test_pipeline_flux.py 13.9 KB
Newer Older
Sayak Paul's avatar
Sayak Paul committed
1
2
3
4
import gc
import unittest

import numpy as np
5
import pytest
Sayak Paul's avatar
Sayak Paul committed
6
import torch
7
from huggingface_hub import hf_hub_download
Sayak Paul's avatar
Sayak Paul committed
8
9
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel

Aryan's avatar
Aryan committed
10
11
12
13
14
15
16
from diffusers import (
    AutoencoderKL,
    FasterCacheConfig,
    FlowMatchEulerDiscreteScheduler,
    FluxPipeline,
    FluxTransformer2DModel,
)
Sayak Paul's avatar
Sayak Paul committed
17
from diffusers.utils.testing_utils import (
18
    backend_empty_cache,
19
    nightly,
Sayak Paul's avatar
Sayak Paul committed
20
    numpy_cosine_similarity_distance,
21
    require_big_accelerator,
Sayak Paul's avatar
Sayak Paul committed
22
23
24
25
    slow,
    torch_device,
)

26
from ..test_pipelines_common import (
Aryan's avatar
Aryan committed
27
    FasterCacheTesterMixin,
hlky's avatar
hlky committed
28
    FluxIPAdapterTesterMixin,
29
    PipelineTesterMixin,
30
    PyramidAttentionBroadcastTesterMixin,
31
32
33
    check_qkv_fusion_matches_attn_procs_length,
    check_qkv_fusion_processors_exist,
)
Sayak Paul's avatar
Sayak Paul committed
34
35


36
class FluxPipelineFastTests(
Aryan's avatar
Aryan committed
37
38
39
40
41
    unittest.TestCase,
    PipelineTesterMixin,
    FluxIPAdapterTesterMixin,
    PyramidAttentionBroadcastTesterMixin,
    FasterCacheTesterMixin,
42
):
Sayak Paul's avatar
Sayak Paul committed
43
    pipeline_class = FluxPipeline
Sayak Paul's avatar
Sayak Paul committed
44
45
    params = frozenset(["prompt", "height", "width", "guidance_scale", "prompt_embeds", "pooled_prompt_embeds"])
    batch_params = frozenset(["prompt"])
Sayak Paul's avatar
Sayak Paul committed
46

47
48
    # there is no xformers processor for Flux
    test_xformers_attention = False
Aryan's avatar
Aryan committed
49
    test_layerwise_casting = True
Aryan's avatar
Aryan committed
50
    test_group_offloading = True
51

Aryan's avatar
Aryan committed
52
53
54
55
56
57
58
59
    faster_cache_config = FasterCacheConfig(
        spatial_attention_block_skip_range=2,
        spatial_attention_timestep_skip_range=(-1, 901),
        unconditional_batch_skip_range=2,
        attention_weight_callback=lambda _: 0.5,
        is_guidance_distilled=True,
    )

60
    def get_dummy_components(self, num_layers: int = 1, num_single_layers: int = 1):
Sayak Paul's avatar
Sayak Paul committed
61
62
63
64
        torch.manual_seed(0)
        transformer = FluxTransformer2DModel(
            patch_size=1,
            in_channels=4,
65
66
            num_layers=num_layers,
            num_single_layers=num_single_layers,
Sayak Paul's avatar
Sayak Paul committed
67
68
            attention_head_dim=16,
            num_attention_heads=2,
Sayak Paul's avatar
Sayak Paul committed
69
            joint_attention_dim=32,
Sayak Paul's avatar
Sayak Paul committed
70
71
            pooled_projection_dim=32,
            axes_dims_rope=[4, 4, 8],
Sayak Paul's avatar
Sayak Paul committed
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
        )
        clip_text_encoder_config = CLIPTextConfig(
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
            hidden_act="gelu",
            projection_dim=32,
        )

        torch.manual_seed(0)
        text_encoder = CLIPTextModel(clip_text_encoder_config)

        torch.manual_seed(0)
        text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")

        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
        tokenizer_2 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")

        torch.manual_seed(0)
        vae = AutoencoderKL(
            sample_size=32,
            in_channels=3,
            out_channels=3,
            block_out_channels=(4,),
            layers_per_block=1,
Sayak Paul's avatar
Sayak Paul committed
103
            latent_channels=1,
Sayak Paul's avatar
Sayak Paul committed
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
            norm_num_groups=1,
            use_quant_conv=False,
            use_post_quant_conv=False,
            shift_factor=0.0609,
            scaling_factor=1.5035,
        )

        scheduler = FlowMatchEulerDiscreteScheduler()

        return {
            "scheduler": scheduler,
            "text_encoder": text_encoder,
            "text_encoder_2": text_encoder_2,
            "tokenizer": tokenizer,
            "tokenizer_2": tokenizer_2,
            "transformer": transformer,
            "vae": vae,
hlky's avatar
hlky committed
121
122
            "image_encoder": None,
            "feature_extractor": None,
Sayak Paul's avatar
Sayak Paul committed
123
124
125
126
127
128
129
130
131
132
133
134
135
        }

    def get_dummy_inputs(self, device, seed=0):
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device="cpu").manual_seed(seed)

        inputs = {
            "prompt": "A painting of a squirrel eating a burger",
            "generator": generator,
            "num_inference_steps": 2,
            "guidance_scale": 5.0,
Sayak Paul's avatar
Sayak Paul committed
136
137
138
            "height": 8,
            "width": 8,
            "max_sequence_length": 48,
Sayak Paul's avatar
Sayak Paul committed
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
            "output_type": "np",
        }
        return inputs

    def test_flux_different_prompts(self):
        pipe = self.pipeline_class(**self.get_dummy_components()).to(torch_device)

        inputs = self.get_dummy_inputs(torch_device)
        output_same_prompt = pipe(**inputs).images[0]

        inputs = self.get_dummy_inputs(torch_device)
        inputs["prompt_2"] = "a different prompt"
        output_different_prompts = pipe(**inputs).images[0]

        max_diff = np.abs(output_same_prompt - output_different_prompts).max()

        # Outputs should be different here
Sayak Paul's avatar
Sayak Paul committed
156
157
        # For some reasons, they don't show large differences
        assert max_diff > 1e-6
Sayak Paul's avatar
Sayak Paul committed
158

159
160
161
162
163
164
165
166
167
168
169
170
171
172
    def test_fused_qkv_projections(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe = pipe.to(device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)
        image = pipe(**inputs).images
        original_image_slice = image[0, -3:, -3:, -1]

        # TODO (sayakpaul): will refactor this once `fuse_qkv_projections()` has been added
        # to the pipeline level.
        pipe.transformer.fuse_qkv_projections()
173
174
175
        assert check_qkv_fusion_processors_exist(pipe.transformer), (
            "Something wrong with the fused attention processors. Expected all the attention processors to be fused."
        )
176
177
178
179
180
181
182
183
184
185
186
187
188
        assert check_qkv_fusion_matches_attn_procs_length(
            pipe.transformer, pipe.transformer.original_attn_processors
        ), "Something wrong with the attention processors concerning the fused QKV projections."

        inputs = self.get_dummy_inputs(device)
        image = pipe(**inputs).images
        image_slice_fused = image[0, -3:, -3:, -1]

        pipe.transformer.unfuse_qkv_projections()
        inputs = self.get_dummy_inputs(device)
        image = pipe(**inputs).images
        image_slice_disabled = image[0, -3:, -3:, -1]

189
190
191
192
193
194
195
196
197
        assert np.allclose(original_image_slice, image_slice_fused, atol=1e-3, rtol=1e-3), (
            "Fusion of QKV projections shouldn't affect the outputs."
        )
        assert np.allclose(image_slice_fused, image_slice_disabled, atol=1e-3, rtol=1e-3), (
            "Outputs, with QKV projection fusion enabled, shouldn't change when fused QKV projections are disabled."
        )
        assert np.allclose(original_image_slice, image_slice_disabled, atol=1e-2, rtol=1e-2), (
            "Original outputs should match when fused QKV projections are disabled."
        )
198

Dhruv Nair's avatar
Dhruv Nair committed
199
200
201
202
203
204
205
206
207
208
209
210
211
212
    def test_flux_image_output_shape(self):
        pipe = self.pipeline_class(**self.get_dummy_components()).to(torch_device)
        inputs = self.get_dummy_inputs(torch_device)

        height_width_pairs = [(32, 32), (72, 57)]
        for height, width in height_width_pairs:
            expected_height = height - height % (pipe.vae_scale_factor * 2)
            expected_width = width - width % (pipe.vae_scale_factor * 2)

            inputs.update({"height": height, "width": width})
            image = pipe(**inputs).images[0]
            output_height, output_width, _ = image.shape
            assert (output_height, output_width) == (expected_height, expected_width)

213
214
215
216
217
218
219
220
221
222
223
    def test_flux_true_cfg(self):
        pipe = self.pipeline_class(**self.get_dummy_components()).to(torch_device)
        inputs = self.get_dummy_inputs(torch_device)
        inputs.pop("generator")

        no_true_cfg_out = pipe(**inputs, generator=torch.manual_seed(0)).images[0]
        inputs["negative_prompt"] = "bad quality"
        inputs["true_cfg_scale"] = 2.0
        true_cfg_out = pipe(**inputs, generator=torch.manual_seed(0)).images[0]
        assert not np.allclose(no_true_cfg_out, true_cfg_out)

Sayak Paul's avatar
Sayak Paul committed
224

225
@nightly
226
@require_big_accelerator
227
@pytest.mark.big_accelerator
Sayak Paul's avatar
Sayak Paul committed
228
229
230
231
232
233
234
class FluxPipelineSlowTests(unittest.TestCase):
    pipeline_class = FluxPipeline
    repo_id = "black-forest-labs/FLUX.1-schnell"

    def setUp(self):
        super().setUp()
        gc.collect()
235
        backend_empty_cache(torch_device)
Sayak Paul's avatar
Sayak Paul committed
236
237
238
239

    def tearDown(self):
        super().tearDown()
        gc.collect()
240
        backend_empty_cache(torch_device)
Sayak Paul's avatar
Sayak Paul committed
241
242

    def get_inputs(self, device, seed=0):
243
        generator = torch.Generator(device="cpu").manual_seed(seed)
Sayak Paul's avatar
Sayak Paul committed
244

245
246
        prompt_embeds = torch.load(
            hf_hub_download(repo_id="diffusers/test-slices", repo_type="dataset", filename="flux/prompt_embeds.pt")
247
        ).to(torch_device)
248
249
250
251
        pooled_prompt_embeds = torch.load(
            hf_hub_download(
                repo_id="diffusers/test-slices", repo_type="dataset", filename="flux/pooled_prompt_embeds.pt"
            )
252
        ).to(torch_device)
Sayak Paul's avatar
Sayak Paul committed
253
        return {
254
255
            "prompt_embeds": prompt_embeds,
            "pooled_prompt_embeds": pooled_prompt_embeds,
Sayak Paul's avatar
Sayak Paul committed
256
            "num_inference_steps": 2,
257
258
            "guidance_scale": 0.0,
            "max_sequence_length": 256,
Sayak Paul's avatar
Sayak Paul committed
259
260
261
262
263
            "output_type": "np",
            "generator": generator,
        }

    def test_flux_inference(self):
264
265
        pipe = self.pipeline_class.from_pretrained(
            self.repo_id, torch_dtype=torch.bfloat16, text_encoder=None, text_encoder_2=None
266
        ).to(torch_device)
Sayak Paul's avatar
Sayak Paul committed
267
268
269
270
271
272
273

        inputs = self.get_inputs(torch_device)

        image = pipe(**inputs).images[0]
        image_slice = image[0, :10, :10]
        expected_slice = np.array(
            [
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
                0.3242,
                0.3203,
                0.3164,
                0.3164,
                0.3125,
                0.3125,
                0.3281,
                0.3242,
                0.3203,
                0.3301,
                0.3262,
                0.3242,
                0.3281,
                0.3242,
                0.3203,
                0.3262,
                0.3262,
                0.3164,
                0.3262,
                0.3281,
                0.3184,
                0.3281,
                0.3281,
                0.3203,
                0.3281,
                0.3281,
                0.3164,
                0.3320,
                0.3320,
                0.3203,
Sayak Paul's avatar
Sayak Paul committed
304
305
306
307
308
309
310
            ],
            dtype=np.float32,
        )

        max_diff = numpy_cosine_similarity_distance(expected_slice.flatten(), image_slice.flatten())

        assert max_diff < 1e-4
hlky's avatar
hlky committed
311
312
313


@slow
314
@require_big_accelerator
315
@pytest.mark.big_accelerator
hlky's avatar
hlky committed
316
317
318
319
320
321
322
323
324
325
class FluxIPAdapterPipelineSlowTests(unittest.TestCase):
    pipeline_class = FluxPipeline
    repo_id = "black-forest-labs/FLUX.1-dev"
    image_encoder_pretrained_model_name_or_path = "openai/clip-vit-large-patch14"
    weight_name = "ip_adapter.safetensors"
    ip_adapter_repo_id = "XLabs-AI/flux-ip-adapter"

    def setUp(self):
        super().setUp()
        gc.collect()
326
        backend_empty_cache(torch_device)
hlky's avatar
hlky committed
327
328
329
330

    def tearDown(self):
        super().tearDown()
        gc.collect()
331
        backend_empty_cache(torch_device)
hlky's avatar
hlky committed
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419

    def get_inputs(self, device, seed=0):
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device="cpu").manual_seed(seed)

        prompt_embeds = torch.load(
            hf_hub_download(repo_id="diffusers/test-slices", repo_type="dataset", filename="flux/prompt_embeds.pt")
        )
        pooled_prompt_embeds = torch.load(
            hf_hub_download(
                repo_id="diffusers/test-slices", repo_type="dataset", filename="flux/pooled_prompt_embeds.pt"
            )
        )
        negative_prompt_embeds = torch.zeros_like(prompt_embeds)
        negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds)
        ip_adapter_image = np.zeros((1024, 1024, 3), dtype=np.uint8)
        return {
            "prompt_embeds": prompt_embeds,
            "pooled_prompt_embeds": pooled_prompt_embeds,
            "negative_prompt_embeds": negative_prompt_embeds,
            "negative_pooled_prompt_embeds": negative_pooled_prompt_embeds,
            "ip_adapter_image": ip_adapter_image,
            "num_inference_steps": 2,
            "guidance_scale": 3.5,
            "true_cfg_scale": 4.0,
            "max_sequence_length": 256,
            "output_type": "np",
            "generator": generator,
        }

    def test_flux_ip_adapter_inference(self):
        pipe = self.pipeline_class.from_pretrained(
            self.repo_id, torch_dtype=torch.bfloat16, text_encoder=None, text_encoder_2=None
        )
        pipe.load_ip_adapter(
            self.ip_adapter_repo_id,
            weight_name=self.weight_name,
            image_encoder_pretrained_model_name_or_path=self.image_encoder_pretrained_model_name_or_path,
        )
        pipe.set_ip_adapter_scale(1.0)
        pipe.enable_model_cpu_offload()

        inputs = self.get_inputs(torch_device)

        image = pipe(**inputs).images[0]
        image_slice = image[0, :10, :10]

        expected_slice = np.array(
            [
                0.1855,
                0.1680,
                0.1406,
                0.1953,
                0.1699,
                0.1465,
                0.2012,
                0.1738,
                0.1484,
                0.2051,
                0.1797,
                0.1523,
                0.2012,
                0.1719,
                0.1445,
                0.2070,
                0.1777,
                0.1465,
                0.2090,
                0.1836,
                0.1484,
                0.2129,
                0.1875,
                0.1523,
                0.2090,
                0.1816,
                0.1484,
                0.2110,
                0.1836,
                0.1543,
            ],
            dtype=np.float32,
        )

        max_diff = numpy_cosine_similarity_distance(expected_slice.flatten(), image_slice.flatten())

        assert max_diff < 1e-4, f"{image_slice} != {expected_slice}"