test_controlnet_img2img.py 16.3 KB
Newer Older
1
# coding=utf-8
2
# Copyright 2024 HuggingFace Inc.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# This model implementation is heavily inspired by https://github.com/haofanwang/ControlNet-for-Diffusers/

import gc
import random
import tempfile
import unittest

import numpy as np
import torch
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer

from diffusers import (
    AutoencoderKL,
    ControlNetModel,
    DDIMScheduler,
    StableDiffusionControlNetImg2ImgPipeline,
    UNet2DConditionModel,
)
35
from diffusers.pipelines.controlnet.pipeline_controlnet import MultiControlNetModel
Dhruv Nair's avatar
Dhruv Nair committed
36
from diffusers.utils import load_image
37
from diffusers.utils.import_utils import is_xformers_available
Dhruv Nair's avatar
Dhruv Nair committed
38
from diffusers.utils.testing_utils import (
39
    backend_empty_cache,
Dhruv Nair's avatar
Dhruv Nair committed
40
41
42
    enable_full_determinism,
    floats_tensor,
    load_numpy,
43
    require_torch_accelerator,
Dhruv Nair's avatar
Dhruv Nair committed
44
45
46
47
    slow,
    torch_device,
)
from diffusers.utils.torch_utils import randn_tensor
48
49

from ..pipeline_params import (
50
    IMAGE_TO_IMAGE_IMAGE_PARAMS,
51
52
53
    TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS,
    TEXT_GUIDED_IMAGE_VARIATION_PARAMS,
)
54
from ..test_pipelines_common import (
Aryan's avatar
Aryan committed
55
    IPAdapterTesterMixin,
56
57
58
59
    PipelineKarrasSchedulerTesterMixin,
    PipelineLatentTesterMixin,
    PipelineTesterMixin,
)
60
61


62
enable_full_determinism()
63
64


65
class ControlNetImg2ImgPipelineFastTests(
Aryan's avatar
Aryan committed
66
67
68
69
70
    IPAdapterTesterMixin,
    PipelineLatentTesterMixin,
    PipelineKarrasSchedulerTesterMixin,
    PipelineTesterMixin,
    unittest.TestCase,
71
):
72
73
74
    pipeline_class = StableDiffusionControlNetImg2ImgPipeline
    params = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width"}
    batch_params = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS
75
76
    image_params = IMAGE_TO_IMAGE_IMAGE_PARAMS.union({"control_image"})
    image_latents_params = IMAGE_TO_IMAGE_IMAGE_PARAMS
77
78
79
80

    def get_dummy_components(self):
        torch.manual_seed(0)
        unet = UNet2DConditionModel(
81
            block_out_channels=(4, 8),
82
83
84
85
86
87
88
            layers_per_block=2,
            sample_size=32,
            in_channels=4,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
89
            norm_num_groups=1,
90
91
92
        )
        torch.manual_seed(0)
        controlnet = ControlNetModel(
93
            block_out_channels=(4, 8),
94
95
96
97
98
            layers_per_block=2,
            in_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            cross_attention_dim=32,
            conditioning_embedding_out_channels=(16, 32),
99
            norm_num_groups=1,
100
101
102
103
104
105
106
107
108
109
110
        )
        torch.manual_seed(0)
        scheduler = DDIMScheduler(
            beta_start=0.00085,
            beta_end=0.012,
            beta_schedule="scaled_linear",
            clip_sample=False,
            set_alpha_to_one=False,
        )
        torch.manual_seed(0)
        vae = AutoencoderKL(
111
            block_out_channels=[4, 8],
112
113
114
115
116
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=4,
117
            norm_num_groups=2,
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
        )
        torch.manual_seed(0)
        text_encoder_config = CLIPTextConfig(
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
        )
        text_encoder = CLIPTextModel(text_encoder_config)
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        components = {
            "unet": unet,
            "controlnet": controlnet,
            "scheduler": scheduler,
            "vae": vae,
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
            "safety_checker": None,
            "feature_extractor": None,
143
            "image_encoder": None,
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
        }
        return components

    def get_dummy_inputs(self, device, seed=0):
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)

        controlnet_embedder_scale_factor = 2
        control_image = randn_tensor(
            (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor),
            generator=generator,
            device=torch.device(device),
        )
        image = floats_tensor(control_image.shape, rng=random.Random(seed)).to(device)
        image = image.cpu().permute(0, 2, 3, 1)[0]
        image = Image.fromarray(np.uint8(image)).convert("RGB").resize((64, 64))
        inputs = {
            "prompt": "A painting of a squirrel eating a burger",
            "generator": generator,
            "num_inference_steps": 2,
            "guidance_scale": 6.0,
167
            "output_type": "np",
168
169
170
171
172
173
174
175
176
            "image": image,
            "control_image": control_image,
        }

        return inputs

    def test_attention_slicing_forward_pass(self):
        return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3)

177
    def test_ip_adapter(self):
178
179
180
        expected_pipe_slice = None
        if torch_device == "cpu":
            expected_pipe_slice = np.array([0.7096, 0.5149, 0.3571, 0.5897, 0.4715, 0.4052, 0.6098, 0.6886, 0.4213])
181
        return super().test_ip_adapter(expected_pipe_slice=expected_pipe_slice)
182

183
184
185
186
187
188
189
190
191
192
    @unittest.skipIf(
        torch_device != "cuda" or not is_xformers_available(),
        reason="XFormers attention is only available with CUDA and `xformers` installed",
    )
    def test_xformers_attention_forwardGenerator_pass(self):
        self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3)

    def test_inference_batch_single_identical(self):
        self._test_inference_batch_single_identical(expected_max_diff=2e-3)

193
194
195
196
197
198
199
    def test_encode_prompt_works_in_isolation(self):
        extra_required_param_value_dict = {
            "device": torch.device(torch_device).type,
            "do_classifier_free_guidance": self.get_dummy_inputs(device=torch_device).get("guidance_scale", 1.0) > 1.0,
        }
        return super().test_encode_prompt_works_in_isolation(extra_required_param_value_dict)

200

201
class StableDiffusionMultiControlNetPipelineFastTests(
Aryan's avatar
Aryan committed
202
    IPAdapterTesterMixin, PipelineTesterMixin, PipelineKarrasSchedulerTesterMixin, unittest.TestCase
203
):
204
205
206
207
208
    pipeline_class = StableDiffusionControlNetImg2ImgPipeline
    params = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width"}
    batch_params = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS
    image_params = frozenset([])  # TO_DO: add image_params once refactored VaeImageProcessor.preprocess

Marc Sun's avatar
Marc Sun committed
209
210
    supports_dduf = False

211
212
213
    def get_dummy_components(self):
        torch.manual_seed(0)
        unet = UNet2DConditionModel(
214
            block_out_channels=(4, 8),
215
216
217
218
219
220
221
            layers_per_block=2,
            sample_size=32,
            in_channels=4,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
222
            norm_num_groups=1,
223
224
        )
        torch.manual_seed(0)
225
226
227

        def init_weights(m):
            if isinstance(m, torch.nn.Conv2d):
228
                torch.nn.init.normal_(m.weight)
229
230
                m.bias.data.fill_(1.0)

231
        controlnet1 = ControlNetModel(
232
            block_out_channels=(4, 8),
233
234
235
236
237
            layers_per_block=2,
            in_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            cross_attention_dim=32,
            conditioning_embedding_out_channels=(16, 32),
238
            norm_num_groups=1,
239
        )
240
241
        controlnet1.controlnet_down_blocks.apply(init_weights)

242
243
        torch.manual_seed(0)
        controlnet2 = ControlNetModel(
244
            block_out_channels=(4, 8),
245
246
247
248
249
            layers_per_block=2,
            in_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            cross_attention_dim=32,
            conditioning_embedding_out_channels=(16, 32),
250
            norm_num_groups=1,
251
        )
252
253
        controlnet2.controlnet_down_blocks.apply(init_weights)

254
255
256
257
258
259
260
261
262
263
        torch.manual_seed(0)
        scheduler = DDIMScheduler(
            beta_start=0.00085,
            beta_end=0.012,
            beta_schedule="scaled_linear",
            clip_sample=False,
            set_alpha_to_one=False,
        )
        torch.manual_seed(0)
        vae = AutoencoderKL(
264
            block_out_channels=[4, 8],
265
266
267
268
269
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=4,
270
            norm_num_groups=2,
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
        )
        torch.manual_seed(0)
        text_encoder_config = CLIPTextConfig(
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
        )
        text_encoder = CLIPTextModel(text_encoder_config)
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        controlnet = MultiControlNetModel([controlnet1, controlnet2])

        components = {
            "unet": unet,
            "controlnet": controlnet,
            "scheduler": scheduler,
            "vae": vae,
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
            "safety_checker": None,
            "feature_extractor": None,
298
            "image_encoder": None,
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
        }
        return components

    def get_dummy_inputs(self, device, seed=0):
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)

        controlnet_embedder_scale_factor = 2

        control_image = [
            randn_tensor(
                (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor),
                generator=generator,
                device=torch.device(device),
            ),
            randn_tensor(
                (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor),
                generator=generator,
                device=torch.device(device),
            ),
        ]

        image = floats_tensor(control_image[0].shape, rng=random.Random(seed)).to(device)
        image = image.cpu().permute(0, 2, 3, 1)[0]
        image = Image.fromarray(np.uint8(image)).convert("RGB").resize((64, 64))
        inputs = {
            "prompt": "A painting of a squirrel eating a burger",
            "generator": generator,
            "num_inference_steps": 2,
            "guidance_scale": 6.0,
331
            "output_type": "np",
332
333
334
335
336
337
            "image": image,
            "control_image": control_image,
        }

        return inputs

338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
    def test_control_guidance_switch(self):
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(torch_device)

        scale = 10.0
        steps = 4

        inputs = self.get_dummy_inputs(torch_device)
        inputs["num_inference_steps"] = steps
        inputs["controlnet_conditioning_scale"] = scale
        output_1 = pipe(**inputs)[0]

        inputs = self.get_dummy_inputs(torch_device)
        inputs["num_inference_steps"] = steps
        inputs["controlnet_conditioning_scale"] = scale
        output_2 = pipe(**inputs, control_guidance_start=0.1, control_guidance_end=0.2)[0]

        inputs = self.get_dummy_inputs(torch_device)
        inputs["num_inference_steps"] = steps
        inputs["controlnet_conditioning_scale"] = scale
        output_3 = pipe(**inputs, control_guidance_start=[0.1, 0.3], control_guidance_end=[0.2, 0.7])[0]

        inputs = self.get_dummy_inputs(torch_device)
        inputs["num_inference_steps"] = steps
        inputs["controlnet_conditioning_scale"] = scale
        output_4 = pipe(**inputs, control_guidance_start=0.4, control_guidance_end=[0.5, 0.8])[0]

        # make sure that all outputs are different
        assert np.sum(np.abs(output_1 - output_2)) > 1e-3
        assert np.sum(np.abs(output_1 - output_3)) > 1e-3
        assert np.sum(np.abs(output_1 - output_4)) > 1e-3

371
372
373
374
375
376
377
378
379
380
381
382
383
    def test_attention_slicing_forward_pass(self):
        return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3)

    @unittest.skipIf(
        torch_device != "cuda" or not is_xformers_available(),
        reason="XFormers attention is only available with CUDA and `xformers` installed",
    )
    def test_xformers_attention_forwardGenerator_pass(self):
        self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3)

    def test_inference_batch_single_identical(self):
        self._test_inference_batch_single_identical(expected_max_diff=2e-3)

384
    def test_ip_adapter(self):
385
386
387
        expected_pipe_slice = None
        if torch_device == "cpu":
            expected_pipe_slice = np.array([0.5293, 0.7339, 0.6642, 0.3950, 0.5212, 0.5175, 0.7002, 0.5907, 0.5182])
388
        return super().test_ip_adapter(expected_pipe_slice=expected_pipe_slice)
389

390
391
392
393
394
395
396
397
398
399
400
401
    def test_save_pretrained_raise_not_implemented_exception(self):
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        with tempfile.TemporaryDirectory() as tmpdir:
            try:
                # save_pretrained is not implemented for Multi-ControlNet
                pipe.save_pretrained(tmpdir)
            except NotImplementedError:
                pass

402
403
404
405
406
407
408
    def test_encode_prompt_works_in_isolation(self):
        extra_required_param_value_dict = {
            "device": torch.device(torch_device).type,
            "do_classifier_free_guidance": self.get_dummy_inputs(device=torch_device).get("guidance_scale", 1.0) > 1.0,
        }
        return super().test_encode_prompt_works_in_isolation(extra_required_param_value_dict)

409
410

@slow
411
@require_torch_accelerator
412
class ControlNetImg2ImgPipelineSlowTests(unittest.TestCase):
413
414
415
    def setUp(self):
        super().setUp()
        gc.collect()
416
        backend_empty_cache(torch_device)
417

418
419
420
    def tearDown(self):
        super().tearDown()
        gc.collect()
421
        backend_empty_cache(torch_device)
422
423
424
425
426

    def test_canny(self):
        controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny")

        pipe = StableDiffusionControlNetImg2ImgPipeline.from_pretrained(
427
            "stable-diffusion-v1-5/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet
428
        )
429
        pipe.enable_model_cpu_offload(device=torch_device)
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
        pipe.set_progress_bar_config(disable=None)

        generator = torch.Generator(device="cpu").manual_seed(0)
        prompt = "evil space-punk bird"
        control_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png"
        ).resize((512, 512))
        image = load_image(
            "https://huggingface.co/lllyasviel/sd-controlnet-canny/resolve/main/images/bird.png"
        ).resize((512, 512))

        output = pipe(
            prompt,
            image,
            control_image=control_image,
            generator=generator,
            output_type="np",
            num_inference_steps=50,
            strength=0.6,
        )

        image = output.images[0]

        assert image.shape == (512, 512, 3)

        expected_image = load_numpy(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/img2img.npy"
        )

        assert np.abs(expected_image - image).max() < 9e-2