dynamic_modules_utils.py 17.7 KB
Newer Older
patil-suraj's avatar
patil-suraj committed
1
# coding=utf-8
Patrick von Platen's avatar
Patrick von Platen committed
2
# Copyright 2022 The HuggingFace Inc. team.
patil-suraj's avatar
patil-suraj committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Utilities to dynamically load objects from the Hub."""

import importlib
Patrick von Platen's avatar
Patrick von Platen committed
18
import inspect
patil-suraj's avatar
patil-suraj committed
19
20
21
22
23
24
25
import os
import re
import shutil
import sys
from pathlib import Path
from typing import Dict, Optional, Union

Patrick von Platen's avatar
Patrick von Platen committed
26
from huggingface_hub import HfFolder, cached_download, hf_hub_download, model_info
Patrick von Platen's avatar
Patrick von Platen committed
27
28

from .utils import DIFFUSERS_DYNAMIC_MODULE_NAME, HF_MODULES_CACHE, logging
patil-suraj's avatar
patil-suraj committed
29
30


Patrick von Platen's avatar
Patrick von Platen committed
31
32
33
34
35
COMMUNITY_PIPELINES_URL = (
    "https://raw.githubusercontent.com/huggingface/diffusers/main/examples/community/{pipeline}.py"
)


patil-suraj's avatar
patil-suraj committed
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


def init_hf_modules():
    """
    Creates the cache directory for modules with an init, and adds it to the Python path.
    """
    # This function has already been executed if HF_MODULES_CACHE already is in the Python path.
    if HF_MODULES_CACHE in sys.path:
        return

    sys.path.append(HF_MODULES_CACHE)
    os.makedirs(HF_MODULES_CACHE, exist_ok=True)
    init_path = Path(HF_MODULES_CACHE) / "__init__.py"
    if not init_path.exists():
        init_path.touch()


def create_dynamic_module(name: Union[str, os.PathLike]):
    """
    Creates a dynamic module in the cache directory for modules.
    """
    init_hf_modules()
    dynamic_module_path = Path(HF_MODULES_CACHE) / name
    # If the parent module does not exist yet, recursively create it.
    if not dynamic_module_path.parent.exists():
        create_dynamic_module(dynamic_module_path.parent)
    os.makedirs(dynamic_module_path, exist_ok=True)
    init_path = dynamic_module_path / "__init__.py"
    if not init_path.exists():
        init_path.touch()


def get_relative_imports(module_file):
    """
    Get the list of modules that are relatively imported in a module file.

    Args:
        module_file (`str` or `os.PathLike`): The module file to inspect.
    """
    with open(module_file, "r", encoding="utf-8") as f:
        content = f.read()

    # Imports of the form `import .xxx`
    relative_imports = re.findall("^\s*import\s+\.(\S+)\s*$", content, flags=re.MULTILINE)
    # Imports of the form `from .xxx import yyy`
    relative_imports += re.findall("^\s*from\s+\.(\S+)\s+import", content, flags=re.MULTILINE)
    # Unique-ify
    return list(set(relative_imports))


def get_relative_import_files(module_file):
    """
    Get the list of all files that are needed for a given module. Note that this function recurses through the relative
    imports (if a imports b and b imports c, it will return module files for b and c).

    Args:
        module_file (`str` or `os.PathLike`): The module file to inspect.
    """
    no_change = False
    files_to_check = [module_file]
    all_relative_imports = []

    # Let's recurse through all relative imports
    while not no_change:
        new_imports = []
        for f in files_to_check:
            new_imports.extend(get_relative_imports(f))

        module_path = Path(module_file).parent
        new_import_files = [str(module_path / m) for m in new_imports]
        new_import_files = [f for f in new_import_files if f not in all_relative_imports]
        files_to_check = [f"{f}.py" for f in new_import_files]

        no_change = len(new_import_files) == 0
        all_relative_imports.extend(files_to_check)

    return all_relative_imports


def check_imports(filename):
    """
    Check if the current Python environment contains all the libraries that are imported in a file.
    """
    with open(filename, "r", encoding="utf-8") as f:
        content = f.read()

    # Imports of the form `import xxx`
    imports = re.findall("^\s*import\s+(\S+)\s*$", content, flags=re.MULTILINE)
    # Imports of the form `from xxx import yyy`
    imports += re.findall("^\s*from\s+(\S+)\s+import", content, flags=re.MULTILINE)
    # Only keep the top-level module
    imports = [imp.split(".")[0] for imp in imports if not imp.startswith(".")]

    # Unique-ify and test we got them all
    imports = list(set(imports))
    missing_packages = []
    for imp in imports:
        try:
            importlib.import_module(imp)
        except ImportError:
            missing_packages.append(imp)

    if len(missing_packages) > 0:
        raise ImportError(
            "This modeling file requires the following packages that were not found in your environment: "
            f"{', '.join(missing_packages)}. Run `pip install {' '.join(missing_packages)}`"
        )

    return get_relative_imports(filename)


def get_class_in_module(class_name, module_path):
    """
    Import a module on the cache directory for modules and extract a class from it.
    """
    module_path = module_path.replace(os.path.sep, ".")
    module = importlib.import_module(module_path)
Patrick von Platen's avatar
Patrick von Platen committed
154
155
156

    if class_name is None:
        return find_pipeline_class(module)
patil-suraj's avatar
patil-suraj committed
157
158
159
    return getattr(module, class_name)


Patrick von Platen's avatar
Patrick von Platen committed
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
def find_pipeline_class(loaded_module):
    """
    Retrieve pipeline class that inherits from `DiffusionPipeline`. Note that there has to be exactly one class
    inheriting from `DiffusionPipeline`.
    """
    from .pipeline_utils import DiffusionPipeline

    cls_members = dict(inspect.getmembers(loaded_module, inspect.isclass))

    pipeline_class = None
    for cls_name, cls in cls_members.items():
        if cls_name != DiffusionPipeline.__name__ and issubclass(cls, DiffusionPipeline):
            if pipeline_class is not None:
                raise ValueError(
                    f"Multiple classes that inherit from {DiffusionPipeline.__name__} have been found:"
                    f" {pipeline_class.__name__}, and {cls_name}. Please make sure to define only one in"
                    f" {loaded_module}."
                )
            pipeline_class = cls

    return pipeline_class


patil-suraj's avatar
patil-suraj committed
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
def get_cached_module_file(
    pretrained_model_name_or_path: Union[str, os.PathLike],
    module_file: str,
    cache_dir: Optional[Union[str, os.PathLike]] = None,
    force_download: bool = False,
    resume_download: bool = False,
    proxies: Optional[Dict[str, str]] = None,
    use_auth_token: Optional[Union[bool, str]] = None,
    revision: Optional[str] = None,
    local_files_only: bool = False,
):
    """
    Prepares Downloads a module from a local folder or a distant repo and returns its path inside the cached
    Transformers module.

    Args:
        pretrained_model_name_or_path (`str` or `os.PathLike`):
            This can be either:

            - a string, the *model id* of a pretrained model configuration hosted inside a model repo on
              huggingface.co. Valid model ids can be located at the root-level, like `bert-base-uncased`, or namespaced
              under a user or organization name, like `dbmdz/bert-base-german-cased`.
            - a path to a *directory* containing a configuration file saved using the
              [`~PreTrainedTokenizer.save_pretrained`] method, e.g., `./my_model_directory/`.

        module_file (`str`):
            The name of the module file containing the class to look for.
        cache_dir (`str` or `os.PathLike`, *optional*):
            Path to a directory in which a downloaded pretrained model configuration should be cached if the standard
            cache should not be used.
        force_download (`bool`, *optional*, defaults to `False`):
            Whether or not to force to (re-)download the configuration files and override the cached versions if they
            exist.
        resume_download (`bool`, *optional*, defaults to `False`):
            Whether or not to delete incompletely received file. Attempts to resume the download if such a file exists.
        proxies (`Dict[str, str]`, *optional*):
            A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
            'http://hostname': 'foo.bar:4012'}.` The proxies are used on each request.
        use_auth_token (`str` or *bool*, *optional*):
            The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated
            when running `transformers-cli login` (stored in `~/.huggingface`).
        revision (`str`, *optional*, defaults to `"main"`):
            The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
            git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
            identifier allowed by git.
        local_files_only (`bool`, *optional*, defaults to `False`):
            If `True`, will only try to load the tokenizer configuration from local files.

    <Tip>

Patrick von Platen's avatar
Patrick von Platen committed
233
234
    You may pass a token in `use_auth_token` if you are not logged in (`huggingface-cli long`) and want to use private
    or [gated models](https://huggingface.co/docs/hub/models-gated#gated-models).
patil-suraj's avatar
patil-suraj committed
235
236
237
238
239
240
241
242

    </Tip>

    Returns:
        `str`: The path to the module inside the cache.
    """
    # Download and cache module_file from the repo `pretrained_model_name_or_path` of grab it if it's a local file.
    pretrained_model_name_or_path = str(pretrained_model_name_or_path)
Patrick von Platen's avatar
Patrick von Platen committed
243

patil-suraj's avatar
patil-suraj committed
244
245
    module_file_or_url = os.path.join(pretrained_model_name_or_path, module_file)

Patrick von Platen's avatar
Patrick von Platen committed
246
247
    if os.path.isfile(module_file_or_url):
        resolved_module_file = module_file_or_url
Patrick von Platen's avatar
Patrick von Platen committed
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
        submodule = "local"
    elif pretrained_model_name_or_path.count("/") == 0:
        # community pipeline on GitHub
        github_url = COMMUNITY_PIPELINES_URL.format(pipeline=pretrained_model_name_or_path)
        try:
            resolved_module_file = cached_download(
                github_url,
                cache_dir=cache_dir,
                force_download=force_download,
                proxies=proxies,
                resume_download=resume_download,
                local_files_only=local_files_only,
                use_auth_token=False,
            )
            submodule = "local"
        except EnvironmentError:
            logger.error(f"Could not locate the {module_file} inside {pretrained_model_name_or_path}.")
            raise
Patrick von Platen's avatar
Patrick von Platen committed
266
267
268
    else:
        try:
            # Load from URL or cache if already cached
Patrick von Platen's avatar
Patrick von Platen committed
269
270
271
            resolved_module_file = hf_hub_download(
                pretrained_model_name_or_path,
                module_file,
Patrick von Platen's avatar
Patrick von Platen committed
272
273
274
275
276
277
278
                cache_dir=cache_dir,
                force_download=force_download,
                proxies=proxies,
                resume_download=resume_download,
                local_files_only=local_files_only,
                use_auth_token=use_auth_token,
            )
Patrick von Platen's avatar
Patrick von Platen committed
279
            submodule = os.path.join("local", "--".join(pretrained_model_name_or_path.split("/")))
Patrick von Platen's avatar
Patrick von Platen committed
280
281
282
        except EnvironmentError:
            logger.error(f"Could not locate the {module_file} inside {pretrained_model_name_or_path}.")
            raise
patil-suraj's avatar
patil-suraj committed
283
284
285
286
287

    # Check we have all the requirements in our environment
    modules_needed = check_imports(resolved_module_file)

    # Now we move the module inside our cached dynamic modules.
288
    full_submodule = DIFFUSERS_DYNAMIC_MODULE_NAME + os.path.sep + submodule
patil-suraj's avatar
patil-suraj committed
289
290
    create_dynamic_module(full_submodule)
    submodule_path = Path(HF_MODULES_CACHE) / full_submodule
Patrick von Platen's avatar
Patrick von Platen committed
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
    if submodule == "local":
        # We always copy local files (we could hash the file to see if there was a change, and give them the name of
        # that hash, to only copy when there is a modification but it seems overkill for now).
        # The only reason we do the copy is to avoid putting too many folders in sys.path.
        shutil.copy(resolved_module_file, submodule_path / module_file)
        for module_needed in modules_needed:
            module_needed = f"{module_needed}.py"
            shutil.copy(os.path.join(pretrained_model_name_or_path, module_needed), submodule_path / module_needed)
    else:
        # Get the commit hash
        # TODO: we will get this info in the etag soon, so retrieve it from there and not here.
        if isinstance(use_auth_token, str):
            token = use_auth_token
        elif use_auth_token is True:
            token = HfFolder.get_token()
        else:
            token = None

        commit_hash = model_info(pretrained_model_name_or_path, revision=revision, token=token).sha

        # The module file will end up being placed in a subfolder with the git hash of the repo. This way we get the
        # benefit of versioning.
        submodule_path = submodule_path / commit_hash
        full_submodule = full_submodule + os.path.sep + commit_hash
        create_dynamic_module(full_submodule)

        if not (submodule_path / module_file).exists():
            shutil.copy(resolved_module_file, submodule_path / module_file)
        # Make sure we also have every file with relative
        for module_needed in modules_needed:
            if not (submodule_path / module_needed).exists():
                get_cached_module_file(
                    pretrained_model_name_or_path,
                    f"{module_needed}.py",
                    cache_dir=cache_dir,
                    force_download=force_download,
                    resume_download=resume_download,
                    proxies=proxies,
                    use_auth_token=use_auth_token,
                    revision=revision,
                    local_files_only=local_files_only,
                )
patil-suraj's avatar
patil-suraj committed
333
334
335
336
337
338
    return os.path.join(full_submodule, module_file)


def get_class_from_dynamic_module(
    pretrained_model_name_or_path: Union[str, os.PathLike],
    module_file: str,
Patrick von Platen's avatar
Patrick von Platen committed
339
    class_name: Optional[str] = None,
patil-suraj's avatar
patil-suraj committed
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
    cache_dir: Optional[Union[str, os.PathLike]] = None,
    force_download: bool = False,
    resume_download: bool = False,
    proxies: Optional[Dict[str, str]] = None,
    use_auth_token: Optional[Union[bool, str]] = None,
    revision: Optional[str] = None,
    local_files_only: bool = False,
    **kwargs,
):
    """
    Extracts a class from a module file, present in the local folder or repository of a model.

    <Tip warning={true}>

    Calling this function will execute the code in the module file found locally or downloaded from the Hub. It should
    therefore only be called on trusted repos.

    </Tip>

    Args:
        pretrained_model_name_or_path (`str` or `os.PathLike`):
            This can be either:

            - a string, the *model id* of a pretrained model configuration hosted inside a model repo on
              huggingface.co. Valid model ids can be located at the root-level, like `bert-base-uncased`, or namespaced
              under a user or organization name, like `dbmdz/bert-base-german-cased`.
            - a path to a *directory* containing a configuration file saved using the
              [`~PreTrainedTokenizer.save_pretrained`] method, e.g., `./my_model_directory/`.

        module_file (`str`):
            The name of the module file containing the class to look for.
        class_name (`str`):
            The name of the class to import in the module.
        cache_dir (`str` or `os.PathLike`, *optional*):
            Path to a directory in which a downloaded pretrained model configuration should be cached if the standard
            cache should not be used.
        force_download (`bool`, *optional*, defaults to `False`):
            Whether or not to force to (re-)download the configuration files and override the cached versions if they
            exist.
        resume_download (`bool`, *optional*, defaults to `False`):
            Whether or not to delete incompletely received file. Attempts to resume the download if such a file exists.
        proxies (`Dict[str, str]`, *optional*):
            A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
            'http://hostname': 'foo.bar:4012'}.` The proxies are used on each request.
        use_auth_token (`str` or `bool`, *optional*):
            The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated
            when running `transformers-cli login` (stored in `~/.huggingface`).
        revision (`str`, *optional*, defaults to `"main"`):
            The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
            git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
            identifier allowed by git.
        local_files_only (`bool`, *optional*, defaults to `False`):
            If `True`, will only try to load the tokenizer configuration from local files.

    <Tip>

Patrick von Platen's avatar
Patrick von Platen committed
396
397
    You may pass a token in `use_auth_token` if you are not logged in (`huggingface-cli long`) and want to use private
    or [gated models](https://huggingface.co/docs/hub/models-gated#gated-models).
patil-suraj's avatar
patil-suraj committed
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423

    </Tip>

    Returns:
        `type`: The class, dynamically imported from the module.

    Examples:

    ```python
    # Download module `modeling.py` from huggingface.co and cache then extract the class `MyBertModel` from this
    # module.
    cls = get_class_from_dynamic_module("sgugger/my-bert-model", "modeling.py", "MyBertModel")
    ```"""
    # And lastly we get the class inside our newly created module
    final_module = get_cached_module_file(
        pretrained_model_name_or_path,
        module_file,
        cache_dir=cache_dir,
        force_download=force_download,
        resume_download=resume_download,
        proxies=proxies,
        use_auth_token=use_auth_token,
        revision=revision,
        local_files_only=local_files_only,
    )
    return get_class_in_module(class_name, final_module.replace(".py", ""))