309
4310
4311
            components=components,
            lora_scale=lora_scale,
            safe_fusing=safe_fusing,
            adapter_names=adapter_names,
            **kwargs,
4312
4313
        )

4314
    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.unfuse_lora
4315
    def unfuse_lora(self, components: List[str] = ["transformer"], **kwargs):
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
        r"""
        Reverses the effect of
        [`pipe.fuse_lora()`](https://huggingface.co/docs/diffusers/main/en/api/loaders#diffusers.loaders.LoraBaseMixin.fuse_lora).

        <Tip warning={true}>

        This is an experimental API.

        </Tip>

        Args:
            components (`List[str]`): List of LoRA-injectable components to unfuse LoRA from.
            unfuse_transformer (`bool`, defaults to `True`): Whether to unfuse the UNet LoRA parameters.
        """
4330
        super().unfuse_lora(components=components, **kwargs)
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352


class HunyuanVideoLoraLoaderMixin(LoraBaseMixin):
    r"""
    Load LoRA layers into [`HunyuanVideoTransformer3DModel`]. Specific to [`HunyuanVideoPipeline`].
    """

    _lora_loadable_modules = ["transformer"]
    transformer_name = TRANSFORMER_NAME

    @classmethod
    @validate_hf_hub_args
    def lora_state_dict(
        cls,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        **kwargs,
    ):
        r"""
        Return state dict for lora weights and the network alphas.

        <Tip warning={true}>

4353
        We support loading original format HunyuanVideo LoRA checkpoints.
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390

        This function is experimental and might change in the future.

        </Tip>

        Parameters:
            pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
                Can be either:

                    - A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
                      the Hub.
                    - A path to a *directory* (for example `./my_model_directory`) containing the model weights saved
                      with [`ModelMixin.save_pretrained`].
                    - A [torch state
                      dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).

            cache_dir (`Union[str, os.PathLike]`, *optional*):
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.

            proxies (`Dict[str, str]`, *optional*):
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            local_files_only (`bool`, *optional*, defaults to `False`):
                Whether to only load local model weights and configuration files or not. If set to `True`, the model
                won't be downloaded from the Hub.
            token (`str` or *bool*, *optional*):
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
            revision (`str`, *optional*, defaults to `"main"`):
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
            subfolder (`str`, *optional*, defaults to `""`):
                The subfolder location of a model file within a larger model repository on the Hub or locally.
4391
4392
            return_lora_metadata (`bool`, *optional*, defaults to False):
                When enabled, additionally return the LoRA adapter metadata, typically found in the state dict.
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
        """
        # Load the main state dict first which has the LoRA layers for either of
        # transformer and text encoder or both.
        cache_dir = kwargs.pop("cache_dir", None)
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", None)
        token = kwargs.pop("token", None)
        revision = kwargs.pop("revision", None)
        subfolder = kwargs.pop("subfolder", None)
        weight_name = kwargs.pop("weight_name", None)
        use_safetensors = kwargs.pop("use_safetensors", None)
4405
        return_lora_metadata = kwargs.pop("return_lora_metadata", False)
4406
4407
4408
4409
4410
4411

        allow_pickle = False
        if use_safetensors is None:
            use_safetensors = True
            allow_pickle = True

4412
        user_agent = {"file_type": "attn_procs_weights", "framework": "pytorch"}
4413

4414
        state_dict, metadata = _fetch_state_dict(
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
            pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict,
            weight_name=weight_name,
            use_safetensors=use_safetensors,
            local_files_only=local_files_only,
            cache_dir=cache_dir,
            force_download=force_download,
            proxies=proxies,
            token=token,
            revision=revision,
            subfolder=subfolder,
            user_agent=user_agent,
            allow_pickle=allow_pickle,
        )

        is_dora_scale_present = any("dora_scale" in k for k in state_dict)
        if is_dora_scale_present:
            warn_msg = "It seems like you are using a DoRA checkpoint that is not compatible in Diffusers at the moment. So, we are going to filter out the keys associated to 'dora_scale` from the state dict. If you think this is a mistake please open an issue https://github.com/huggingface/diffusers/issues/new."
            logger.warning(warn_msg)
            state_dict = {k: v for k, v in state_dict.items() if "dora_scale" not in k}

4435
4436
4437
4438
        is_original_hunyuan_video = any("img_attn_qkv" in k for k in state_dict)
        if is_original_hunyuan_video:
            state_dict = _convert_hunyuan_video_lora_to_diffusers(state_dict)

4439
4440
        out = (state_dict, metadata) if return_lora_metadata else state_dict
        return out
4441
4442
4443

    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.load_lora_weights
    def load_lora_weights(
4444
4445
4446
4447
4448
        self,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        adapter_name: Optional[str] = None,
        hotswap: bool = False,
        **kwargs,
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
    ):
        """
        Load LoRA weights specified in `pretrained_model_name_or_path_or_dict` into `self.transformer` and
        `self.text_encoder`. All kwargs are forwarded to `self.lora_state_dict`. See
        [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details on how the state dict is loaded.
        See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_transformer`] for more details on how the state
        dict is loaded into `self.transformer`.

        Parameters:
            pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
                See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`].
            adapter_name (`str`, *optional*):
                Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
                `default_{i}` where i is the total number of adapters being loaded.
            low_cpu_mem_usage (`bool`, *optional*):
                Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
                weights.
4466
4467
            hotswap (`bool`, *optional*):
                See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`].
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
            kwargs (`dict`, *optional*):
                See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`].
        """
        if not USE_PEFT_BACKEND:
            raise ValueError("PEFT backend is required for this method.")

        low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT_LORA)
        if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

        # if a dict is passed, copy it instead of modifying it inplace
        if isinstance(pretrained_model_name_or_path_or_dict, dict):
            pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy()

        # First, ensure that the checkpoint is a compatible one and can be successfully loaded.
4485
4486
        kwargs["return_lora_metadata"] = True
        state_dict, metadata = self.lora_state_dict(pretrained_model_name_or_path_or_dict, **kwargs)
4487
4488
4489
4490
4491
4492
4493
4494
4495

        is_correct_format = all("lora" in key for key in state_dict.keys())
        if not is_correct_format:
            raise ValueError("Invalid LoRA checkpoint.")

        self.load_lora_into_transformer(
            state_dict,
            transformer=getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer,
            adapter_name=adapter_name,
4496
            metadata=metadata,
4497
4498
            _pipeline=self,
            low_cpu_mem_usage=low_cpu_mem_usage,
4499
            hotswap=hotswap,
4500
4501
4502
4503
4504
        )

    @classmethod
    # Copied from diffusers.loaders.lora_pipeline.SD3LoraLoaderMixin.load_lora_into_transformer with SD3Transformer2DModel->HunyuanVideoTransformer3DModel
    def load_lora_into_transformer(
4505
4506
4507
4508
4509
4510
4511
4512
        cls,
        state_dict,
        transformer,
        adapter_name=None,
        _pipeline=None,
        low_cpu_mem_usage=False,
        hotswap: bool = False,
        metadata=None,
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
    ):
        """
        This will load the LoRA layers specified in `state_dict` into `transformer`.

        Parameters:
            state_dict (`dict`):
                A standard state dict containing the lora layer parameters. The keys can either be indexed directly
                into the unet or prefixed with an additional `unet` which can be used to distinguish between text
                encoder lora layers.
            transformer (`HunyuanVideoTransformer3DModel`):
                The Transformer model to load the LoRA layers into.
            adapter_name (`str`, *optional*):
                Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
                `default_{i}` where i is the total number of adapters being loaded.
            low_cpu_mem_usage (`bool`, *optional*):
4528
4529
                Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
                weights.
4530
4531
            hotswap (`bool`, *optional*):
                See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`].
4532
4533
4534
            metadata (`dict`):
                Optional LoRA adapter metadata. When supplied, the `LoraConfig` arguments of `peft` won't be derived
                from the state dict.
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
        """
        if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

        # Load the layers corresponding to transformer.
        logger.info(f"Loading {cls.transformer_name}.")
        transformer.load_lora_adapter(
            state_dict,
            network_alphas=None,
            adapter_name=adapter_name,
4547
            metadata=metadata,
4548
4549
            _pipeline=_pipeline,
            low_cpu_mem_usage=low_cpu_mem_usage,
4550
            hotswap=hotswap,
4551
4552
4553
4554
4555
4556
4557
4558
        )

    @classmethod
    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.save_lora_weights
    def save_lora_weights(
        cls,
        save_directory: Union[str, os.PathLike],
        transformer_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
Aryan's avatar
Aryan committed
4559
4560
4561
4562
        is_main_process: bool = True,
        weight_name: str = None,
        save_function: Callable = None,
        safe_serialization: bool = True,
4563
        transformer_lora_adapter_metadata: Optional[dict] = None,
Aryan's avatar
Aryan committed
4564
4565
    ):
        r"""
4566
        Save the LoRA parameters corresponding to the transformer.
Aryan's avatar
Aryan committed
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582

        Arguments:
            save_directory (`str` or `os.PathLike`):
                Directory to save LoRA parameters to. Will be created if it doesn't exist.
            transformer_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
                State dict of the LoRA layers corresponding to the `transformer`.
            is_main_process (`bool`, *optional*, defaults to `True`):
                Whether the process calling this is the main process or not. Useful during distributed training and you
                need to call this function on all processes. In this case, set `is_main_process=True` only on the main
                process to avoid race conditions.
            save_function (`Callable`):
                The function to use to save the state dictionary. Useful during distributed training when you need to
                replace `torch.save` with another method. Can be configured with the environment variable
                `DIFFUSERS_SAVE_MODE`.
            safe_serialization (`bool`, *optional*, defaults to `True`):
                Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`.
4583
4584
            transformer_lora_adapter_metadata:
                LoRA adapter metadata associated with the transformer to be serialized with the state dict.
Aryan's avatar
Aryan committed
4585
4586
        """
        state_dict = {}
4587
        lora_adapter_metadata = {}
Aryan's avatar
Aryan committed
4588
4589
4590
4591

        if not transformer_lora_layers:
            raise ValueError("You must pass `transformer_lora_layers`.")

4592
4593
4594
4595
4596
4597
        state_dict.update(cls.pack_weights(transformer_lora_layers, cls.transformer_name))

        if transformer_lora_adapter_metadata is not None:
            lora_adapter_metadata.update(
                _pack_dict_with_prefix(transformer_lora_adapter_metadata, cls.transformer_name)
            )
Aryan's avatar
Aryan committed
4598
4599
4600
4601
4602
4603
4604
4605
4606

        # Save the model
        cls.write_lora_layers(
            state_dict=state_dict,
            save_directory=save_directory,
            is_main_process=is_main_process,
            weight_name=weight_name,
            save_function=save_function,
            safe_serialization=safe_serialization,
4607
            lora_adapter_metadata=lora_adapter_metadata,
Aryan's avatar
Aryan committed
4608
4609
        )

4610
    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.fuse_lora
Aryan's avatar
Aryan committed
4611
4612
    def fuse_lora(
        self,
4613
        components: List[str] = ["transformer"],
Aryan's avatar
Aryan committed
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
        lora_scale: float = 1.0,
        safe_fusing: bool = False,
        adapter_names: Optional[List[str]] = None,
        **kwargs,
    ):
        r"""
        Fuses the LoRA parameters into the original parameters of the corresponding blocks.

        <Tip warning={true}>

        This is an experimental API.

        </Tip>

        Args:
            components: (`List[str]`): List of LoRA-injectable components to fuse the LoRAs into.
            lora_scale (`float`, defaults to 1.0):
                Controls how much to influence the outputs with the LoRA parameters.
            safe_fusing (`bool`, defaults to `False`):
                Whether to check fused weights for NaN values before fusing and if values are NaN not fusing them.
            adapter_names (`List[str]`, *optional*):
                Adapter names to be used for fusing. If nothing is passed, all active adapters will be fused.

        Example:

        ```py
        from diffusers import DiffusionPipeline
        import torch

        pipeline = DiffusionPipeline.from_pretrained(
            "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
        ).to("cuda")
        pipeline.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel")
        pipeline.fuse_lora(lora_scale=0.7)
        ```
        """
        super().fuse_lora(
4651
4652
4653
4654
4655
            components=components,
            lora_scale=lora_scale,
            safe_fusing=safe_fusing,
            adapter_names=adapter_names,
            **kwargs,
Aryan's avatar
Aryan committed
4656
4657
        )

4658
    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.unfuse_lora
4659
    def unfuse_lora(self, components: List[str] = ["transformer"], **kwargs):
Aryan's avatar
Aryan committed
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
        r"""
        Reverses the effect of
        [`pipe.fuse_lora()`](https://huggingface.co/docs/diffusers/main/en/api/loaders#diffusers.loaders.LoraBaseMixin.fuse_lora).

        <Tip warning={true}>

        This is an experimental API.

        </Tip>

        Args:
            components (`List[str]`): List of LoRA-injectable components to unfuse LoRA from.
            unfuse_transformer (`bool`, defaults to `True`): Whether to unfuse the UNet LoRA parameters.
        """
4674
        super().unfuse_lora(components=components, **kwargs)
Aryan's avatar
Aryan committed
4675
4676


4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
class Lumina2LoraLoaderMixin(LoraBaseMixin):
    r"""
    Load LoRA layers into [`Lumina2Transformer2DModel`]. Specific to [`Lumina2Text2ImgPipeline`].
    """

    _lora_loadable_modules = ["transformer"]
    transformer_name = TRANSFORMER_NAME

    @classmethod
    @validate_hf_hub_args
    def lora_state_dict(
        cls,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        **kwargs,
    ):
        r"""
        Return state dict for lora weights and the network alphas.

        <Tip warning={true}>

        We support loading A1111 formatted LoRA checkpoints in a limited capacity.

        This function is experimental and might change in the future.

        </Tip>

        Parameters:
            pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
                Can be either:

                    - A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
                      the Hub.
                    - A path to a *directory* (for example `./my_model_directory`) containing the model weights saved
                      with [`ModelMixin.save_pretrained`].
                    - A [torch state
                      dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).

            cache_dir (`Union[str, os.PathLike]`, *optional*):
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.

            proxies (`Dict[str, str]`, *optional*):
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            local_files_only (`bool`, *optional*, defaults to `False`):
                Whether to only load local model weights and configuration files or not. If set to `True`, the model
                won't be downloaded from the Hub.
            token (`str` or *bool*, *optional*):
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
            revision (`str`, *optional*, defaults to `"main"`):
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
            subfolder (`str`, *optional*, defaults to `""`):
                The subfolder location of a model file within a larger model repository on the Hub or locally.
4735
4736
            return_lora_metadata (`bool`, *optional*, defaults to False):
                When enabled, additionally return the LoRA adapter metadata, typically found in the state dict.
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
        """
        # Load the main state dict first which has the LoRA layers for either of
        # transformer and text encoder or both.
        cache_dir = kwargs.pop("cache_dir", None)
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", None)
        token = kwargs.pop("token", None)
        revision = kwargs.pop("revision", None)
        subfolder = kwargs.pop("subfolder", None)
        weight_name = kwargs.pop("weight_name", None)
        use_safetensors = kwargs.pop("use_safetensors", None)
4749
        return_lora_metadata = kwargs.pop("return_lora_metadata", False)
4750
4751
4752
4753
4754
4755

        allow_pickle = False
        if use_safetensors is None:
            use_safetensors = True
            allow_pickle = True

4756
        user_agent = {"file_type": "attn_procs_weights", "framework": "pytorch"}
4757

4758
        state_dict, metadata = _fetch_state_dict(
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
            pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict,
            weight_name=weight_name,
            use_safetensors=use_safetensors,
            local_files_only=local_files_only,
            cache_dir=cache_dir,
            force_download=force_download,
            proxies=proxies,
            token=token,
            revision=revision,
            subfolder=subfolder,
            user_agent=user_agent,
            allow_pickle=allow_pickle,
        )

        is_dora_scale_present = any("dora_scale" in k for k in state_dict)
        if is_dora_scale_present:
            warn_msg = "It seems like you are using a DoRA checkpoint that is not compatible in Diffusers at the moment. So, we are going to filter out the keys associated to 'dora_scale` from the state dict. If you think this is a mistake please open an issue https://github.com/huggingface/diffusers/issues/new."
            logger.warning(warn_msg)
            state_dict = {k: v for k, v in state_dict.items() if "dora_scale" not in k}

4779
4780
4781
4782
4783
        # conversion.
        non_diffusers = any(k.startswith("diffusion_model.") for k in state_dict)
        if non_diffusers:
            state_dict = _convert_non_diffusers_lumina2_lora_to_diffusers(state_dict)

4784
4785
        out = (state_dict, metadata) if return_lora_metadata else state_dict
        return out
4786
4787
4788

    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.load_lora_weights
    def load_lora_weights(
4789
4790
4791
4792
4793
        self,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        adapter_name: Optional[str] = None,
        hotswap: bool = False,
        **kwargs,
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
    ):
        """
        Load LoRA weights specified in `pretrained_model_name_or_path_or_dict` into `self.transformer` and
        `self.text_encoder`. All kwargs are forwarded to `self.lora_state_dict`. See
        [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details on how the state dict is loaded.
        See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_transformer`] for more details on how the state
        dict is loaded into `self.transformer`.

        Parameters:
            pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
                See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`].
            adapter_name (`str`, *optional*):
                Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
                `default_{i}` where i is the total number of adapters being loaded.
            low_cpu_mem_usage (`bool`, *optional*):
                Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
                weights.
4811
4812
            hotswap (`bool`, *optional*):
                See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`].
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
            kwargs (`dict`, *optional*):
                See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`].
        """
        if not USE_PEFT_BACKEND:
            raise ValueError("PEFT backend is required for this method.")

        low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT_LORA)
        if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

        # if a dict is passed, copy it instead of modifying it inplace
        if isinstance(pretrained_model_name_or_path_or_dict, dict):
            pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy()

        # First, ensure that the checkpoint is a compatible one and can be successfully loaded.
4830
4831
        kwargs["return_lora_metadata"] = True
        state_dict, metadata = self.lora_state_dict(pretrained_model_name_or_path_or_dict, **kwargs)
4832
4833
4834
4835
4836
4837
4838
4839
4840

        is_correct_format = all("lora" in key for key in state_dict.keys())
        if not is_correct_format:
            raise ValueError("Invalid LoRA checkpoint.")

        self.load_lora_into_transformer(
            state_dict,
            transformer=getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer,
            adapter_name=adapter_name,
4841
            metadata=metadata,
4842
4843
            _pipeline=self,
            low_cpu_mem_usage=low_cpu_mem_usage,
4844
            hotswap=hotswap,
4845
4846
4847
4848
4849
        )

    @classmethod
    # Copied from diffusers.loaders.lora_pipeline.SD3LoraLoaderMixin.load_lora_into_transformer with SD3Transformer2DModel->Lumina2Transformer2DModel
    def load_lora_into_transformer(
4850
4851
4852
4853
4854
4855
4856
4857
        cls,
        state_dict,
        transformer,
        adapter_name=None,
        _pipeline=None,
        low_cpu_mem_usage=False,
        hotswap: bool = False,
        metadata=None,
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
    ):
        """
        This will load the LoRA layers specified in `state_dict` into `transformer`.

        Parameters:
            state_dict (`dict`):
                A standard state dict containing the lora layer parameters. The keys can either be indexed directly
                into the unet or prefixed with an additional `unet` which can be used to distinguish between text
                encoder lora layers.
            transformer (`Lumina2Transformer2DModel`):
                The Transformer model to load the LoRA layers into.
            adapter_name (`str`, *optional*):
                Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
                `default_{i}` where i is the total number of adapters being loaded.
            low_cpu_mem_usage (`bool`, *optional*):
                Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
                weights.
4875
4876
            hotswap (`bool`, *optional*):
                See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`].
4877
4878
4879
            metadata (`dict`):
                Optional LoRA adapter metadata. When supplied, the `LoraConfig` arguments of `peft` won't be derived
                from the state dict.
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
        """
        if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

        # Load the layers corresponding to transformer.
        logger.info(f"Loading {cls.transformer_name}.")
        transformer.load_lora_adapter(
            state_dict,
            network_alphas=None,
            adapter_name=adapter_name,
4892
            metadata=metadata,
4893
4894
            _pipeline=_pipeline,
            low_cpu_mem_usage=low_cpu_mem_usage,
4895
            hotswap=hotswap,
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
        )

    @classmethod
    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.save_lora_weights
    def save_lora_weights(
        cls,
        save_directory: Union[str, os.PathLike],
        transformer_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
        is_main_process: bool = True,
        weight_name: str = None,
        save_function: Callable = None,
        safe_serialization: bool = True,
4908
        transformer_lora_adapter_metadata: Optional[dict] = None,
4909
4910
    ):
        r"""
4911
        Save the LoRA parameters corresponding to the transformer.
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927

        Arguments:
            save_directory (`str` or `os.PathLike`):
                Directory to save LoRA parameters to. Will be created if it doesn't exist.
            transformer_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
                State dict of the LoRA layers corresponding to the `transformer`.
            is_main_process (`bool`, *optional*, defaults to `True`):
                Whether the process calling this is the main process or not. Useful during distributed training and you
                need to call this function on all processes. In this case, set `is_main_process=True` only on the main
                process to avoid race conditions.
            save_function (`Callable`):
                The function to use to save the state dictionary. Useful during distributed training when you need to
                replace `torch.save` with another method. Can be configured with the environment variable
                `DIFFUSERS_SAVE_MODE`.
            safe_serialization (`bool`, *optional*, defaults to `True`):
                Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`.
4928
4929
            transformer_lora_adapter_metadata:
                LoRA adapter metadata associated with the transformer to be serialized with the state dict.
4930
4931
        """
        state_dict = {}
4932
        lora_adapter_metadata = {}
4933
4934
4935
4936

        if not transformer_lora_layers:
            raise ValueError("You must pass `transformer_lora_layers`.")

4937
4938
4939
4940
4941
4942
        state_dict.update(cls.pack_weights(transformer_lora_layers, cls.transformer_name))

        if transformer_lora_adapter_metadata is not None:
            lora_adapter_metadata.update(
                _pack_dict_with_prefix(transformer_lora_adapter_metadata, cls.transformer_name)
            )
4943
4944
4945
4946
4947
4948
4949
4950
4951

        # Save the model
        cls.write_lora_layers(
            state_dict=state_dict,
            save_directory=save_directory,
            is_main_process=is_main_process,
            weight_name=weight_name,
            save_function=save_function,
            safe_serialization=safe_serialization,
4952
            lora_adapter_metadata=lora_adapter_metadata,
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
        )

    # Copied from diffusers.loaders.lora_pipeline.SanaLoraLoaderMixin.fuse_lora
    def fuse_lora(
        self,
        components: List[str] = ["transformer"],
        lora_scale: float = 1.0,
        safe_fusing: bool = False,
        adapter_names: Optional[List[str]] = None,
        **kwargs,
    ):
        r"""
        Fuses the LoRA parameters into the original parameters of the corresponding blocks.

        <Tip warning={true}>

        This is an experimental API.

        </Tip>

        Args:
            components: (`List[str]`): List of LoRA-injectable components to fuse the LoRAs into.
            lora_scale (`float`, defaults to 1.0):
                Controls how much to influence the outputs with the LoRA parameters.
            safe_fusing (`bool`, defaults to `False`):
                Whether to check fused weights for NaN values before fusing and if values are NaN not fusing them.
            adapter_names (`List[str]`, *optional*):
                Adapter names to be used for fusing. If nothing is passed, all active adapters will be fused.

        Example:

        ```py
        from diffusers import DiffusionPipeline
        import torch

        pipeline = DiffusionPipeline.from_pretrained(
            "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
        ).to("cuda")
        pipeline.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel")
        pipeline.fuse_lora(lora_scale=0.7)
        ```
        """
        super().fuse_lora(
4996
4997
4998
4999
5000
            components=components,
            lora_scale=lora_scale,
            safe_fusing=safe_fusing,
            adapter_names=adapter_names,
            **kwargs,
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
        )

    # Copied from diffusers.loaders.lora_pipeline.SanaLoraLoaderMixin.unfuse_lora
    def unfuse_lora(self, components: List[str] = ["transformer"], **kwargs):
        r"""
        Reverses the effect of
        [`pipe.fuse_lora()`](https://huggingface.co/docs/diffusers/main/en/api/loaders#diffusers.loaders.LoraBaseMixin.fuse_lora).

        <Tip warning={true}>

        This is an experimental API.

        </Tip>

        Args:
            components (`List[str]`): List of LoRA-injectable components to unfuse LoRA from.
            unfuse_transformer (`bool`, defaults to `True`): Whether to unfuse the UNet LoRA parameters.
        """
5019
        super().unfuse_lora(components=components, **kwargs)
5020
5021


Aryan's avatar
Aryan committed
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
class WanLoraLoaderMixin(LoraBaseMixin):
    r"""
    Load LoRA layers into [`WanTransformer3DModel`]. Specific to [`WanPipeline`] and `[WanImageToVideoPipeline`].
    """

    _lora_loadable_modules = ["transformer"]
    transformer_name = TRANSFORMER_NAME

    @classmethod
    @validate_hf_hub_args
    def lora_state_dict(
        cls,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        **kwargs,
    ):
        r"""
        Return state dict for lora weights and the network alphas.

        <Tip warning={true}>

        We support loading A1111 formatted LoRA checkpoints in a limited capacity.

        This function is experimental and might change in the future.

        </Tip>

        Parameters:
            pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
                Can be either:

                    - A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
                      the Hub.
                    - A path to a *directory* (for example `./my_model_directory`) containing the model weights saved
                      with [`ModelMixin.save_pretrained`].
                    - A [torch state
                      dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).

            cache_dir (`Union[str, os.PathLike]`, *optional*):
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.

            proxies (`Dict[str, str]`, *optional*):
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            local_files_only (`bool`, *optional*, defaults to `False`):
                Whether to only load local model weights and configuration files or not. If set to `True`, the model
                won't be downloaded from the Hub.
            token (`str` or *bool*, *optional*):
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
            revision (`str`, *optional*, defaults to `"main"`):
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
            subfolder (`str`, *optional*, defaults to `""`):
                The subfolder location of a model file within a larger model repository on the Hub or locally.
5080
5081
            return_lora_metadata (`bool`, *optional*, defaults to False):
                When enabled, additionally return the LoRA adapter metadata, typically found in the state dict.
Aryan's avatar
Aryan committed
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
        """
        # Load the main state dict first which has the LoRA layers for either of
        # transformer and text encoder or both.
        cache_dir = kwargs.pop("cache_dir", None)
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", None)
        token = kwargs.pop("token", None)
        revision = kwargs.pop("revision", None)
        subfolder = kwargs.pop("subfolder", None)
        weight_name = kwargs.pop("weight_name", None)
        use_safetensors = kwargs.pop("use_safetensors", None)
5094
        return_lora_metadata = kwargs.pop("return_lora_metadata", False)
Aryan's avatar
Aryan committed
5095
5096
5097
5098
5099
5100

        allow_pickle = False
        if use_safetensors is None:
            use_safetensors = True
            allow_pickle = True

5101
        user_agent = {"file_type": "attn_procs_weights", "framework": "pytorch"}
Aryan's avatar
Aryan committed
5102

5103
        state_dict, metadata = _fetch_state_dict(
Aryan's avatar
Aryan committed
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
            pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict,
            weight_name=weight_name,
            use_safetensors=use_safetensors,
            local_files_only=local_files_only,
            cache_dir=cache_dir,
            force_download=force_download,
            proxies=proxies,
            token=token,
            revision=revision,
            subfolder=subfolder,
            user_agent=user_agent,
            allow_pickle=allow_pickle,
        )
5117
5118
        if any(k.startswith("diffusion_model.") for k in state_dict):
            state_dict = _convert_non_diffusers_wan_lora_to_diffusers(state_dict)
5119
5120
        elif any(k.startswith("lora_unet_") for k in state_dict):
            state_dict = _convert_musubi_wan_lora_to_diffusers(state_dict)
Aryan's avatar
Aryan committed
5121
5122
5123
5124
5125
5126
5127

        is_dora_scale_present = any("dora_scale" in k for k in state_dict)
        if is_dora_scale_present:
            warn_msg = "It seems like you are using a DoRA checkpoint that is not compatible in Diffusers at the moment. So, we are going to filter out the keys associated to 'dora_scale` from the state dict. If you think this is a mistake please open an issue https://github.com/huggingface/diffusers/issues/new."
            logger.warning(warn_msg)
            state_dict = {k: v for k, v in state_dict.items() if "dora_scale" not in k}

5128
5129
        out = (state_dict, metadata) if return_lora_metadata else state_dict
        return out
Aryan's avatar
Aryan committed
5130

5131
5132
5133
5134
5135
5136
5137
5138
5139
    @classmethod
    def _maybe_expand_t2v_lora_for_i2v(
        cls,
        transformer: torch.nn.Module,
        state_dict,
    ):
        if transformer.config.image_dim is None:
            return state_dict

5140
5141
        target_device = transformer.device

5142
        if any(k.startswith("transformer.blocks.") for k in state_dict):
5143
            num_blocks = len({k.split("blocks.")[1].split(".")[0] for k in state_dict if "blocks." in k})
5144
            is_i2v_lora = any("add_k_proj" in k for k in state_dict) and any("add_v_proj" in k for k in state_dict)
5145
            has_bias = any(".lora_B.bias" in k for k in state_dict)
5146
5147
5148
5149
5150
5151

            if is_i2v_lora:
                return state_dict

            for i in range(num_blocks):
                for o, c in zip(["k_img", "v_img"], ["add_k_proj", "add_v_proj"]):
5152
5153
5154
5155
5156
5157
5158
                    # These keys should exist if the block `i` was part of the T2V LoRA.
                    ref_key_lora_A = f"transformer.blocks.{i}.attn2.to_k.lora_A.weight"
                    ref_key_lora_B = f"transformer.blocks.{i}.attn2.to_k.lora_B.weight"

                    if ref_key_lora_A not in state_dict or ref_key_lora_B not in state_dict:
                        continue

5159
                    state_dict[f"transformer.blocks.{i}.attn2.{c}.lora_A.weight"] = torch.zeros_like(
5160
                        state_dict[f"transformer.blocks.{i}.attn2.to_k.lora_A.weight"], device=target_device
5161
5162
                    )
                    state_dict[f"transformer.blocks.{i}.attn2.{c}.lora_B.weight"] = torch.zeros_like(
5163
                        state_dict[f"transformer.blocks.{i}.attn2.to_k.lora_B.weight"], device=target_device
5164
5165
                    )

5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
                    # If the original LoRA had biases (indicated by has_bias)
                    # AND the specific reference bias key exists for this block.

                    ref_key_lora_B_bias = f"transformer.blocks.{i}.attn2.to_k.lora_B.bias"
                    if has_bias and ref_key_lora_B_bias in state_dict:
                        ref_lora_B_bias_tensor = state_dict[ref_key_lora_B_bias]
                        state_dict[f"transformer.blocks.{i}.attn2.{c}.lora_B.bias"] = torch.zeros_like(
                            ref_lora_B_bias_tensor,
                            device=target_device,
                        )

5177
5178
        return state_dict

Aryan's avatar
Aryan committed
5179
    def load_lora_weights(
5180
5181
5182
5183
5184
        self,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        adapter_name: Optional[str] = None,
        hotswap: bool = False,
        **kwargs,
Aryan's avatar
Aryan committed
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
    ):
        """
        Load LoRA weights specified in `pretrained_model_name_or_path_or_dict` into `self.transformer` and
        `self.text_encoder`. All kwargs are forwarded to `self.lora_state_dict`. See
        [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details on how the state dict is loaded.
        See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_transformer`] for more details on how the state
        dict is loaded into `self.transformer`.

        Parameters:
            pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
                See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`].
            adapter_name (`str`, *optional*):
                Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
                `default_{i}` where i is the total number of adapters being loaded.
            low_cpu_mem_usage (`bool`, *optional*):
                Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
                weights.
5202
5203
            hotswap (`bool`, *optional*):
                See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`].
Aryan's avatar
Aryan committed
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
            kwargs (`dict`, *optional*):
                See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`].
        """
        if not USE_PEFT_BACKEND:
            raise ValueError("PEFT backend is required for this method.")

        low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT_LORA)
        if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

        # if a dict is passed, copy it instead of modifying it inplace
        if isinstance(pretrained_model_name_or_path_or_dict, dict):
            pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy()

        # First, ensure that the checkpoint is a compatible one and can be successfully loaded.
5221
5222
        kwargs["return_lora_metadata"] = True
        state_dict, metadata = self.lora_state_dict(pretrained_model_name_or_path_or_dict, **kwargs)
5223
5224
5225
5226
5227
        # convert T2V LoRA to I2V LoRA (when loaded to Wan I2V) by adding zeros for the additional (missing) _img layers
        state_dict = self._maybe_expand_t2v_lora_for_i2v(
            transformer=getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer,
            state_dict=state_dict,
        )
Aryan's avatar
Aryan committed
5228
5229
5230
5231
5232
5233
5234
5235
        is_correct_format = all("lora" in key for key in state_dict.keys())
        if not is_correct_format:
            raise ValueError("Invalid LoRA checkpoint.")

        self.load_lora_into_transformer(
            state_dict,
            transformer=getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer,
            adapter_name=adapter_name,
5236
            metadata=metadata,
Aryan's avatar
Aryan committed
5237
5238
            _pipeline=self,
            low_cpu_mem_usage=low_cpu_mem_usage,
5239
            hotswap=hotswap,
Aryan's avatar
Aryan committed
5240
5241
5242
5243
5244
        )

    @classmethod
    # Copied from diffusers.loaders.lora_pipeline.SD3LoraLoaderMixin.load_lora_into_transformer with SD3Transformer2DModel->WanTransformer3DModel
    def load_lora_into_transformer(
5245
5246
5247
5248
5249
5250
5251
5252
        cls,
        state_dict,
        transformer,
        adapter_name=None,
        _pipeline=None,
        low_cpu_mem_usage=False,
        hotswap: bool = False,
        metadata=None,
Aryan's avatar
Aryan committed
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
    ):
        """
        This will load the LoRA layers specified in `state_dict` into `transformer`.

        Parameters:
            state_dict (`dict`):
                A standard state dict containing the lora layer parameters. The keys can either be indexed directly
                into the unet or prefixed with an additional `unet` which can be used to distinguish between text
                encoder lora layers.
            transformer (`WanTransformer3DModel`):
                The Transformer model to load the LoRA layers into.
Aryan's avatar
Aryan committed
5264
5265
5266
5267
5268
5269
            adapter_name (`str`, *optional*):
                Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
                `default_{i}` where i is the total number of adapters being loaded.
            low_cpu_mem_usage (`bool`, *optional*):
                Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
                weights.
5270
5271
            hotswap (`bool`, *optional*):
                See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`].
5272
5273
5274
            metadata (`dict`):
                Optional LoRA adapter metadata. When supplied, the `LoraConfig` arguments of `peft` won't be derived
                from the state dict.
Aryan's avatar
Aryan committed
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
        """
        if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

        # Load the layers corresponding to transformer.
        logger.info(f"Loading {cls.transformer_name}.")
        transformer.load_lora_adapter(
            state_dict,
            network_alphas=None,
            adapter_name=adapter_name,
5287
            metadata=metadata,
Aryan's avatar
Aryan committed
5288
5289
            _pipeline=_pipeline,
            low_cpu_mem_usage=low_cpu_mem_usage,
5290
            hotswap=hotswap,
Aryan's avatar
Aryan committed
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
        )

    @classmethod
    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.save_lora_weights
    def save_lora_weights(
        cls,
        save_directory: Union[str, os.PathLike],
        transformer_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
        is_main_process: bool = True,
        weight_name: str = None,
        save_function: Callable = None,
        safe_serialization: bool = True,
5303
        transformer_lora_adapter_metadata: Optional[dict] = None,
Aryan's avatar
Aryan committed
5304
5305
    ):
        r"""
5306
        Save the LoRA parameters corresponding to the transformer.
Aryan's avatar
Aryan committed
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322

        Arguments:
            save_directory (`str` or `os.PathLike`):
                Directory to save LoRA parameters to. Will be created if it doesn't exist.
            transformer_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
                State dict of the LoRA layers corresponding to the `transformer`.
            is_main_process (`bool`, *optional*, defaults to `True`):
                Whether the process calling this is the main process or not. Useful during distributed training and you
                need to call this function on all processes. In this case, set `is_main_process=True` only on the main
                process to avoid race conditions.
            save_function (`Callable`):
                The function to use to save the state dictionary. Useful during distributed training when you need to
                replace `torch.save` with another method. Can be configured with the environment variable
                `DIFFUSERS_SAVE_MODE`.
            safe_serialization (`bool`, *optional*, defaults to `True`):
                Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`.
5323
5324
            transformer_lora_adapter_metadata:
                LoRA adapter metadata associated with the transformer to be serialized with the state dict.
Aryan's avatar
Aryan committed
5325
5326
        """
        state_dict = {}
5327
        lora_adapter_metadata = {}
Aryan's avatar
Aryan committed
5328
5329
5330
5331

        if not transformer_lora_layers:
            raise ValueError("You must pass `transformer_lora_layers`.")

5332
5333
5334
5335
5336
5337
        state_dict.update(cls.pack_weights(transformer_lora_layers, cls.transformer_name))

        if transformer_lora_adapter_metadata is not None:
            lora_adapter_metadata.update(
                _pack_dict_with_prefix(transformer_lora_adapter_metadata, cls.transformer_name)
            )
Aryan's avatar
Aryan committed
5338
5339
5340
5341
5342
5343
5344
5345
5346

        # Save the model
        cls.write_lora_layers(
            state_dict=state_dict,
            save_directory=save_directory,
            is_main_process=is_main_process,
            weight_name=weight_name,
            save_function=save_function,
            safe_serialization=safe_serialization,
5347
            lora_adapter_metadata=lora_adapter_metadata,
Aryan's avatar
Aryan committed
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
        )

    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.fuse_lora
    def fuse_lora(
        self,
        components: List[str] = ["transformer"],
        lora_scale: float = 1.0,
        safe_fusing: bool = False,
        adapter_names: Optional[List[str]] = None,
        **kwargs,
    ):
        r"""
        Fuses the LoRA parameters into the original parameters of the corresponding blocks.

        <Tip warning={true}>

        This is an experimental API.

        </Tip>

        Args:
            components: (`List[str]`): List of LoRA-injectable components to fuse the LoRAs into.
            lora_scale (`float`, defaults to 1.0):
                Controls how much to influence the outputs with the LoRA parameters.
            safe_fusing (`bool`, defaults to `False`):
                Whether to check fused weights for NaN values before fusing and if values are NaN not fusing them.
            adapter_names (`List[str]`, *optional*):
                Adapter names to be used for fusing. If nothing is passed, all active adapters will be fused.

        Example:

        ```py
        from diffusers import DiffusionPipeline
        import torch

        pipeline = DiffusionPipeline.from_pretrained(
            "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
        ).to("cuda")
        pipeline.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel")
        pipeline.fuse_lora(lora_scale=0.7)
        ```
        """
        super().fuse_lora(
5391
5392
5393
5394
5395
            components=components,
            lora_scale=lora_scale,
            safe_fusing=safe_fusing,
            adapter_names=adapter_names,
            **kwargs,
Aryan's avatar
Aryan committed
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
        )

    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.unfuse_lora
    def unfuse_lora(self, components: List[str] = ["transformer"], **kwargs):
        r"""
        Reverses the effect of
        [`pipe.fuse_lora()`](https://huggingface.co/docs/diffusers/main/en/api/loaders#diffusers.loaders.LoraBaseMixin.fuse_lora).

        <Tip warning={true}>

        This is an experimental API.

        </Tip>

        Args:
            components (`List[str]`): List of LoRA-injectable components to unfuse LoRA from.
            unfuse_transformer (`bool`, defaults to `True`): Whether to unfuse the UNet LoRA parameters.
        """
5414
        super().unfuse_lora(components=components, **kwargs)
Aryan's avatar
Aryan committed
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475


class CogView4LoraLoaderMixin(LoraBaseMixin):
    r"""
    Load LoRA layers into [`WanTransformer3DModel`]. Specific to [`CogView4Pipeline`].
    """

    _lora_loadable_modules = ["transformer"]
    transformer_name = TRANSFORMER_NAME

    @classmethod
    @validate_hf_hub_args
    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.lora_state_dict
    def lora_state_dict(
        cls,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        **kwargs,
    ):
        r"""
        Return state dict for lora weights and the network alphas.

        <Tip warning={true}>

        We support loading A1111 formatted LoRA checkpoints in a limited capacity.

        This function is experimental and might change in the future.

        </Tip>

        Parameters:
            pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
                Can be either:

                    - A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
                      the Hub.
                    - A path to a *directory* (for example `./my_model_directory`) containing the model weights saved
                      with [`ModelMixin.save_pretrained`].
                    - A [torch state
                      dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).

            cache_dir (`Union[str, os.PathLike]`, *optional*):
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.

            proxies (`Dict[str, str]`, *optional*):
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            local_files_only (`bool`, *optional*, defaults to `False`):
                Whether to only load local model weights and configuration files or not. If set to `True`, the model
                won't be downloaded from the Hub.
            token (`str` or *bool*, *optional*):
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
            revision (`str`, *optional*, defaults to `"main"`):
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
            subfolder (`str`, *optional*, defaults to `""`):
                The subfolder location of a model file within a larger model repository on the Hub or locally.
5476
5477
            return_lora_metadata (`bool`, *optional*, defaults to False):
                When enabled, additionally return the LoRA adapter metadata, typically found in the state dict.
Aryan's avatar
Aryan committed
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490

        """
        # Load the main state dict first which has the LoRA layers for either of
        # transformer and text encoder or both.
        cache_dir = kwargs.pop("cache_dir", None)
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", None)
        token = kwargs.pop("token", None)
        revision = kwargs.pop("revision", None)
        subfolder = kwargs.pop("subfolder", None)
        weight_name = kwargs.pop("weight_name", None)
        use_safetensors = kwargs.pop("use_safetensors", None)
5491
        return_lora_metadata = kwargs.pop("return_lora_metadata", False)
Aryan's avatar
Aryan committed
5492
5493
5494
5495
5496
5497

        allow_pickle = False
        if use_safetensors is None:
            use_safetensors = True
            allow_pickle = True

5498
        user_agent = {"file_type": "attn_procs_weights", "framework": "pytorch"}
Aryan's avatar
Aryan committed
5499

5500
        state_dict, metadata = _fetch_state_dict(
Aryan's avatar
Aryan committed
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
            pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict,
            weight_name=weight_name,
            use_safetensors=use_safetensors,
            local_files_only=local_files_only,
            cache_dir=cache_dir,
            force_download=force_download,
            proxies=proxies,
            token=token,
            revision=revision,
            subfolder=subfolder,
            user_agent=user_agent,
            allow_pickle=allow_pickle,
        )

        is_dora_scale_present = any("dora_scale" in k for k in state_dict)
        if is_dora_scale_present:
            warn_msg = "It seems like you are using a DoRA checkpoint that is not compatible in Diffusers at the moment. So, we are going to filter out the keys associated to 'dora_scale` from the state dict. If you think this is a mistake please open an issue https://github.com/huggingface/diffusers/issues/new."
            logger.warning(warn_msg)
            state_dict = {k: v for k, v in state_dict.items() if "dora_scale" not in k}

5521
5522
        out = (state_dict, metadata) if return_lora_metadata else state_dict
        return out
Aryan's avatar
Aryan committed
5523
5524
5525

    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.load_lora_weights
    def load_lora_weights(
5526
5527
5528
5529
5530
        self,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        adapter_name: Optional[str] = None,
        hotswap: bool = False,
        **kwargs,
Aryan's avatar
Aryan committed
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
    ):
        """
        Load LoRA weights specified in `pretrained_model_name_or_path_or_dict` into `self.transformer` and
        `self.text_encoder`. All kwargs are forwarded to `self.lora_state_dict`. See
        [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details on how the state dict is loaded.
        See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_transformer`] for more details on how the state
        dict is loaded into `self.transformer`.

        Parameters:
            pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
                See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`].
            adapter_name (`str`, *optional*):
                Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
                `default_{i}` where i is the total number of adapters being loaded.
            low_cpu_mem_usage (`bool`, *optional*):
                Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
                weights.
5548
5549
            hotswap (`bool`, *optional*):
                See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`].
Aryan's avatar
Aryan committed
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
            kwargs (`dict`, *optional*):
                See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`].
        """
        if not USE_PEFT_BACKEND:
            raise ValueError("PEFT backend is required for this method.")

        low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT_LORA)
        if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

        # if a dict is passed, copy it instead of modifying it inplace
        if isinstance(pretrained_model_name_or_path_or_dict, dict):
            pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy()

        # First, ensure that the checkpoint is a compatible one and can be successfully loaded.
5567
5568
        kwargs["return_lora_metadata"] = True
        state_dict, metadata = self.lora_state_dict(pretrained_model_name_or_path_or_dict, **kwargs)
Aryan's avatar
Aryan committed
5569
5570
5571
5572
5573
5574
5575
5576
5577

        is_correct_format = all("lora" in key for key in state_dict.keys())
        if not is_correct_format:
            raise ValueError("Invalid LoRA checkpoint.")

        self.load_lora_into_transformer(
            state_dict,
            transformer=getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer,
            adapter_name=adapter_name,
5578
            metadata=metadata,
Aryan's avatar
Aryan committed
5579
5580
            _pipeline=self,
            low_cpu_mem_usage=low_cpu_mem_usage,
5581
            hotswap=hotswap,
Aryan's avatar
Aryan committed
5582
5583
5584
5585
5586
        )

    @classmethod
    # Copied from diffusers.loaders.lora_pipeline.SD3LoraLoaderMixin.load_lora_into_transformer with SD3Transformer2DModel->CogView4Transformer2DModel
    def load_lora_into_transformer(
5587
5588
5589
5590
5591
5592
5593
5594
        cls,
        state_dict,
        transformer,
        adapter_name=None,
        _pipeline=None,
        low_cpu_mem_usage=False,
        hotswap: bool = False,
        metadata=None,
Aryan's avatar
Aryan committed
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
    ):
        """
        This will load the LoRA layers specified in `state_dict` into `transformer`.

        Parameters:
            state_dict (`dict`):
                A standard state dict containing the lora layer parameters. The keys can either be indexed directly
                into the unet or prefixed with an additional `unet` which can be used to distinguish between text
                encoder lora layers.
            transformer (`CogView4Transformer2DModel`):
                The Transformer model to load the LoRA layers into.
Aryan's avatar
Aryan committed
5606
5607
5608
5609
5610
5611
            adapter_name (`str`, *optional*):
                Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
                `default_{i}` where i is the total number of adapters being loaded.
            low_cpu_mem_usage (`bool`, *optional*):
                Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
                weights.
5612
5613
            hotswap (`bool`, *optional*):
                See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`].
5614
5615
5616
            metadata (`dict`):
                Optional LoRA adapter metadata. When supplied, the `LoraConfig` arguments of `peft` won't be derived
                from the state dict.
Aryan's avatar
Aryan committed
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
        """
        if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

        # Load the layers corresponding to transformer.
        logger.info(f"Loading {cls.transformer_name}.")
        transformer.load_lora_adapter(
            state_dict,
            network_alphas=None,
            adapter_name=adapter_name,
5629
            metadata=metadata,
Aryan's avatar
Aryan committed
5630
5631
            _pipeline=_pipeline,
            low_cpu_mem_usage=low_cpu_mem_usage,
5632
            hotswap=hotswap,
Aryan's avatar
Aryan committed
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
        )

    @classmethod
    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.save_lora_weights
    def save_lora_weights(
        cls,
        save_directory: Union[str, os.PathLike],
        transformer_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
        is_main_process: bool = True,
        weight_name: str = None,
        save_function: Callable = None,
        safe_serialization: bool = True,
5645
        transformer_lora_adapter_metadata: Optional[dict] = None,
Aryan's avatar
Aryan committed
5646
5647
    ):
        r"""
5648
        Save the LoRA parameters corresponding to the transformer.
Aryan's avatar
Aryan committed
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664

        Arguments:
            save_directory (`str` or `os.PathLike`):
                Directory to save LoRA parameters to. Will be created if it doesn't exist.
            transformer_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
                State dict of the LoRA layers corresponding to the `transformer`.
            is_main_process (`bool`, *optional*, defaults to `True`):
                Whether the process calling this is the main process or not. Useful during distributed training and you
                need to call this function on all processes. In this case, set `is_main_process=True` only on the main
                process to avoid race conditions.
            save_function (`Callable`):
                The function to use to save the state dictionary. Useful during distributed training when you need to
                replace `torch.save` with another method. Can be configured with the environment variable
                `DIFFUSERS_SAVE_MODE`.
            safe_serialization (`bool`, *optional*, defaults to `True`):
                Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`.
5665
5666
            transformer_lora_adapter_metadata:
                LoRA adapter metadata associated with the transformer to be serialized with the state dict.
Aryan's avatar
Aryan committed
5667
5668
        """
        state_dict = {}
5669
        lora_adapter_metadata = {}
Aryan's avatar
Aryan committed
5670
5671
5672
5673

        if not transformer_lora_layers:
            raise ValueError("You must pass `transformer_lora_layers`.")

5674
5675
5676
5677
5678
5679
        state_dict.update(cls.pack_weights(transformer_lora_layers, cls.transformer_name))

        if transformer_lora_adapter_metadata is not None:
            lora_adapter_metadata.update(
                _pack_dict_with_prefix(transformer_lora_adapter_metadata, cls.transformer_name)
            )
Aryan's avatar
Aryan committed
5680
5681
5682
5683
5684
5685
5686
5687
5688

        # Save the model
        cls.write_lora_layers(
            state_dict=state_dict,
            save_directory=save_directory,
            is_main_process=is_main_process,
            weight_name=weight_name,
            save_function=save_function,
            safe_serialization=safe_serialization,
5689
            lora_adapter_metadata=lora_adapter_metadata,
Aryan's avatar
Aryan committed
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
        )

    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.fuse_lora
    def fuse_lora(
        self,
        components: List[str] = ["transformer"],
        lora_scale: float = 1.0,
        safe_fusing: bool = False,
        adapter_names: Optional[List[str]] = None,
        **kwargs,
    ):
        r"""
        Fuses the LoRA parameters into the original parameters of the corresponding blocks.

        <Tip warning={true}>

        This is an experimental API.

        </Tip>

        Args:
            components: (`List[str]`): List of LoRA-injectable components to fuse the LoRAs into.
            lora_scale (`float`, defaults to 1.0):
                Controls how much to influence the outputs with the LoRA parameters.
            safe_fusing (`bool`, defaults to `False`):
                Whether to check fused weights for NaN values before fusing and if values are NaN not fusing them.
            adapter_names (`List[str]`, *optional*):
                Adapter names to be used for fusing. If nothing is passed, all active adapters will be fused.

        Example:

        ```py
        from diffusers import DiffusionPipeline
        import torch

        pipeline = DiffusionPipeline.from_pretrained(
            "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
        ).to("cuda")
        pipeline.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel")
        pipeline.fuse_lora(lora_scale=0.7)
        ```
        """
        super().fuse_lora(
5733
5734
5735
5736
5737
            components=components,
            lora_scale=lora_scale,
            safe_fusing=safe_fusing,
            adapter_names=adapter_names,
            **kwargs,
Aryan's avatar
Aryan committed
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
        )

    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.unfuse_lora
    def unfuse_lora(self, components: List[str] = ["transformer"], **kwargs):
        r"""
        Reverses the effect of
        [`pipe.fuse_lora()`](https://huggingface.co/docs/diffusers/main/en/api/loaders#diffusers.loaders.LoraBaseMixin.fuse_lora).

        <Tip warning={true}>

        This is an experimental API.

        </Tip>

        Args:
            components (`List[str]`): List of LoRA-injectable components to unfuse LoRA from.
            unfuse_transformer (`bool`, defaults to `True`): Whether to unfuse the UNet LoRA parameters.
        """
5756
        super().unfuse_lora(components=components, **kwargs)
Aryan's avatar
Aryan committed
5757
5758


5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
class HiDreamImageLoraLoaderMixin(LoraBaseMixin):
    r"""
    Load LoRA layers into [`HiDreamImageTransformer2DModel`]. Specific to [`HiDreamImagePipeline`].
    """

    _lora_loadable_modules = ["transformer"]
    transformer_name = TRANSFORMER_NAME

    @classmethod
    @validate_hf_hub_args
    def lora_state_dict(
        cls,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        **kwargs,
    ):
        r"""
        Return state dict for lora weights and the network alphas.

        <Tip warning={true}>

        We support loading A1111 formatted LoRA checkpoints in a limited capacity.

        This function is experimental and might change in the future.

        </Tip>

        Parameters:
            pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
                Can be either:

                    - A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
                      the Hub.
                    - A path to a *directory* (for example `./my_model_directory`) containing the model weights saved
                      with [`ModelMixin.save_pretrained`].
                    - A [torch state
                      dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).

            cache_dir (`Union[str, os.PathLike]`, *optional*):
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.

            proxies (`Dict[str, str]`, *optional*):
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            local_files_only (`bool`, *optional*, defaults to `False`):
                Whether to only load local model weights and configuration files or not. If set to `True`, the model
                won't be downloaded from the Hub.
            token (`str` or *bool*, *optional*):
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
            revision (`str`, *optional*, defaults to `"main"`):
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
            subfolder (`str`, *optional*, defaults to `""`):
                The subfolder location of a model file within a larger model repository on the Hub or locally.
5817
5818
            return_lora_metadata (`bool`, *optional*, defaults to False):
                When enabled, additionally return the LoRA adapter metadata, typically found in the state dict.
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
        """
        # Load the main state dict first which has the LoRA layers for either of
        # transformer and text encoder or both.
        cache_dir = kwargs.pop("cache_dir", None)
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", None)
        token = kwargs.pop("token", None)
        revision = kwargs.pop("revision", None)
        subfolder = kwargs.pop("subfolder", None)
        weight_name = kwargs.pop("weight_name", None)
        use_safetensors = kwargs.pop("use_safetensors", None)
5831
        return_lora_metadata = kwargs.pop("return_lora_metadata", False)
5832
5833
5834
5835
5836
5837

        allow_pickle = False
        if use_safetensors is None:
            use_safetensors = True
            allow_pickle = True

5838
        user_agent = {"file_type": "attn_procs_weights", "framework": "pytorch"}
5839

5840
        state_dict, metadata = _fetch_state_dict(
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
            pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict,
            weight_name=weight_name,
            use_safetensors=use_safetensors,
            local_files_only=local_files_only,
            cache_dir=cache_dir,
            force_download=force_download,
            proxies=proxies,
            token=token,
            revision=revision,
            subfolder=subfolder,
            user_agent=user_agent,
            allow_pickle=allow_pickle,
        )

        is_dora_scale_present = any("dora_scale" in k for k in state_dict)
        if is_dora_scale_present:
            warn_msg = "It seems like you are using a DoRA checkpoint that is not compatible in Diffusers at the moment. So, we are going to filter out the keys associated to 'dora_scale` from the state dict. If you think this is a mistake please open an issue https://github.com/huggingface/diffusers/issues/new."
            logger.warning(warn_msg)
            state_dict = {k: v for k, v in state_dict.items() if "dora_scale" not in k}

5861
5862
5863
5864
        is_non_diffusers_format = any("diffusion_model" in k for k in state_dict)
        if is_non_diffusers_format:
            state_dict = _convert_non_diffusers_hidream_lora_to_diffusers(state_dict)

5865
5866
        out = (state_dict, metadata) if return_lora_metadata else state_dict
        return out
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910

    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.load_lora_weights
    def load_lora_weights(
        self,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        adapter_name: Optional[str] = None,
        hotswap: bool = False,
        **kwargs,
    ):
        """
        Load LoRA weights specified in `pretrained_model_name_or_path_or_dict` into `self.transformer` and
        `self.text_encoder`. All kwargs are forwarded to `self.lora_state_dict`. See
        [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details on how the state dict is loaded.
        See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_transformer`] for more details on how the state
        dict is loaded into `self.transformer`.

        Parameters:
            pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
                See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`].
            adapter_name (`str`, *optional*):
                Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
                `default_{i}` where i is the total number of adapters being loaded.
            low_cpu_mem_usage (`bool`, *optional*):
                Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
                weights.
            hotswap (`bool`, *optional*):
                See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`].
            kwargs (`dict`, *optional*):
                See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`].
        """
        if not USE_PEFT_BACKEND:
            raise ValueError("PEFT backend is required for this method.")

        low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT_LORA)
        if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

        # if a dict is passed, copy it instead of modifying it inplace
        if isinstance(pretrained_model_name_or_path_or_dict, dict):
            pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy()

        # First, ensure that the checkpoint is a compatible one and can be successfully loaded.
5911
5912
        kwargs["return_lora_metadata"] = True
        state_dict, metadata = self.lora_state_dict(pretrained_model_name_or_path_or_dict, **kwargs)
5913
5914
5915
5916
5917
5918
5919
5920
5921

        is_correct_format = all("lora" in key for key in state_dict.keys())
        if not is_correct_format:
            raise ValueError("Invalid LoRA checkpoint.")

        self.load_lora_into_transformer(
            state_dict,
            transformer=getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer,
            adapter_name=adapter_name,
5922
            metadata=metadata,
5923
5924
5925
5926
5927
5928
5929
5930
            _pipeline=self,
            low_cpu_mem_usage=low_cpu_mem_usage,
            hotswap=hotswap,
        )

    @classmethod
    # Copied from diffusers.loaders.lora_pipeline.SD3LoraLoaderMixin.load_lora_into_transformer with SD3Transformer2DModel->HiDreamImageTransformer2DModel
    def load_lora_into_transformer(
5931
5932
5933
5934
5935
5936
5937
5938
        cls,
        state_dict,
        transformer,
        adapter_name=None,
        _pipeline=None,
        low_cpu_mem_usage=False,
        hotswap: bool = False,
        metadata=None,
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
    ):
        """
        This will load the LoRA layers specified in `state_dict` into `transformer`.

        Parameters:
            state_dict (`dict`):
                A standard state dict containing the lora layer parameters. The keys can either be indexed directly
                into the unet or prefixed with an additional `unet` which can be used to distinguish between text
                encoder lora layers.
            transformer (`HiDreamImageTransformer2DModel`):
                The Transformer model to load the LoRA layers into.
            adapter_name (`str`, *optional*):
                Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
                `default_{i}` where i is the total number of adapters being loaded.
            low_cpu_mem_usage (`bool`, *optional*):
                Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
                weights.
            hotswap (`bool`, *optional*):
                See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`].
5958
5959
5960
            metadata (`dict`):
                Optional LoRA adapter metadata. When supplied, the `LoraConfig` arguments of `peft` won't be derived
                from the state dict.
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
        """
        if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

        # Load the layers corresponding to transformer.
        logger.info(f"Loading {cls.transformer_name}.")
        transformer.load_lora_adapter(
            state_dict,
            network_alphas=None,
            adapter_name=adapter_name,
5973
            metadata=metadata,
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
            _pipeline=_pipeline,
            low_cpu_mem_usage=low_cpu_mem_usage,
            hotswap=hotswap,
        )

    @classmethod
    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.save_lora_weights
    def save_lora_weights(
        cls,
        save_directory: Union[str, os.PathLike],
        transformer_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
        is_main_process: bool = True,
        weight_name: str = None,
        save_function: Callable = None,
        safe_serialization: bool = True,
5989
        transformer_lora_adapter_metadata: Optional[dict] = None,
5990
5991
    ):
        r"""
5992
        Save the LoRA parameters corresponding to the transformer.
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008

        Arguments:
            save_directory (`str` or `os.PathLike`):
                Directory to save LoRA parameters to. Will be created if it doesn't exist.
            transformer_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
                State dict of the LoRA layers corresponding to the `transformer`.
            is_main_process (`bool`, *optional*, defaults to `True`):
                Whether the process calling this is the main process or not. Useful during distributed training and you
                need to call this function on all processes. In this case, set `is_main_process=True` only on the main
                process to avoid race conditions.
            save_function (`Callable`):
                The function to use to save the state dictionary. Useful during distributed training when you need to
                replace `torch.save` with another method. Can be configured with the environment variable
                `DIFFUSERS_SAVE_MODE`.
            safe_serialization (`bool`, *optional*, defaults to `True`):
                Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`.
6009
6010
            transformer_lora_adapter_metadata:
                LoRA adapter metadata associated with the transformer to be serialized with the state dict.
6011
6012
        """
        state_dict = {}
6013
        lora_adapter_metadata = {}
6014
6015
6016
6017

        if not transformer_lora_layers:
            raise ValueError("You must pass `transformer_lora_layers`.")

6018
6019
6020
6021
6022
6023
        state_dict.update(cls.pack_weights(transformer_lora_layers, cls.transformer_name))

        if transformer_lora_adapter_metadata is not None:
            lora_adapter_metadata.update(
                _pack_dict_with_prefix(transformer_lora_adapter_metadata, cls.transformer_name)
            )
6024
6025
6026
6027
6028
6029
6030
6031
6032

        # Save the model
        cls.write_lora_layers(
            state_dict=state_dict,
            save_directory=save_directory,
            is_main_process=is_main_process,
            weight_name=weight_name,
            save_function=save_function,
            safe_serialization=safe_serialization,
6033
            lora_adapter_metadata=lora_adapter_metadata,
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
        )

    # Copied from diffusers.loaders.lora_pipeline.SanaLoraLoaderMixin.fuse_lora
    def fuse_lora(
        self,
        components: List[str] = ["transformer"],
        lora_scale: float = 1.0,
        safe_fusing: bool = False,
        adapter_names: Optional[List[str]] = None,
        **kwargs,
    ):
        r"""
        Fuses the LoRA parameters into the original parameters of the corresponding blocks.

        <Tip warning={true}>

        This is an experimental API.

        </Tip>

        Args:
            components: (`List[str]`): List of LoRA-injectable components to fuse the LoRAs into.
            lora_scale (`float`, defaults to 1.0):
                Controls how much to influence the outputs with the LoRA parameters.
            safe_fusing (`bool`, defaults to `False`):
                Whether to check fused weights for NaN values before fusing and if values are NaN not fusing them.
            adapter_names (`List[str]`, *optional*):
                Adapter names to be used for fusing. If nothing is passed, all active adapters will be fused.

        Example:

        ```py
        from diffusers import DiffusionPipeline
        import torch

        pipeline = DiffusionPipeline.from_pretrained(
            "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
        ).to("cuda")
        pipeline.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel")
        pipeline.fuse_lora(lora_scale=0.7)
        ```
        """
        super().fuse_lora(
            components=components,
            lora_scale=lora_scale,
            safe_fusing=safe_fusing,
            adapter_names=adapter_names,
            **kwargs,
        )

    # Copied from diffusers.loaders.lora_pipeline.SanaLoraLoaderMixin.unfuse_lora
    def unfuse_lora(self, components: List[str] = ["transformer"], **kwargs):
        r"""
        Reverses the effect of
        [`pipe.fuse_lora()`](https://huggingface.co/docs/diffusers/main/en/api/loaders#diffusers.loaders.LoraBaseMixin.fuse_lora).

        <Tip warning={true}>

        This is an experimental API.

        </Tip>

        Args:
            components (`List[str]`): List of LoRA-injectable components to unfuse LoRA from.
            unfuse_transformer (`bool`, defaults to `True`): Whether to unfuse the UNet LoRA parameters.
        """
        super().unfuse_lora(components=components, **kwargs)


6103
6104
6105
6106
6107
class LoraLoaderMixin(StableDiffusionLoraLoaderMixin):
    def __init__(self, *args, **kwargs):
        deprecation_message = "LoraLoaderMixin is deprecated and this will be removed in a future version. Please use `StableDiffusionLoraLoaderMixin`, instead."
        deprecate("LoraLoaderMixin", "1.0.0", deprecation_message)
        super().__init__(*args, **kwargs)