unet_1d.py 6.82 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
from dataclasses import dataclass
from typing import Optional, Tuple, Union

import torch
import torch.nn as nn

from ..configuration_utils import ConfigMixin, register_to_config
from ..modeling_utils import ModelMixin
from ..utils import BaseOutput
from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps
from .unet_1d_blocks import get_down_block, get_mid_block, get_up_block


@dataclass
class UNet1DOutput(BaseOutput):
    """
    Args:
        sample (`torch.FloatTensor` of shape `(batch_size, num_channels, sample_size)`):
            Hidden states output. Output of last layer of model.
    """

    sample: torch.FloatTensor


class UNet1DModel(ModelMixin, ConfigMixin):
    r"""
    UNet1DModel is a 1D UNet model that takes in a noisy sample and a timestep and returns sample shaped output.

    This model inherits from [`ModelMixin`]. Check the superclass documentation for the generic methods the library
    implements for all the model (such as downloading or saving, etc.)

    Parameters:
        sample_size (`int`, *optionl*): Default length of sample. Should be adaptable at runtime.
        in_channels (`int`, *optional*, defaults to 2): Number of channels in the input sample.
        out_channels (`int`, *optional*, defaults to 2): Number of channels in the output.
        time_embedding_type (`str`, *optional*, defaults to `"fourier"`): Type of time embedding to use.
        freq_shift (`int`, *optional*, defaults to 0): Frequency shift for fourier time embedding.
        flip_sin_to_cos (`bool`, *optional*, defaults to :
            obj:`False`): Whether to flip sin to cos for fourier time embedding.
        down_block_types (`Tuple[str]`, *optional*, defaults to :
            obj:`("DownBlock1D", "DownBlock1DNoSkip", "AttnDownBlock1D")`): Tuple of downsample block types.
        up_block_types (`Tuple[str]`, *optional*, defaults to :
            obj:`("UpBlock1D", "UpBlock1DNoSkip", "AttnUpBlock1D")`): Tuple of upsample block types.
        block_out_channels (`Tuple[int]`, *optional*, defaults to :
            obj:`(32, 32, 64)`): Tuple of block output channels.
    """

    @register_to_config
    def __init__(
        self,
        sample_size: int = 65536,
        sample_rate: Optional[int] = None,
        in_channels: int = 2,
        out_channels: int = 2,
        extra_in_channels: int = 0,
        time_embedding_type: str = "fourier",
        freq_shift: int = 0,
        flip_sin_to_cos: bool = True,
        use_timestep_embedding: bool = False,
        down_block_types: Tuple[str] = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D"),
        mid_block_type: str = "UNetMidBlock1D",
        up_block_types: Tuple[str] = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip"),
        block_out_channels: Tuple[int] = (32, 32, 64),
    ):
        super().__init__()

        self.sample_size = sample_size

        # time
        if time_embedding_type == "fourier":
            self.time_proj = GaussianFourierProjection(
                embedding_size=8, set_W_to_weight=False, log=False, flip_sin_to_cos=flip_sin_to_cos
            )
            timestep_input_dim = 2 * block_out_channels[0]
        elif time_embedding_type == "positional":
            self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
            timestep_input_dim = block_out_channels[0]

        if use_timestep_embedding:
            time_embed_dim = block_out_channels[0] * 4
            self.time_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)

        self.down_blocks = nn.ModuleList([])
        self.mid_block = None
        self.up_blocks = nn.ModuleList([])
        self.out_block = None

        # down
        output_channel = in_channels
        for i, down_block_type in enumerate(down_block_types):
            input_channel = output_channel
            output_channel = block_out_channels[i]

            if i == 0:
                input_channel += extra_in_channels

            down_block = get_down_block(
                down_block_type,
                in_channels=input_channel,
                out_channels=output_channel,
            )
            self.down_blocks.append(down_block)

        # mid
        self.mid_block = get_mid_block(
            mid_block_type=mid_block_type,
            mid_channels=block_out_channels[-1],
            in_channels=block_out_channels[-1],
            out_channels=None,
        )

        # up
        reversed_block_out_channels = list(reversed(block_out_channels))
        output_channel = reversed_block_out_channels[0]
        for i, up_block_type in enumerate(up_block_types):
            prev_output_channel = output_channel
            output_channel = reversed_block_out_channels[i + 1] if i < len(up_block_types) - 1 else out_channels

            up_block = get_up_block(
                up_block_type,
                in_channels=prev_output_channel,
                out_channels=output_channel,
            )
            self.up_blocks.append(up_block)
            prev_output_channel = output_channel

        # TODO(PVP, Nathan) placeholder for RL application to be merged shortly
        # Totally fine to add another layer with a if statement - no need for nn.Identity here

    def forward(
        self,
        sample: torch.FloatTensor,
        timestep: Union[torch.Tensor, float, int],
        return_dict: bool = True,
    ) -> Union[UNet1DOutput, Tuple]:
        r"""
        Args:
            sample (`torch.FloatTensor`): `(batch_size, sample_size, num_channels)` noisy inputs tensor
            timestep (`torch.FloatTensor` or `float` or `int): (batch) timesteps
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~models.unet_1d.UNet1DOutput`] instead of a plain tuple.

        Returns:
            [`~models.unet_1d.UNet1DOutput`] or `tuple`: [`~models.unet_1d.UNet1DOutput`] if `return_dict` is True,
            otherwise a `tuple`. When returning a tuple, the first element is the sample tensor.
        """
        # 1. time
        if len(timestep.shape) == 0:
            timestep = timestep[None]

        timestep_embed = self.time_proj(timestep)[..., None]
152
        timestep_embed = timestep_embed.repeat([1, 1, sample.shape[2]]).to(sample.dtype)
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172

        # 2. down
        down_block_res_samples = ()
        for downsample_block in self.down_blocks:
            sample, res_samples = downsample_block(hidden_states=sample, temb=timestep_embed)
            down_block_res_samples += res_samples

        # 3. mid
        sample = self.mid_block(sample)

        # 4. up
        for i, upsample_block in enumerate(self.up_blocks):
            res_samples = down_block_res_samples[-1:]
            down_block_res_samples = down_block_res_samples[:-1]
            sample = upsample_block(sample, res_samples)

        if not return_dict:
            return (sample,)

        return UNet1DOutput(sample=sample)