"alphafold/data/feature_processing.py" did not exist on "1d43aaff941c84dc56311076b58795797e49107b"
test_controlnet_inpaint.py 20.6 KB
Newer Older
1
# coding=utf-8
2
# Copyright 2024 HuggingFace Inc.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# This model implementation is heavily based on:

import gc
import random
import tempfile
import unittest

import numpy as np
import torch
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer

from diffusers import (
    AutoencoderKL,
    ControlNetModel,
    DDIMScheduler,
    StableDiffusionControlNetInpaintPipeline,
    UNet2DConditionModel,
)
35
from diffusers.pipelines.controlnet.pipeline_controlnet import MultiControlNetModel
Dhruv Nair's avatar
Dhruv Nair committed
36
from diffusers.utils import load_image
37
from diffusers.utils.import_utils import is_xformers_available
Dhruv Nair's avatar
Dhruv Nair committed
38
from diffusers.utils.testing_utils import (
39
    backend_empty_cache,
Dhruv Nair's avatar
Dhruv Nair committed
40
41
42
    enable_full_determinism,
    floats_tensor,
    load_numpy,
43
    numpy_cosine_similarity_distance,
44
    require_torch_accelerator,
Dhruv Nair's avatar
Dhruv Nair committed
45
46
47
48
    slow,
    torch_device,
)
from diffusers.utils.torch_utils import randn_tensor
49
50
51
52

from ..pipeline_params import (
    TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS,
    TEXT_GUIDED_IMAGE_INPAINTING_PARAMS,
53
    TEXT_TO_IMAGE_IMAGE_PARAMS,
54
)
Aryan's avatar
Aryan committed
55
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
56
57


58
enable_full_determinism()
59
60


61
62
63
class ControlNetInpaintPipelineFastTests(
    PipelineLatentTesterMixin, PipelineKarrasSchedulerTesterMixin, PipelineTesterMixin, unittest.TestCase
):
64
65
66
    pipeline_class = StableDiffusionControlNetInpaintPipeline
    params = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
    batch_params = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS
67
68
    image_params = frozenset({"control_image"})  # skip `image` and `mask` for now, only test for control_image
    image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131

    def get_dummy_components(self):
        torch.manual_seed(0)
        unet = UNet2DConditionModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=9,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
        )
        torch.manual_seed(0)
        controlnet = ControlNetModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            in_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            cross_attention_dim=32,
            conditioning_embedding_out_channels=(16, 32),
        )
        torch.manual_seed(0)
        scheduler = DDIMScheduler(
            beta_start=0.00085,
            beta_end=0.012,
            beta_schedule="scaled_linear",
            clip_sample=False,
            set_alpha_to_one=False,
        )
        torch.manual_seed(0)
        vae = AutoencoderKL(
            block_out_channels=[32, 64],
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=4,
        )
        torch.manual_seed(0)
        text_encoder_config = CLIPTextConfig(
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
        )
        text_encoder = CLIPTextModel(text_encoder_config)
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        components = {
            "unet": unet,
            "controlnet": controlnet,
            "scheduler": scheduler,
            "vae": vae,
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
            "safety_checker": None,
            "feature_extractor": None,
132
            "image_encoder": None,
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
        }
        return components

    def get_dummy_inputs(self, device, seed=0):
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)

        controlnet_embedder_scale_factor = 2
        control_image = randn_tensor(
            (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor),
            generator=generator,
            device=torch.device(device),
        )
        init_image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device)
        init_image = init_image.cpu().permute(0, 2, 3, 1)[0]

        image = Image.fromarray(np.uint8(init_image)).convert("RGB").resize((64, 64))
        mask_image = Image.fromarray(np.uint8(init_image + 4)).convert("RGB").resize((64, 64))

        inputs = {
            "prompt": "A painting of a squirrel eating a burger",
            "generator": generator,
            "num_inference_steps": 2,
            "guidance_scale": 6.0,
159
            "output_type": "np",
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
            "image": image,
            "mask_image": mask_image,
            "control_image": control_image,
        }

        return inputs

    def test_attention_slicing_forward_pass(self):
        return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3)

    @unittest.skipIf(
        torch_device != "cuda" or not is_xformers_available(),
        reason="XFormers attention is only available with CUDA and `xformers` installed",
    )
    def test_xformers_attention_forwardGenerator_pass(self):
        self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3)

    def test_inference_batch_single_identical(self):
        self._test_inference_batch_single_identical(expected_max_diff=2e-3)

180
181
182
183
184
185
186
    def test_encode_prompt_works_in_isolation(self):
        extra_required_param_value_dict = {
            "device": torch.device(torch_device).type,
            "do_classifier_free_guidance": self.get_dummy_inputs(device=torch_device).get("guidance_scale", 1.0) > 1.0,
        }
        return super().test_encode_prompt_works_in_isolation(extra_required_param_value_dict)

187

188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
class ControlNetSimpleInpaintPipelineFastTests(ControlNetInpaintPipelineFastTests):
    pipeline_class = StableDiffusionControlNetInpaintPipeline
    params = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
    batch_params = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS
    image_params = frozenset([])

    def get_dummy_components(self):
        torch.manual_seed(0)
        unet = UNet2DConditionModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=4,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
        )
        torch.manual_seed(0)
        controlnet = ControlNetModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            in_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            cross_attention_dim=32,
            conditioning_embedding_out_channels=(16, 32),
        )
        torch.manual_seed(0)
        scheduler = DDIMScheduler(
            beta_start=0.00085,
            beta_end=0.012,
            beta_schedule="scaled_linear",
            clip_sample=False,
            set_alpha_to_one=False,
        )
        torch.manual_seed(0)
        vae = AutoencoderKL(
            block_out_channels=[32, 64],
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=4,
        )
        torch.manual_seed(0)
        text_encoder_config = CLIPTextConfig(
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
        )
        text_encoder = CLIPTextModel(text_encoder_config)
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        components = {
            "unet": unet,
            "controlnet": controlnet,
            "scheduler": scheduler,
            "vae": vae,
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
            "safety_checker": None,
            "feature_extractor": None,
256
            "image_encoder": None,
257
258
259
260
        }
        return components


261
262
263
class MultiControlNetInpaintPipelineFastTests(
    PipelineTesterMixin, PipelineKarrasSchedulerTesterMixin, unittest.TestCase
):
264
265
266
267
    pipeline_class = StableDiffusionControlNetInpaintPipeline
    params = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
    batch_params = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS

Marc Sun's avatar
Marc Sun committed
268
269
    supports_dduf = False

270
271
272
273
274
275
276
277
278
279
280
281
282
    def get_dummy_components(self):
        torch.manual_seed(0)
        unet = UNet2DConditionModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=9,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
        )
        torch.manual_seed(0)
283
284
285

        def init_weights(m):
            if isinstance(m, torch.nn.Conv2d):
286
                torch.nn.init.normal_(m.weight)
287
288
                m.bias.data.fill_(1.0)

289
290
291
292
293
294
295
296
        controlnet1 = ControlNetModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            in_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            cross_attention_dim=32,
            conditioning_embedding_out_channels=(16, 32),
        )
297
298
        controlnet1.controlnet_down_blocks.apply(init_weights)

299
300
301
302
303
304
305
306
307
        torch.manual_seed(0)
        controlnet2 = ControlNetModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            in_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            cross_attention_dim=32,
            conditioning_embedding_out_channels=(16, 32),
        )
308
309
        controlnet2.controlnet_down_blocks.apply(init_weights)

310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
        torch.manual_seed(0)
        scheduler = DDIMScheduler(
            beta_start=0.00085,
            beta_end=0.012,
            beta_schedule="scaled_linear",
            clip_sample=False,
            set_alpha_to_one=False,
        )
        torch.manual_seed(0)
        vae = AutoencoderKL(
            block_out_channels=[32, 64],
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=4,
        )
        torch.manual_seed(0)
        text_encoder_config = CLIPTextConfig(
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
        )
        text_encoder = CLIPTextModel(text_encoder_config)
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        controlnet = MultiControlNetModel([controlnet1, controlnet2])

        components = {
            "unet": unet,
            "controlnet": controlnet,
            "scheduler": scheduler,
            "vae": vae,
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
            "safety_checker": None,
            "feature_extractor": None,
353
            "image_encoder": None,
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
        }
        return components

    def get_dummy_inputs(self, device, seed=0):
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)

        controlnet_embedder_scale_factor = 2

        control_image = [
            randn_tensor(
                (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor),
                generator=generator,
                device=torch.device(device),
            ),
            randn_tensor(
                (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor),
                generator=generator,
                device=torch.device(device),
            ),
        ]
        init_image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device)
        init_image = init_image.cpu().permute(0, 2, 3, 1)[0]

        image = Image.fromarray(np.uint8(init_image)).convert("RGB").resize((64, 64))
        mask_image = Image.fromarray(np.uint8(init_image + 4)).convert("RGB").resize((64, 64))

        inputs = {
            "prompt": "A painting of a squirrel eating a burger",
            "generator": generator,
            "num_inference_steps": 2,
            "guidance_scale": 6.0,
388
            "output_type": "np",
389
390
391
392
393
394
395
            "image": image,
            "mask_image": mask_image,
            "control_image": control_image,
        }

        return inputs

396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
    def test_control_guidance_switch(self):
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(torch_device)

        scale = 10.0
        steps = 4

        inputs = self.get_dummy_inputs(torch_device)
        inputs["num_inference_steps"] = steps
        inputs["controlnet_conditioning_scale"] = scale
        output_1 = pipe(**inputs)[0]

        inputs = self.get_dummy_inputs(torch_device)
        inputs["num_inference_steps"] = steps
        inputs["controlnet_conditioning_scale"] = scale
        output_2 = pipe(**inputs, control_guidance_start=0.1, control_guidance_end=0.2)[0]

        inputs = self.get_dummy_inputs(torch_device)
        inputs["num_inference_steps"] = steps
        inputs["controlnet_conditioning_scale"] = scale
        output_3 = pipe(**inputs, control_guidance_start=[0.1, 0.3], control_guidance_end=[0.2, 0.7])[0]

        inputs = self.get_dummy_inputs(torch_device)
        inputs["num_inference_steps"] = steps
        inputs["controlnet_conditioning_scale"] = scale
        output_4 = pipe(**inputs, control_guidance_start=0.4, control_guidance_end=[0.5, 0.8])[0]

        # make sure that all outputs are different
        assert np.sum(np.abs(output_1 - output_2)) > 1e-3
        assert np.sum(np.abs(output_1 - output_3)) > 1e-3
        assert np.sum(np.abs(output_1 - output_4)) > 1e-3

429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
    def test_attention_slicing_forward_pass(self):
        return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3)

    @unittest.skipIf(
        torch_device != "cuda" or not is_xformers_available(),
        reason="XFormers attention is only available with CUDA and `xformers` installed",
    )
    def test_xformers_attention_forwardGenerator_pass(self):
        self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3)

    def test_inference_batch_single_identical(self):
        self._test_inference_batch_single_identical(expected_max_diff=2e-3)

    def test_save_pretrained_raise_not_implemented_exception(self):
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        with tempfile.TemporaryDirectory() as tmpdir:
            try:
                # save_pretrained is not implemented for Multi-ControlNet
                pipe.save_pretrained(tmpdir)
            except NotImplementedError:
                pass

454
455
456
457
458
459
460
    def test_encode_prompt_works_in_isolation(self):
        extra_required_param_value_dict = {
            "device": torch.device(torch_device).type,
            "do_classifier_free_guidance": self.get_dummy_inputs(device=torch_device).get("guidance_scale", 1.0) > 1.0,
        }
        return super().test_encode_prompt_works_in_isolation(extra_required_param_value_dict)

461
462

@slow
463
@require_torch_accelerator
464
class ControlNetInpaintPipelineSlowTests(unittest.TestCase):
465
466
467
    def setUp(self):
        super().setUp()
        gc.collect()
468
        backend_empty_cache(torch_device)
469

470
471
472
    def tearDown(self):
        super().tearDown()
        gc.collect()
473
        backend_empty_cache(torch_device)
474
475
476
477
478

    def test_canny(self):
        controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny")

        pipe = StableDiffusionControlNetInpaintPipeline.from_pretrained(
Dhruv Nair's avatar
Dhruv Nair committed
479
            "botp/stable-diffusion-v1-5-inpainting", safety_checker=None, controlnet=controlnet
480
        )
481
        pipe.enable_model_cpu_offload(device=torch_device)
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
        pipe.set_progress_bar_config(disable=None)

        generator = torch.Generator(device="cpu").manual_seed(0)
        image = load_image(
            "https://huggingface.co/lllyasviel/sd-controlnet-canny/resolve/main/images/bird.png"
        ).resize((512, 512))

        mask_image = load_image(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_inpaint/input_bench_mask.png"
        ).resize((512, 512))

        prompt = "pitch black hole"

        control_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png"
        ).resize((512, 512))

        output = pipe(
            prompt,
            image=image,
            mask_image=mask_image,
            control_image=control_image,
            generator=generator,
            output_type="np",
            num_inference_steps=3,
        )

        image = output.images[0]

        assert image.shape == (512, 512, 3)

        expected_image = load_numpy(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/inpaint.npy"
        )

        assert np.abs(expected_image - image).max() < 9e-2
519
520
521
522
523

    def test_inpaint(self):
        controlnet = ControlNetModel.from_pretrained("lllyasviel/control_v11p_sd15_inpaint")

        pipe = StableDiffusionControlNetInpaintPipeline.from_pretrained(
524
            "stable-diffusion-v1-5/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet
525
526
        )
        pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
527
        pipe.enable_model_cpu_offload(device=torch_device)
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
        pipe.set_progress_bar_config(disable=None)

        generator = torch.Generator(device="cpu").manual_seed(33)

        init_image = load_image(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_inpaint/boy.png"
        )
        init_image = init_image.resize((512, 512))

        mask_image = load_image(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_inpaint/boy_mask.png"
        )
        mask_image = mask_image.resize((512, 512))

        prompt = "a handsome man with ray-ban sunglasses"

        def make_inpaint_condition(image, image_mask):
            image = np.array(image.convert("RGB")).astype(np.float32) / 255.0
            image_mask = np.array(image_mask.convert("L")).astype(np.float32) / 255.0

            assert image.shape[0:1] == image_mask.shape[0:1], "image and image_mask must have the same image size"
            image[image_mask > 0.5] = -1.0  # set as masked pixel
            image = np.expand_dims(image, 0).transpose(0, 3, 1, 2)
            image = torch.from_numpy(image)
            return image

        control_image = make_inpaint_condition(init_image, mask_image)

        output = pipe(
            prompt,
            image=init_image,
            mask_image=mask_image,
            control_image=control_image,
            guidance_scale=9.0,
            eta=1.0,
            generator=generator,
            num_inference_steps=20,
            output_type="np",
        )
        image = output.images[0]

        assert image.shape == (512, 512, 3)

        expected_image = load_numpy(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/boy_ray_ban.npy"
        )

575
        assert numpy_cosine_similarity_distance(expected_image.flatten(), image.flatten()) < 1e-2