auto_pipeline.py 53.8 KB
Newer Older
YiYi Xu's avatar
YiYi Xu committed
1
# coding=utf-8
2
# Copyright 2024 The HuggingFace Inc. team.
YiYi Xu's avatar
YiYi Xu committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from collections import OrderedDict

18
19
from huggingface_hub.utils import validate_hf_hub_args

YiYi Xu's avatar
YiYi Xu committed
20
from ..configuration_utils import ConfigMixin
21
from ..utils import is_sentencepiece_available
22
from .aura_flow import AuraFlowPipeline
YiYi Xu's avatar
YiYi Xu committed
23
24
25
26
from .controlnet import (
    StableDiffusionControlNetImg2ImgPipeline,
    StableDiffusionControlNetInpaintPipeline,
    StableDiffusionControlNetPipeline,
27
    StableDiffusionXLControlNetImg2ImgPipeline,
28
    StableDiffusionXLControlNetInpaintPipeline,
YiYi Xu's avatar
YiYi Xu committed
29
30
31
    StableDiffusionXLControlNetPipeline,
)
from .deepfloyd_if import IFImg2ImgPipeline, IFInpaintingPipeline, IFPipeline
32
33
34
35
36
37
38
39
from .flux import (
    FluxControlNetImg2ImgPipeline,
    FluxControlNetInpaintPipeline,
    FluxControlNetPipeline,
    FluxImg2ImgPipeline,
    FluxInpaintPipeline,
    FluxPipeline,
)
40
from .hunyuandit import HunyuanDiTPipeline
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
from .kandinsky import (
    KandinskyCombinedPipeline,
    KandinskyImg2ImgCombinedPipeline,
    KandinskyImg2ImgPipeline,
    KandinskyInpaintCombinedPipeline,
    KandinskyInpaintPipeline,
    KandinskyPipeline,
)
from .kandinsky2_2 import (
    KandinskyV22CombinedPipeline,
    KandinskyV22Img2ImgCombinedPipeline,
    KandinskyV22Img2ImgPipeline,
    KandinskyV22InpaintCombinedPipeline,
    KandinskyV22InpaintPipeline,
    KandinskyV22Pipeline,
)
57
from .kandinsky3 import Kandinsky3Img2ImgPipeline, Kandinsky3Pipeline
58
from .latent_consistency_models import LatentConsistencyModelImg2ImgPipeline, LatentConsistencyModelPipeline
59
from .lumina import LuminaText2ImgPipeline
YiYi Xu's avatar
YiYi Xu committed
60
from .pag import (
61
    HunyuanDiTPAGPipeline,
62
    PixArtSigmaPAGPipeline,
63
    StableDiffusion3PAGPipeline,
64
    StableDiffusionControlNetPAGInpaintPipeline,
65
    StableDiffusionControlNetPAGPipeline,
66
    StableDiffusionPAGPipeline,
67
    StableDiffusionXLControlNetPAGImg2ImgPipeline,
YiYi Xu's avatar
YiYi Xu committed
68
69
70
71
72
    StableDiffusionXLControlNetPAGPipeline,
    StableDiffusionXLPAGImg2ImgPipeline,
    StableDiffusionXLPAGInpaintPipeline,
    StableDiffusionXLPAGPipeline,
)
73
from .pixart_alpha import PixArtAlphaPipeline, PixArtSigmaPipeline
74
from .stable_cascade import StableCascadeCombinedPipeline, StableCascadeDecoderPipeline
YiYi Xu's avatar
YiYi Xu committed
75
76
77
78
79
from .stable_diffusion import (
    StableDiffusionImg2ImgPipeline,
    StableDiffusionInpaintPipeline,
    StableDiffusionPipeline,
)
80
81
from .stable_diffusion_3 import (
    StableDiffusion3Img2ImgPipeline,
82
    StableDiffusion3InpaintPipeline,
83
84
    StableDiffusion3Pipeline,
)
YiYi Xu's avatar
YiYi Xu committed
85
86
87
88
89
from .stable_diffusion_xl import (
    StableDiffusionXLImg2ImgPipeline,
    StableDiffusionXLInpaintPipeline,
    StableDiffusionXLPipeline,
)
Kashif Rasul's avatar
Kashif Rasul committed
90
from .wuerstchen import WuerstchenCombinedPipeline, WuerstchenDecoderPipeline
YiYi Xu's avatar
YiYi Xu committed
91
92
93
94
95
96


AUTO_TEXT2IMAGE_PIPELINES_MAPPING = OrderedDict(
    [
        ("stable-diffusion", StableDiffusionPipeline),
        ("stable-diffusion-xl", StableDiffusionXLPipeline),
97
        ("stable-diffusion-3", StableDiffusion3Pipeline),
98
        ("stable-diffusion-3-pag", StableDiffusion3PAGPipeline),
YiYi Xu's avatar
YiYi Xu committed
99
        ("if", IFPipeline),
100
        ("hunyuan", HunyuanDiTPipeline),
101
        ("hunyuan-pag", HunyuanDiTPAGPipeline),
102
103
        ("kandinsky", KandinskyCombinedPipeline),
        ("kandinsky22", KandinskyV22CombinedPipeline),
104
        ("kandinsky3", Kandinsky3Pipeline),
YiYi Xu's avatar
YiYi Xu committed
105
106
        ("stable-diffusion-controlnet", StableDiffusionControlNetPipeline),
        ("stable-diffusion-xl-controlnet", StableDiffusionXLControlNetPipeline),
Kashif Rasul's avatar
Kashif Rasul committed
107
        ("wuerstchen", WuerstchenCombinedPipeline),
108
        ("cascade", StableCascadeCombinedPipeline),
109
        ("lcm", LatentConsistencyModelPipeline),
110
111
        ("pixart-alpha", PixArtAlphaPipeline),
        ("pixart-sigma", PixArtSigmaPipeline),
112
        ("stable-diffusion-pag", StableDiffusionPAGPipeline),
113
        ("stable-diffusion-controlnet-pag", StableDiffusionControlNetPAGPipeline),
YiYi Xu's avatar
YiYi Xu committed
114
115
        ("stable-diffusion-xl-pag", StableDiffusionXLPAGPipeline),
        ("stable-diffusion-xl-controlnet-pag", StableDiffusionXLControlNetPAGPipeline),
116
        ("pixart-sigma-pag", PixArtSigmaPAGPipeline),
117
        ("auraflow", AuraFlowPipeline),
Sayak Paul's avatar
Sayak Paul committed
118
        ("flux", FluxPipeline),
119
        ("flux-controlnet", FluxControlNetPipeline),
120
        ("lumina", LuminaText2ImgPipeline),
YiYi Xu's avatar
YiYi Xu committed
121
122
123
124
125
126
127
    ]
)

AUTO_IMAGE2IMAGE_PIPELINES_MAPPING = OrderedDict(
    [
        ("stable-diffusion", StableDiffusionImg2ImgPipeline),
        ("stable-diffusion-xl", StableDiffusionXLImg2ImgPipeline),
128
        ("stable-diffusion-3", StableDiffusion3Img2ImgPipeline),
YiYi Xu's avatar
YiYi Xu committed
129
        ("if", IFImg2ImgPipeline),
130
131
        ("kandinsky", KandinskyImg2ImgCombinedPipeline),
        ("kandinsky22", KandinskyV22Img2ImgCombinedPipeline),
132
        ("kandinsky3", Kandinsky3Img2ImgPipeline),
YiYi Xu's avatar
YiYi Xu committed
133
        ("stable-diffusion-controlnet", StableDiffusionControlNetImg2ImgPipeline),
134
        ("stable-diffusion-xl-controlnet", StableDiffusionXLControlNetImg2ImgPipeline),
YiYi Xu's avatar
YiYi Xu committed
135
        ("stable-diffusion-xl-pag", StableDiffusionXLPAGImg2ImgPipeline),
136
        ("stable-diffusion-xl-controlnet-pag", StableDiffusionXLControlNetPAGImg2ImgPipeline),
137
        ("lcm", LatentConsistencyModelImg2ImgPipeline),
138
        ("flux", FluxImg2ImgPipeline),
139
        ("flux-controlnet", FluxControlNetImg2ImgPipeline),
YiYi Xu's avatar
YiYi Xu committed
140
141
142
143
144
145
146
    ]
)

AUTO_INPAINT_PIPELINES_MAPPING = OrderedDict(
    [
        ("stable-diffusion", StableDiffusionInpaintPipeline),
        ("stable-diffusion-xl", StableDiffusionXLInpaintPipeline),
147
        ("stable-diffusion-3", StableDiffusion3InpaintPipeline),
YiYi Xu's avatar
YiYi Xu committed
148
        ("if", IFInpaintingPipeline),
149
150
151
        ("kandinsky", KandinskyInpaintCombinedPipeline),
        ("kandinsky22", KandinskyV22InpaintCombinedPipeline),
        ("stable-diffusion-controlnet", StableDiffusionControlNetInpaintPipeline),
152
        ("stable-diffusion-controlnet-pag", StableDiffusionControlNetPAGInpaintPipeline),
153
        ("stable-diffusion-xl-controlnet", StableDiffusionXLControlNetInpaintPipeline),
YiYi Xu's avatar
YiYi Xu committed
154
        ("stable-diffusion-xl-pag", StableDiffusionXLPAGInpaintPipeline),
155
        ("flux", FluxInpaintPipeline),
156
        ("flux-controlnet", FluxControlNetInpaintPipeline),
157
158
159
160
161
162
163
    ]
)

_AUTO_TEXT2IMAGE_DECODER_PIPELINES_MAPPING = OrderedDict(
    [
        ("kandinsky", KandinskyPipeline),
        ("kandinsky22", KandinskyV22Pipeline),
Kashif Rasul's avatar
Kashif Rasul committed
164
        ("wuerstchen", WuerstchenDecoderPipeline),
165
        ("cascade", StableCascadeDecoderPipeline),
166
167
168
169
170
171
172
173
174
175
    ]
)
_AUTO_IMAGE2IMAGE_DECODER_PIPELINES_MAPPING = OrderedDict(
    [
        ("kandinsky", KandinskyImg2ImgPipeline),
        ("kandinsky22", KandinskyV22Img2ImgPipeline),
    ]
)
_AUTO_INPAINT_DECODER_PIPELINES_MAPPING = OrderedDict(
    [
YiYi Xu's avatar
YiYi Xu committed
176
177
178
179
180
        ("kandinsky", KandinskyInpaintPipeline),
        ("kandinsky22", KandinskyV22InpaintPipeline),
    ]
)

181
if is_sentencepiece_available():
182
    from .kolors import KolorsImg2ImgPipeline, KolorsPipeline
Álvaro Somoza's avatar
Álvaro Somoza committed
183
    from .pag import KolorsPAGPipeline
184
185

    AUTO_TEXT2IMAGE_PIPELINES_MAPPING["kolors"] = KolorsPipeline
Álvaro Somoza's avatar
Álvaro Somoza committed
186
    AUTO_TEXT2IMAGE_PIPELINES_MAPPING["kolors-pag"] = KolorsPAGPipeline
187
    AUTO_IMAGE2IMAGE_PIPELINES_MAPPING["kolors"] = KolorsImg2ImgPipeline
188

YiYi Xu's avatar
YiYi Xu committed
189
190
191
192
SUPPORTED_TASKS_MAPPINGS = [
    AUTO_TEXT2IMAGE_PIPELINES_MAPPING,
    AUTO_IMAGE2IMAGE_PIPELINES_MAPPING,
    AUTO_INPAINT_PIPELINES_MAPPING,
193
194
195
    _AUTO_TEXT2IMAGE_DECODER_PIPELINES_MAPPING,
    _AUTO_IMAGE2IMAGE_DECODER_PIPELINES_MAPPING,
    _AUTO_INPAINT_DECODER_PIPELINES_MAPPING,
YiYi Xu's avatar
YiYi Xu committed
196
197
198
]


199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
def _get_connected_pipeline(pipeline_cls):
    # for now connected pipelines can only be loaded from decoder pipelines, such as kandinsky-community/kandinsky-2-2-decoder
    if pipeline_cls in _AUTO_TEXT2IMAGE_DECODER_PIPELINES_MAPPING.values():
        return _get_task_class(
            AUTO_TEXT2IMAGE_PIPELINES_MAPPING, pipeline_cls.__name__, throw_error_if_not_exist=False
        )
    if pipeline_cls in _AUTO_IMAGE2IMAGE_DECODER_PIPELINES_MAPPING.values():
        return _get_task_class(
            AUTO_IMAGE2IMAGE_PIPELINES_MAPPING, pipeline_cls.__name__, throw_error_if_not_exist=False
        )
    if pipeline_cls in _AUTO_INPAINT_DECODER_PIPELINES_MAPPING.values():
        return _get_task_class(AUTO_INPAINT_PIPELINES_MAPPING, pipeline_cls.__name__, throw_error_if_not_exist=False)


def _get_task_class(mapping, pipeline_class_name, throw_error_if_not_exist: bool = True):
YiYi Xu's avatar
YiYi Xu committed
214
215
216
217
218
219
220
221
222
223
224
225
    def get_model(pipeline_class_name):
        for task_mapping in SUPPORTED_TASKS_MAPPINGS:
            for model_name, pipeline in task_mapping.items():
                if pipeline.__name__ == pipeline_class_name:
                    return model_name

    model_name = get_model(pipeline_class_name)

    if model_name is not None:
        task_class = mapping.get(model_name, None)
        if task_class is not None:
            return task_class
226
227
228

    if throw_error_if_not_exist:
        raise ValueError(f"AutoPipeline can't find a pipeline linked to {pipeline_class_name} for {model_name}")
YiYi Xu's avatar
YiYi Xu committed
229
230
231
232
233


class AutoPipelineForText2Image(ConfigMixin):
    r"""

234
235
236
    [`AutoPipelineForText2Image`] is a generic pipeline class that instantiates a text-to-image pipeline class. The
    specific underlying pipeline class is automatically selected from either the
    [`~AutoPipelineForText2Image.from_pretrained`] or [`~AutoPipelineForText2Image.from_pipe`] methods.
YiYi Xu's avatar
YiYi Xu committed
237

238
    This class cannot be instantiated using `__init__()` (throws an error).
YiYi Xu's avatar
YiYi Xu committed
239
240
241
242
243
244
245

    Class attributes:

        - **config_name** (`str`) -- The configuration filename that stores the class and module names of all the
          diffusion pipeline's components.

    """
246

YiYi Xu's avatar
YiYi Xu committed
247
248
249
250
251
252
253
254
255
256
    config_name = "model_index.json"

    def __init__(self, *args, **kwargs):
        raise EnvironmentError(
            f"{self.__class__.__name__} is designed to be instantiated "
            f"using the `{self.__class__.__name__}.from_pretrained(pretrained_model_name_or_path)` or "
            f"`{self.__class__.__name__}.from_pipe(pipeline)` methods."
        )

    @classmethod
257
    @validate_hf_hub_args
YiYi Xu's avatar
YiYi Xu committed
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
    def from_pretrained(cls, pretrained_model_or_path, **kwargs):
        r"""
        Instantiates a text-to-image Pytorch diffusion pipeline from pretrained pipeline weight.

        The from_pretrained() method takes care of returning the correct pipeline class instance by:
            1. Detect the pipeline class of the pretrained_model_or_path based on the _class_name property of its
               config object
            2. Find the text-to-image pipeline linked to the pipeline class using pattern matching on pipeline class
               name.

        If a `controlnet` argument is passed, it will instantiate a [`StableDiffusionControlNetPipeline`] object.

        The pipeline is set in evaluation mode (`model.eval()`) by default.

        If you get the error message below, you need to finetune the weights for your downstream task:

        ```
        Some weights of UNet2DConditionModel were not initialized from the model checkpoint at runwayml/stable-diffusion-v1-5 and are newly initialized because the shapes did not match:
        - conv_in.weight: found shape torch.Size([320, 4, 3, 3]) in the checkpoint and torch.Size([320, 9, 3, 3]) in the model instantiated
        You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
        ```

        Parameters:
281
            pretrained_model_or_path (`str` or `os.PathLike`, *optional*):
YiYi Xu's avatar
YiYi Xu committed
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
                Can be either:

                    - A string, the *repo id* (for example `CompVis/ldm-text2im-large-256`) of a pretrained pipeline
                      hosted on the Hub.
                    - A path to a *directory* (for example `./my_pipeline_directory/`) containing pipeline weights
                      saved using
                    [`~DiffusionPipeline.save_pretrained`].
            torch_dtype (`str` or `torch.dtype`, *optional*):
                Override the default `torch.dtype` and load the model with another dtype. If "auto" is passed, the
                dtype is automatically derived from the model's weights.
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
            cache_dir (`Union[str, os.PathLike]`, *optional*):
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
298

YiYi Xu's avatar
YiYi Xu committed
299
300
301
302
303
304
305
306
            proxies (`Dict[str, str]`, *optional*):
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            output_loading_info(`bool`, *optional*, defaults to `False`):
                Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages.
            local_files_only (`bool`, *optional*, defaults to `False`):
                Whether to only load local model weights and configuration files or not. If set to `True`, the model
                won't be downloaded from the Hub.
307
            token (`str` or *bool*, *optional*):
YiYi Xu's avatar
YiYi Xu committed
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
            revision (`str`, *optional*, defaults to `"main"`):
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
            custom_revision (`str`, *optional*, defaults to `"main"`):
                The specific model version to use. It can be a branch name, a tag name, or a commit id similar to
                `revision` when loading a custom pipeline from the Hub. It can be a 🤗 Diffusers version when loading a
                custom pipeline from GitHub, otherwise it defaults to `"main"` when loading from the Hub.
            mirror (`str`, *optional*):
                Mirror source to resolve accessibility issues if you’re downloading a model in China. We do not
                guarantee the timeliness or safety of the source, and you should refer to the mirror site for more
                information.
            device_map (`str` or `Dict[str, Union[int, str, torch.device]]`, *optional*):
                A map that specifies where each submodule should go. It doesn’t need to be defined for each
                parameter/buffer name; once a given module name is inside, every submodule of it will be sent to the
                same device.

                Set `device_map="auto"` to have 🤗 Accelerate automatically compute the most optimized `device_map`. For
                more information about each option see [designing a device
                map](https://hf.co/docs/accelerate/main/en/usage_guides/big_modeling#designing-a-device-map).
            max_memory (`Dict`, *optional*):
                A dictionary device identifier for the maximum memory. Will default to the maximum memory available for
                each GPU and the available CPU RAM if unset.
            offload_folder (`str` or `os.PathLike`, *optional*):
                The path to offload weights if device_map contains the value `"disk"`.
            offload_state_dict (`bool`, *optional*):
                If `True`, temporarily offloads the CPU state dict to the hard drive to avoid running out of CPU RAM if
                the weight of the CPU state dict + the biggest shard of the checkpoint does not fit. Defaults to `True`
                when there is some disk offload.
            low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`):
                Speed up model loading only loading the pretrained weights and not initializing the weights. This also
                tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model.
                Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this
                argument to `True` will raise an error.
            use_safetensors (`bool`, *optional*, defaults to `None`):
                If set to `None`, the safetensors weights are downloaded if they're available **and** if the
                safetensors library is installed. If set to `True`, the model is forcibly loaded from safetensors
                weights. If set to `False`, safetensors weights are not loaded.
            kwargs (remaining dictionary of keyword arguments, *optional*):
                Can be used to overwrite load and saveable variables (the pipeline components of the specific pipeline
                class). The overwritten components are passed directly to the pipelines `__init__` method. See example
                below for more information.
            variant (`str`, *optional*):
                Load weights from a specified variant filename such as `"fp16"` or `"ema"`. This is ignored when
                loading `from_flax`.

        <Tip>

        To use private or [gated](https://huggingface.co/docs/hub/models-gated#gated-models) models, log-in with
        `huggingface-cli login`.

        </Tip>

        Examples:

        ```py
365
        >>> from diffusers import AutoPipelineForText2Image
YiYi Xu's avatar
YiYi Xu committed
366

367
        >>> pipeline = AutoPipelineForText2Image.from_pretrained("runwayml/stable-diffusion-v1-5")
368
        >>> image = pipeline(prompt).images[0]
YiYi Xu's avatar
YiYi Xu committed
369
370
        ```
        """
371
        cache_dir = kwargs.pop("cache_dir", None)
372
373
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
374
        token = kwargs.pop("token", None)
375
376
377
378
379
380
381
        local_files_only = kwargs.pop("local_files_only", False)
        revision = kwargs.pop("revision", None)

        load_config_kwargs = {
            "cache_dir": cache_dir,
            "force_download": force_download,
            "proxies": proxies,
382
            "token": token,
383
384
385
386
387
            "local_files_only": local_files_only,
            "revision": revision,
        }

        config = cls.load_config(pretrained_model_or_path, **load_config_kwargs)
YiYi Xu's avatar
YiYi Xu committed
388
389
390
391
        orig_class_name = config["_class_name"]

        if "controlnet" in kwargs:
            orig_class_name = config["_class_name"].replace("Pipeline", "ControlNetPipeline")
YiYi Xu's avatar
YiYi Xu committed
392
393
394
395
        if "enable_pag" in kwargs:
            enable_pag = kwargs.pop("enable_pag")
            if enable_pag:
                orig_class_name = orig_class_name.replace("Pipeline", "PAGPipeline")
YiYi Xu's avatar
YiYi Xu committed
396
397
398

        text_2_image_cls = _get_task_class(AUTO_TEXT2IMAGE_PIPELINES_MAPPING, orig_class_name)

399
        kwargs = {**load_config_kwargs, **kwargs}
YiYi Xu's avatar
YiYi Xu committed
400
401
402
403
404
405
406
407
408
409
410
        return text_2_image_cls.from_pretrained(pretrained_model_or_path, **kwargs)

    @classmethod
    def from_pipe(cls, pipeline, **kwargs):
        r"""
        Instantiates a text-to-image Pytorch diffusion pipeline from another instantiated diffusion pipeline class.

        The from_pipe() method takes care of returning the correct pipeline class instance by finding the text-to-image
        pipeline linked to the pipeline class using pattern matching on pipeline class name.

        All the modules the pipeline contains will be used to initialize the new pipeline without reallocating
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
411
        additional memory.
YiYi Xu's avatar
YiYi Xu committed
412
413
414
415
416
417
418
419

        The pipeline is set in evaluation mode (`model.eval()`) by default.

        Parameters:
            pipeline (`DiffusionPipeline`):
                an instantiated `DiffusionPipeline` object

        ```py
420
        >>> from diffusers import AutoPipelineForText2Image, AutoPipelineForImage2Image
YiYi Xu's avatar
YiYi Xu committed
421
422
423
424
425

        >>> pipe_i2i = AutoPipelineForImage2Image.from_pretrained(
        ...     "runwayml/stable-diffusion-v1-5", requires_safety_checker=False
        ... )

426
427
        >>> pipe_t2i = AutoPipelineForText2Image.from_pipe(pipe_i2i)
        >>> image = pipe_t2i(prompt).images[0]
YiYi Xu's avatar
YiYi Xu committed
428
429
430
431
432
433
434
435
436
        ```
        """

        original_config = dict(pipeline.config)
        original_cls_name = pipeline.__class__.__name__

        # derive the pipeline class to instantiate
        text_2_image_cls = _get_task_class(AUTO_TEXT2IMAGE_PIPELINES_MAPPING, original_cls_name)

437
438
        if "controlnet" in kwargs:
            if kwargs["controlnet"] is not None:
YiYi Xu's avatar
YiYi Xu committed
439
                to_replace = "PAGPipeline" if "PAG" in text_2_image_cls.__name__ else "Pipeline"
440
441
                text_2_image_cls = _get_task_class(
                    AUTO_TEXT2IMAGE_PIPELINES_MAPPING,
YiYi Xu's avatar
YiYi Xu committed
442
                    text_2_image_cls.__name__.replace("ControlNet", "").replace(to_replace, "ControlNet" + to_replace),
443
444
445
446
                )
            else:
                text_2_image_cls = _get_task_class(
                    AUTO_TEXT2IMAGE_PIPELINES_MAPPING,
YiYi Xu's avatar
YiYi Xu committed
447
448
449
450
451
452
453
454
455
456
457
458
459
460
                    text_2_image_cls.__name__.replace("ControlNet", ""),
                )

        if "enable_pag" in kwargs:
            enable_pag = kwargs.pop("enable_pag")
            if enable_pag:
                text_2_image_cls = _get_task_class(
                    AUTO_TEXT2IMAGE_PIPELINES_MAPPING,
                    text_2_image_cls.__name__.replace("PAG", "").replace("Pipeline", "PAGPipeline"),
                )
            else:
                text_2_image_cls = _get_task_class(
                    AUTO_TEXT2IMAGE_PIPELINES_MAPPING,
                    text_2_image_cls.__name__.replace("PAG", ""),
461
462
                )

YiYi Xu's avatar
YiYi Xu committed
463
        # define expected module and optional kwargs given the pipeline signature
464
        expected_modules, optional_kwargs = text_2_image_cls._get_signature_keys(text_2_image_cls)
YiYi Xu's avatar
YiYi Xu committed
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506

        pretrained_model_name_or_path = original_config.pop("_name_or_path", None)

        # allow users pass modules in `kwargs` to override the original pipeline's components
        passed_class_obj = {k: kwargs.pop(k) for k in expected_modules if k in kwargs}
        original_class_obj = {
            k: pipeline.components[k]
            for k, v in pipeline.components.items()
            if k in expected_modules and k not in passed_class_obj
        }

        # allow users pass optional kwargs to override the original pipelines config attribute
        passed_pipe_kwargs = {k: kwargs.pop(k) for k in optional_kwargs if k in kwargs}
        original_pipe_kwargs = {
            k: original_config[k]
            for k, v in original_config.items()
            if k in optional_kwargs and k not in passed_pipe_kwargs
        }

        # config that were not expected by original pipeline is stored as private attribute
        # we will pass them as optional arguments if they can be accepted by the pipeline
        additional_pipe_kwargs = [
            k[1:]
            for k in original_config.keys()
            if k.startswith("_") and k[1:] in optional_kwargs and k[1:] not in passed_pipe_kwargs
        ]
        for k in additional_pipe_kwargs:
            original_pipe_kwargs[k] = original_config.pop(f"_{k}")

        text_2_image_kwargs = {**passed_class_obj, **original_class_obj, **passed_pipe_kwargs, **original_pipe_kwargs}

        # store unused config as private attribute
        unused_original_config = {
            f"{'' if k.startswith('_') else '_'}{k}": original_config[k]
            for k, v in original_config.items()
            if k not in text_2_image_kwargs
        }

        missing_modules = set(expected_modules) - set(pipeline._optional_components) - set(text_2_image_kwargs.keys())

        if len(missing_modules) > 0:
            raise ValueError(
507
                f"Pipeline {text_2_image_cls} expected {expected_modules}, but only {set(list(passed_class_obj.keys()) + list(original_class_obj.keys()))} were passed"
YiYi Xu's avatar
YiYi Xu committed
508
509
510
511
512
513
514
515
516
517
518
519
            )

        model = text_2_image_cls(**text_2_image_kwargs)
        model.register_to_config(_name_or_path=pretrained_model_name_or_path)
        model.register_to_config(**unused_original_config)

        return model


class AutoPipelineForImage2Image(ConfigMixin):
    r"""

520
521
522
    [`AutoPipelineForImage2Image`] is a generic pipeline class that instantiates an image-to-image pipeline class. The
    specific underlying pipeline class is automatically selected from either the
    [`~AutoPipelineForImage2Image.from_pretrained`] or [`~AutoPipelineForImage2Image.from_pipe`] methods.
YiYi Xu's avatar
YiYi Xu committed
523

524
    This class cannot be instantiated using `__init__()` (throws an error).
YiYi Xu's avatar
YiYi Xu committed
525
526
527
528
529
530
531

    Class attributes:

        - **config_name** (`str`) -- The configuration filename that stores the class and module names of all the
          diffusion pipeline's components.

    """
532

YiYi Xu's avatar
YiYi Xu committed
533
534
535
536
537
538
539
540
541
542
    config_name = "model_index.json"

    def __init__(self, *args, **kwargs):
        raise EnvironmentError(
            f"{self.__class__.__name__} is designed to be instantiated "
            f"using the `{self.__class__.__name__}.from_pretrained(pretrained_model_name_or_path)` or "
            f"`{self.__class__.__name__}.from_pipe(pipeline)` methods."
        )

    @classmethod
543
    @validate_hf_hub_args
YiYi Xu's avatar
YiYi Xu committed
544
545
546
547
548
549
550
551
552
553
    def from_pretrained(cls, pretrained_model_or_path, **kwargs):
        r"""
        Instantiates a image-to-image Pytorch diffusion pipeline from pretrained pipeline weight.

        The from_pretrained() method takes care of returning the correct pipeline class instance by:
            1. Detect the pipeline class of the pretrained_model_or_path based on the _class_name property of its
               config object
            2. Find the image-to-image pipeline linked to the pipeline class using pattern matching on pipeline class
               name.

554
555
        If a `controlnet` argument is passed, it will instantiate a [`StableDiffusionControlNetImg2ImgPipeline`]
        object.
YiYi Xu's avatar
YiYi Xu committed
556
557
558
559
560
561
562
563
564
565
566
567

        The pipeline is set in evaluation mode (`model.eval()`) by default.

        If you get the error message below, you need to finetune the weights for your downstream task:

        ```
        Some weights of UNet2DConditionModel were not initialized from the model checkpoint at runwayml/stable-diffusion-v1-5 and are newly initialized because the shapes did not match:
        - conv_in.weight: found shape torch.Size([320, 4, 3, 3]) in the checkpoint and torch.Size([320, 9, 3, 3]) in the model instantiated
        You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
        ```

        Parameters:
568
            pretrained_model_or_path (`str` or `os.PathLike`, *optional*):
YiYi Xu's avatar
YiYi Xu committed
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
                Can be either:

                    - A string, the *repo id* (for example `CompVis/ldm-text2im-large-256`) of a pretrained pipeline
                      hosted on the Hub.
                    - A path to a *directory* (for example `./my_pipeline_directory/`) containing pipeline weights
                      saved using
                    [`~DiffusionPipeline.save_pretrained`].
            torch_dtype (`str` or `torch.dtype`, *optional*):
                Override the default `torch.dtype` and load the model with another dtype. If "auto" is passed, the
                dtype is automatically derived from the model's weights.
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
            cache_dir (`Union[str, os.PathLike]`, *optional*):
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
585

YiYi Xu's avatar
YiYi Xu committed
586
587
588
589
590
591
592
593
            proxies (`Dict[str, str]`, *optional*):
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            output_loading_info(`bool`, *optional*, defaults to `False`):
                Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages.
            local_files_only (`bool`, *optional*, defaults to `False`):
                Whether to only load local model weights and configuration files or not. If set to `True`, the model
                won't be downloaded from the Hub.
594
            token (`str` or *bool*, *optional*):
YiYi Xu's avatar
YiYi Xu committed
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
            revision (`str`, *optional*, defaults to `"main"`):
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
            custom_revision (`str`, *optional*, defaults to `"main"`):
                The specific model version to use. It can be a branch name, a tag name, or a commit id similar to
                `revision` when loading a custom pipeline from the Hub. It can be a 🤗 Diffusers version when loading a
                custom pipeline from GitHub, otherwise it defaults to `"main"` when loading from the Hub.
            mirror (`str`, *optional*):
                Mirror source to resolve accessibility issues if you’re downloading a model in China. We do not
                guarantee the timeliness or safety of the source, and you should refer to the mirror site for more
                information.
            device_map (`str` or `Dict[str, Union[int, str, torch.device]]`, *optional*):
                A map that specifies where each submodule should go. It doesn’t need to be defined for each
                parameter/buffer name; once a given module name is inside, every submodule of it will be sent to the
                same device.

                Set `device_map="auto"` to have 🤗 Accelerate automatically compute the most optimized `device_map`. For
                more information about each option see [designing a device
                map](https://hf.co/docs/accelerate/main/en/usage_guides/big_modeling#designing-a-device-map).
            max_memory (`Dict`, *optional*):
                A dictionary device identifier for the maximum memory. Will default to the maximum memory available for
                each GPU and the available CPU RAM if unset.
            offload_folder (`str` or `os.PathLike`, *optional*):
                The path to offload weights if device_map contains the value `"disk"`.
            offload_state_dict (`bool`, *optional*):
                If `True`, temporarily offloads the CPU state dict to the hard drive to avoid running out of CPU RAM if
                the weight of the CPU state dict + the biggest shard of the checkpoint does not fit. Defaults to `True`
                when there is some disk offload.
            low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`):
                Speed up model loading only loading the pretrained weights and not initializing the weights. This also
                tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model.
                Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this
                argument to `True` will raise an error.
            use_safetensors (`bool`, *optional*, defaults to `None`):
                If set to `None`, the safetensors weights are downloaded if they're available **and** if the
                safetensors library is installed. If set to `True`, the model is forcibly loaded from safetensors
                weights. If set to `False`, safetensors weights are not loaded.
            kwargs (remaining dictionary of keyword arguments, *optional*):
                Can be used to overwrite load and saveable variables (the pipeline components of the specific pipeline
                class). The overwritten components are passed directly to the pipelines `__init__` method. See example
                below for more information.
            variant (`str`, *optional*):
                Load weights from a specified variant filename such as `"fp16"` or `"ema"`. This is ignored when
                loading `from_flax`.

        <Tip>

        To use private or [gated](https://huggingface.co/docs/hub/models-gated#gated-models) models, log-in with
        `huggingface-cli login`.

        </Tip>

        Examples:

        ```py
652
        >>> from diffusers import AutoPipelineForImage2Image
YiYi Xu's avatar
YiYi Xu committed
653

654
655
        >>> pipeline = AutoPipelineForImage2Image.from_pretrained("runwayml/stable-diffusion-v1-5")
        >>> image = pipeline(prompt, image).images[0]
YiYi Xu's avatar
YiYi Xu committed
656
657
        ```
        """
658
        cache_dir = kwargs.pop("cache_dir", None)
659
660
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
661
        token = kwargs.pop("token", None)
662
663
664
665
666
667
668
        local_files_only = kwargs.pop("local_files_only", False)
        revision = kwargs.pop("revision", None)

        load_config_kwargs = {
            "cache_dir": cache_dir,
            "force_download": force_download,
            "proxies": proxies,
669
            "token": token,
670
671
672
673
674
            "local_files_only": local_files_only,
            "revision": revision,
        }

        config = cls.load_config(pretrained_model_or_path, **load_config_kwargs)
YiYi Xu's avatar
YiYi Xu committed
675
676
        orig_class_name = config["_class_name"]

677
678
679
680
681
        # the `orig_class_name` can be:
        # `- *Pipeline` (for regular text-to-image checkpoint)
        # `- *Img2ImgPipeline` (for refiner checkpoint)
        to_replace = "Img2ImgPipeline" if "Img2Img" in config["_class_name"] else "Pipeline"

YiYi Xu's avatar
YiYi Xu committed
682
        if "controlnet" in kwargs:
683
            orig_class_name = orig_class_name.replace(to_replace, "ControlNet" + to_replace)
YiYi Xu's avatar
YiYi Xu committed
684
685
686
        if "enable_pag" in kwargs:
            enable_pag = kwargs.pop("enable_pag")
            if enable_pag:
687
                orig_class_name = orig_class_name.replace(to_replace, "PAG" + to_replace)
YiYi Xu's avatar
YiYi Xu committed
688
689
690

        image_2_image_cls = _get_task_class(AUTO_IMAGE2IMAGE_PIPELINES_MAPPING, orig_class_name)

691
        kwargs = {**load_config_kwargs, **kwargs}
YiYi Xu's avatar
YiYi Xu committed
692
693
694
695
696
697
698
699
700
701
702
        return image_2_image_cls.from_pretrained(pretrained_model_or_path, **kwargs)

    @classmethod
    def from_pipe(cls, pipeline, **kwargs):
        r"""
        Instantiates a image-to-image Pytorch diffusion pipeline from another instantiated diffusion pipeline class.

        The from_pipe() method takes care of returning the correct pipeline class instance by finding the
        image-to-image pipeline linked to the pipeline class using pattern matching on pipeline class name.

        All the modules the pipeline contains will be used to initialize the new pipeline without reallocating
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
703
        additional memory.
YiYi Xu's avatar
YiYi Xu committed
704
705
706
707
708
709
710
711
712
713

        The pipeline is set in evaluation mode (`model.eval()`) by default.

        Parameters:
            pipeline (`DiffusionPipeline`):
                an instantiated `DiffusionPipeline` object

        Examples:

        ```py
714
        >>> from diffusers import AutoPipelineForText2Image, AutoPipelineForImage2Image
YiYi Xu's avatar
YiYi Xu committed
715
716
717
718
719

        >>> pipe_t2i = AutoPipelineForText2Image.from_pretrained(
        ...     "runwayml/stable-diffusion-v1-5", requires_safety_checker=False
        ... )

720
721
        >>> pipe_i2i = AutoPipelineForImage2Image.from_pipe(pipe_t2i)
        >>> image = pipe_i2i(prompt, image).images[0]
YiYi Xu's avatar
YiYi Xu committed
722
723
724
725
726
727
728
729
730
        ```
        """

        original_config = dict(pipeline.config)
        original_cls_name = pipeline.__class__.__name__

        # derive the pipeline class to instantiate
        image_2_image_cls = _get_task_class(AUTO_IMAGE2IMAGE_PIPELINES_MAPPING, original_cls_name)

731
732
        if "controlnet" in kwargs:
            if kwargs["controlnet"] is not None:
YiYi Xu's avatar
YiYi Xu committed
733
734
735
                to_replace = "Img2ImgPipeline"
                if "PAG" in image_2_image_cls.__name__:
                    to_replace = "PAG" + to_replace
736
737
                image_2_image_cls = _get_task_class(
                    AUTO_IMAGE2IMAGE_PIPELINES_MAPPING,
738
                    image_2_image_cls.__name__.replace("ControlNet", "").replace(
YiYi Xu's avatar
YiYi Xu committed
739
                        to_replace, "ControlNet" + to_replace
740
                    ),
741
742
743
744
                )
            else:
                image_2_image_cls = _get_task_class(
                    AUTO_IMAGE2IMAGE_PIPELINES_MAPPING,
YiYi Xu's avatar
YiYi Xu committed
745
746
747
748
749
750
751
752
753
754
755
756
757
758
                    image_2_image_cls.__name__.replace("ControlNet", ""),
                )

        if "enable_pag" in kwargs:
            enable_pag = kwargs.pop("enable_pag")
            if enable_pag:
                image_2_image_cls = _get_task_class(
                    AUTO_IMAGE2IMAGE_PIPELINES_MAPPING,
                    image_2_image_cls.__name__.replace("PAG", "").replace("Img2ImgPipeline", "PAGImg2ImgPipeline"),
                )
            else:
                image_2_image_cls = _get_task_class(
                    AUTO_IMAGE2IMAGE_PIPELINES_MAPPING,
                    image_2_image_cls.__name__.replace("PAG", ""),
759
760
                )

YiYi Xu's avatar
YiYi Xu committed
761
        # define expected module and optional kwargs given the pipeline signature
762
        expected_modules, optional_kwargs = image_2_image_cls._get_signature_keys(image_2_image_cls)
YiYi Xu's avatar
YiYi Xu committed
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804

        pretrained_model_name_or_path = original_config.pop("_name_or_path", None)

        # allow users pass modules in `kwargs` to override the original pipeline's components
        passed_class_obj = {k: kwargs.pop(k) for k in expected_modules if k in kwargs}
        original_class_obj = {
            k: pipeline.components[k]
            for k, v in pipeline.components.items()
            if k in expected_modules and k not in passed_class_obj
        }

        # allow users pass optional kwargs to override the original pipelines config attribute
        passed_pipe_kwargs = {k: kwargs.pop(k) for k in optional_kwargs if k in kwargs}
        original_pipe_kwargs = {
            k: original_config[k]
            for k, v in original_config.items()
            if k in optional_kwargs and k not in passed_pipe_kwargs
        }

        # config attribute that were not expected by original pipeline is stored as its private attribute
        # we will pass them as optional arguments if they can be accepted by the pipeline
        additional_pipe_kwargs = [
            k[1:]
            for k in original_config.keys()
            if k.startswith("_") and k[1:] in optional_kwargs and k[1:] not in passed_pipe_kwargs
        ]
        for k in additional_pipe_kwargs:
            original_pipe_kwargs[k] = original_config.pop(f"_{k}")

        image_2_image_kwargs = {**passed_class_obj, **original_class_obj, **passed_pipe_kwargs, **original_pipe_kwargs}

        # store unused config as private attribute
        unused_original_config = {
            f"{'' if k.startswith('_') else '_'}{k}": original_config[k]
            for k, v in original_config.items()
            if k not in image_2_image_kwargs
        }

        missing_modules = set(expected_modules) - set(pipeline._optional_components) - set(image_2_image_kwargs.keys())

        if len(missing_modules) > 0:
            raise ValueError(
805
                f"Pipeline {image_2_image_cls} expected {expected_modules}, but only {set(list(passed_class_obj.keys()) + list(original_class_obj.keys()))} were passed"
YiYi Xu's avatar
YiYi Xu committed
806
807
808
809
810
811
812
813
814
815
816
817
            )

        model = image_2_image_cls(**image_2_image_kwargs)
        model.register_to_config(_name_or_path=pretrained_model_name_or_path)
        model.register_to_config(**unused_original_config)

        return model


class AutoPipelineForInpainting(ConfigMixin):
    r"""

818
819
820
    [`AutoPipelineForInpainting`] is a generic pipeline class that instantiates an inpainting pipeline class. The
    specific underlying pipeline class is automatically selected from either the
    [`~AutoPipelineForInpainting.from_pretrained`] or [`~AutoPipelineForInpainting.from_pipe`] methods.
YiYi Xu's avatar
YiYi Xu committed
821

822
    This class cannot be instantiated using `__init__()` (throws an error).
YiYi Xu's avatar
YiYi Xu committed
823
824
825
826
827
828
829

    Class attributes:

        - **config_name** (`str`) -- The configuration filename that stores the class and module names of all the
          diffusion pipeline's components.

    """
830

YiYi Xu's avatar
YiYi Xu committed
831
832
833
834
835
836
837
838
839
840
    config_name = "model_index.json"

    def __init__(self, *args, **kwargs):
        raise EnvironmentError(
            f"{self.__class__.__name__} is designed to be instantiated "
            f"using the `{self.__class__.__name__}.from_pretrained(pretrained_model_name_or_path)` or "
            f"`{self.__class__.__name__}.from_pipe(pipeline)` methods."
        )

    @classmethod
841
    @validate_hf_hub_args
YiYi Xu's avatar
YiYi Xu committed
842
843
844
845
846
847
848
849
850
    def from_pretrained(cls, pretrained_model_or_path, **kwargs):
        r"""
        Instantiates a inpainting Pytorch diffusion pipeline from pretrained pipeline weight.

        The from_pretrained() method takes care of returning the correct pipeline class instance by:
            1. Detect the pipeline class of the pretrained_model_or_path based on the _class_name property of its
               config object
            2. Find the inpainting pipeline linked to the pipeline class using pattern matching on pipeline class name.

851
852
        If a `controlnet` argument is passed, it will instantiate a [`StableDiffusionControlNetInpaintPipeline`]
        object.
YiYi Xu's avatar
YiYi Xu committed
853
854
855
856
857
858
859
860
861
862
863
864

        The pipeline is set in evaluation mode (`model.eval()`) by default.

        If you get the error message below, you need to finetune the weights for your downstream task:

        ```
        Some weights of UNet2DConditionModel were not initialized from the model checkpoint at runwayml/stable-diffusion-v1-5 and are newly initialized because the shapes did not match:
        - conv_in.weight: found shape torch.Size([320, 4, 3, 3]) in the checkpoint and torch.Size([320, 9, 3, 3]) in the model instantiated
        You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
        ```

        Parameters:
865
            pretrained_model_or_path (`str` or `os.PathLike`, *optional*):
YiYi Xu's avatar
YiYi Xu committed
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
                Can be either:

                    - A string, the *repo id* (for example `CompVis/ldm-text2im-large-256`) of a pretrained pipeline
                      hosted on the Hub.
                    - A path to a *directory* (for example `./my_pipeline_directory/`) containing pipeline weights
                      saved using
                    [`~DiffusionPipeline.save_pretrained`].
            torch_dtype (`str` or `torch.dtype`, *optional*):
                Override the default `torch.dtype` and load the model with another dtype. If "auto" is passed, the
                dtype is automatically derived from the model's weights.
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
            cache_dir (`Union[str, os.PathLike]`, *optional*):
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
882

YiYi Xu's avatar
YiYi Xu committed
883
884
885
886
887
888
889
890
            proxies (`Dict[str, str]`, *optional*):
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            output_loading_info(`bool`, *optional*, defaults to `False`):
                Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages.
            local_files_only (`bool`, *optional*, defaults to `False`):
                Whether to only load local model weights and configuration files or not. If set to `True`, the model
                won't be downloaded from the Hub.
891
            token (`str` or *bool*, *optional*):
YiYi Xu's avatar
YiYi Xu committed
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
            revision (`str`, *optional*, defaults to `"main"`):
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
            custom_revision (`str`, *optional*, defaults to `"main"`):
                The specific model version to use. It can be a branch name, a tag name, or a commit id similar to
                `revision` when loading a custom pipeline from the Hub. It can be a 🤗 Diffusers version when loading a
                custom pipeline from GitHub, otherwise it defaults to `"main"` when loading from the Hub.
            mirror (`str`, *optional*):
                Mirror source to resolve accessibility issues if you’re downloading a model in China. We do not
                guarantee the timeliness or safety of the source, and you should refer to the mirror site for more
                information.
            device_map (`str` or `Dict[str, Union[int, str, torch.device]]`, *optional*):
                A map that specifies where each submodule should go. It doesn’t need to be defined for each
                parameter/buffer name; once a given module name is inside, every submodule of it will be sent to the
                same device.

                Set `device_map="auto"` to have 🤗 Accelerate automatically compute the most optimized `device_map`. For
                more information about each option see [designing a device
                map](https://hf.co/docs/accelerate/main/en/usage_guides/big_modeling#designing-a-device-map).
            max_memory (`Dict`, *optional*):
                A dictionary device identifier for the maximum memory. Will default to the maximum memory available for
                each GPU and the available CPU RAM if unset.
            offload_folder (`str` or `os.PathLike`, *optional*):
                The path to offload weights if device_map contains the value `"disk"`.
            offload_state_dict (`bool`, *optional*):
                If `True`, temporarily offloads the CPU state dict to the hard drive to avoid running out of CPU RAM if
                the weight of the CPU state dict + the biggest shard of the checkpoint does not fit. Defaults to `True`
                when there is some disk offload.
            low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`):
                Speed up model loading only loading the pretrained weights and not initializing the weights. This also
                tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model.
                Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this
                argument to `True` will raise an error.
            use_safetensors (`bool`, *optional*, defaults to `None`):
                If set to `None`, the safetensors weights are downloaded if they're available **and** if the
                safetensors library is installed. If set to `True`, the model is forcibly loaded from safetensors
                weights. If set to `False`, safetensors weights are not loaded.
            kwargs (remaining dictionary of keyword arguments, *optional*):
                Can be used to overwrite load and saveable variables (the pipeline components of the specific pipeline
                class). The overwritten components are passed directly to the pipelines `__init__` method. See example
                below for more information.
            variant (`str`, *optional*):
                Load weights from a specified variant filename such as `"fp16"` or `"ema"`. This is ignored when
                loading `from_flax`.

        <Tip>

        To use private or [gated](https://huggingface.co/docs/hub/models-gated#gated-models) models, log-in with
        `huggingface-cli login`.

        </Tip>

        Examples:

        ```py
949
        >>> from diffusers import AutoPipelineForInpainting
YiYi Xu's avatar
YiYi Xu committed
950

951
952
        >>> pipeline = AutoPipelineForInpainting.from_pretrained("runwayml/stable-diffusion-v1-5")
        >>> image = pipeline(prompt, image=init_image, mask_image=mask_image).images[0]
YiYi Xu's avatar
YiYi Xu committed
953
954
        ```
        """
955
        cache_dir = kwargs.pop("cache_dir", None)
956
957
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
958
        token = kwargs.pop("token", None)
959
960
961
962
963
964
965
        local_files_only = kwargs.pop("local_files_only", False)
        revision = kwargs.pop("revision", None)

        load_config_kwargs = {
            "cache_dir": cache_dir,
            "force_download": force_download,
            "proxies": proxies,
966
            "token": token,
967
968
969
970
971
            "local_files_only": local_files_only,
            "revision": revision,
        }

        config = cls.load_config(pretrained_model_or_path, **load_config_kwargs)
YiYi Xu's avatar
YiYi Xu committed
972
973
        orig_class_name = config["_class_name"]

974
975
976
977
978
        # The `orig_class_name`` can be:
        # `- *InpaintPipeline` (for inpaint-specific checkpoint)
        #  - or *Pipeline (for regular text-to-image checkpoint)
        to_replace = "InpaintPipeline" if "Inpaint" in config["_class_name"] else "Pipeline"

YiYi Xu's avatar
YiYi Xu committed
979
        if "controlnet" in kwargs:
980
            orig_class_name = orig_class_name.replace(to_replace, "ControlNet" + to_replace)
YiYi Xu's avatar
YiYi Xu committed
981
982
983
        if "enable_pag" in kwargs:
            enable_pag = kwargs.pop("enable_pag")
            if enable_pag:
984
                orig_class_name = orig_class_name.replace(to_replace, "PAG" + to_replace)
YiYi Xu's avatar
YiYi Xu committed
985
986
        inpainting_cls = _get_task_class(AUTO_INPAINT_PIPELINES_MAPPING, orig_class_name)

987
        kwargs = {**load_config_kwargs, **kwargs}
YiYi Xu's avatar
YiYi Xu committed
988
989
990
991
992
993
994
995
996
997
998
        return inpainting_cls.from_pretrained(pretrained_model_or_path, **kwargs)

    @classmethod
    def from_pipe(cls, pipeline, **kwargs):
        r"""
        Instantiates a inpainting Pytorch diffusion pipeline from another instantiated diffusion pipeline class.

        The from_pipe() method takes care of returning the correct pipeline class instance by finding the inpainting
        pipeline linked to the pipeline class using pattern matching on pipeline class name.

        All the modules the pipeline class contain will be used to initialize the new pipeline without reallocating
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
999
        additional memory.
YiYi Xu's avatar
YiYi Xu committed
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009

        The pipeline is set in evaluation mode (`model.eval()`) by default.

        Parameters:
            pipeline (`DiffusionPipeline`):
                an instantiated `DiffusionPipeline` object

        Examples:

        ```py
1010
        >>> from diffusers import AutoPipelineForText2Image, AutoPipelineForInpainting
YiYi Xu's avatar
YiYi Xu committed
1011
1012
1013
1014
1015
1016

        >>> pipe_t2i = AutoPipelineForText2Image.from_pretrained(
        ...     "DeepFloyd/IF-I-XL-v1.0", requires_safety_checker=False
        ... )

        >>> pipe_inpaint = AutoPipelineForInpainting.from_pipe(pipe_t2i)
1017
        >>> image = pipe_inpaint(prompt, image=init_image, mask_image=mask_image).images[0]
YiYi Xu's avatar
YiYi Xu committed
1018
1019
1020
1021
1022
1023
1024
1025
        ```
        """
        original_config = dict(pipeline.config)
        original_cls_name = pipeline.__class__.__name__

        # derive the pipeline class to instantiate
        inpainting_cls = _get_task_class(AUTO_INPAINT_PIPELINES_MAPPING, original_cls_name)

1026
1027
1028
1029
        if "controlnet" in kwargs:
            if kwargs["controlnet"] is not None:
                inpainting_cls = _get_task_class(
                    AUTO_INPAINT_PIPELINES_MAPPING,
1030
1031
1032
                    inpainting_cls.__name__.replace("ControlNet", "").replace(
                        "InpaintPipeline", "ControlNetInpaintPipeline"
                    ),
1033
1034
1035
1036
1037
1038
1039
                )
            else:
                inpainting_cls = _get_task_class(
                    AUTO_INPAINT_PIPELINES_MAPPING,
                    inpainting_cls.__name__.replace("ControlNetInpaintPipeline", "InpaintPipeline"),
                )

YiYi Xu's avatar
YiYi Xu committed
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
        if "enable_pag" in kwargs:
            enable_pag = kwargs.pop("enable_pag")
            if enable_pag:
                inpainting_cls = _get_task_class(
                    AUTO_INPAINT_PIPELINES_MAPPING,
                    inpainting_cls.__name__.replace("PAG", "").replace("InpaintPipeline", "PAGInpaintPipeline"),
                )
            else:
                inpainting_cls = _get_task_class(
                    AUTO_INPAINT_PIPELINES_MAPPING,
                    inpainting_cls.__name__.replace("PAGInpaintPipeline", "InpaintPipeline"),
                )

YiYi Xu's avatar
YiYi Xu committed
1053
        # define expected module and optional kwargs given the pipeline signature
1054
        expected_modules, optional_kwargs = inpainting_cls._get_signature_keys(inpainting_cls)
YiYi Xu's avatar
YiYi Xu committed
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096

        pretrained_model_name_or_path = original_config.pop("_name_or_path", None)

        # allow users pass modules in `kwargs` to override the original pipeline's components
        passed_class_obj = {k: kwargs.pop(k) for k in expected_modules if k in kwargs}
        original_class_obj = {
            k: pipeline.components[k]
            for k, v in pipeline.components.items()
            if k in expected_modules and k not in passed_class_obj
        }

        # allow users pass optional kwargs to override the original pipelines config attribute
        passed_pipe_kwargs = {k: kwargs.pop(k) for k in optional_kwargs if k in kwargs}
        original_pipe_kwargs = {
            k: original_config[k]
            for k, v in original_config.items()
            if k in optional_kwargs and k not in passed_pipe_kwargs
        }

        # config that were not expected by original pipeline is stored as private attribute
        # we will pass them as optional arguments if they can be accepted by the pipeline
        additional_pipe_kwargs = [
            k[1:]
            for k in original_config.keys()
            if k.startswith("_") and k[1:] in optional_kwargs and k[1:] not in passed_pipe_kwargs
        ]
        for k in additional_pipe_kwargs:
            original_pipe_kwargs[k] = original_config.pop(f"_{k}")

        inpainting_kwargs = {**passed_class_obj, **original_class_obj, **passed_pipe_kwargs, **original_pipe_kwargs}

        # store unused config as private attribute
        unused_original_config = {
            f"{'' if k.startswith('_') else '_'}{k}": original_config[k]
            for k, v in original_config.items()
            if k not in inpainting_kwargs
        }

        missing_modules = set(expected_modules) - set(pipeline._optional_components) - set(inpainting_kwargs.keys())

        if len(missing_modules) > 0:
            raise ValueError(
1097
                f"Pipeline {inpainting_cls} expected {expected_modules}, but only {set(list(passed_class_obj.keys()) + list(original_class_obj.keys()))} were passed"
YiYi Xu's avatar
YiYi Xu committed
1098
1099
1100
1101
1102
1103
1104
            )

        model = inpainting_cls(**inpainting_kwargs)
        model.register_to_config(_name_or_path=pretrained_model_name_or_path)
        model.register_to_config(**unused_original_config)

        return model