"vscode:/vscode.git/clone" did not exist on "720fc533da804ac3f46ee938864403e51fcd9fa7"
convert_ltx_to_diffusers.py 13.2 KB
Newer Older
Aryan's avatar
Aryan committed
1
import argparse
Aryan's avatar
Aryan committed
2
from pathlib import Path
Aryan's avatar
Aryan committed
3
4
5
from typing import Any, Dict

import torch
Aryan's avatar
Aryan committed
6
from accelerate import init_empty_weights
Aryan's avatar
Aryan committed
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
from safetensors.torch import load_file
from transformers import T5EncoderModel, T5Tokenizer

from diffusers import AutoencoderKLLTXVideo, FlowMatchEulerDiscreteScheduler, LTXPipeline, LTXVideoTransformer3DModel


def remove_keys_(key: str, state_dict: Dict[str, Any]):
    state_dict.pop(key)


TOKENIZER_MAX_LENGTH = 128

TRANSFORMER_KEYS_RENAME_DICT = {
    "patchify_proj": "proj_in",
    "adaln_single": "time_embed",
    "q_norm": "norm_q",
    "k_norm": "norm_k",
}

Aryan's avatar
Aryan committed
26
27
28
TRANSFORMER_SPECIAL_KEYS_REMAP = {
    "vae": remove_keys_,
}
Aryan's avatar
Aryan committed
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

VAE_KEYS_RENAME_DICT = {
    # decoder
    "up_blocks.0": "mid_block",
    "up_blocks.1": "up_blocks.0",
    "up_blocks.2": "up_blocks.1.upsamplers.0",
    "up_blocks.3": "up_blocks.1",
    "up_blocks.4": "up_blocks.2.conv_in",
    "up_blocks.5": "up_blocks.2.upsamplers.0",
    "up_blocks.6": "up_blocks.2",
    "up_blocks.7": "up_blocks.3.conv_in",
    "up_blocks.8": "up_blocks.3.upsamplers.0",
    "up_blocks.9": "up_blocks.3",
    # encoder
    "down_blocks.0": "down_blocks.0",
    "down_blocks.1": "down_blocks.0.downsamplers.0",
    "down_blocks.2": "down_blocks.0.conv_out",
    "down_blocks.3": "down_blocks.1",
    "down_blocks.4": "down_blocks.1.downsamplers.0",
    "down_blocks.5": "down_blocks.1.conv_out",
    "down_blocks.6": "down_blocks.2",
    "down_blocks.7": "down_blocks.2.downsamplers.0",
    "down_blocks.8": "down_blocks.3",
    "down_blocks.9": "mid_block",
    # common
    "conv_shortcut": "conv_shortcut.conv",
    "res_blocks": "resnets",
    "norm3.norm": "norm3",
    "per_channel_statistics.mean-of-means": "latents_mean",
    "per_channel_statistics.std-of-means": "latents_std",
}

Aryan's avatar
Aryan committed
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
VAE_091_RENAME_DICT = {
    # decoder
    "up_blocks.0": "mid_block",
    "up_blocks.1": "up_blocks.0.upsamplers.0",
    "up_blocks.2": "up_blocks.0",
    "up_blocks.3": "up_blocks.1.upsamplers.0",
    "up_blocks.4": "up_blocks.1",
    "up_blocks.5": "up_blocks.2.upsamplers.0",
    "up_blocks.6": "up_blocks.2",
    "up_blocks.7": "up_blocks.3.upsamplers.0",
    "up_blocks.8": "up_blocks.3",
    # common
    "last_time_embedder": "time_embedder",
    "last_scale_shift_table": "scale_shift_table",
}

Aryan's avatar
Aryan committed
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
VAE_095_RENAME_DICT = {
    # decoder
    "up_blocks.0": "mid_block",
    "up_blocks.1": "up_blocks.0.upsamplers.0",
    "up_blocks.2": "up_blocks.0",
    "up_blocks.3": "up_blocks.1.upsamplers.0",
    "up_blocks.4": "up_blocks.1",
    "up_blocks.5": "up_blocks.2.upsamplers.0",
    "up_blocks.6": "up_blocks.2",
    "up_blocks.7": "up_blocks.3.upsamplers.0",
    "up_blocks.8": "up_blocks.3",
    # encoder
    "down_blocks.0": "down_blocks.0",
    "down_blocks.1": "down_blocks.0.downsamplers.0",
    "down_blocks.2": "down_blocks.1",
    "down_blocks.3": "down_blocks.1.downsamplers.0",
    "down_blocks.4": "down_blocks.2",
    "down_blocks.5": "down_blocks.2.downsamplers.0",
    "down_blocks.6": "down_blocks.3",
    "down_blocks.7": "down_blocks.3.downsamplers.0",
    "down_blocks.8": "mid_block",
    # common
    "last_time_embedder": "time_embedder",
    "last_scale_shift_table": "scale_shift_table",
}

Aryan's avatar
Aryan committed
103
104
105
106
VAE_SPECIAL_KEYS_REMAP = {
    "per_channel_statistics.channel": remove_keys_,
    "per_channel_statistics.mean-of-means": remove_keys_,
    "per_channel_statistics.mean-of-stds": remove_keys_,
Aryan's avatar
Aryan committed
107
108
109
    "model.diffusion_model": remove_keys_,
}

Aryan's avatar
Aryan committed
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128

def get_state_dict(saved_dict: Dict[str, Any]) -> Dict[str, Any]:
    state_dict = saved_dict
    if "model" in saved_dict.keys():
        state_dict = state_dict["model"]
    if "module" in saved_dict.keys():
        state_dict = state_dict["module"]
    if "state_dict" in saved_dict.keys():
        state_dict = state_dict["state_dict"]
    return state_dict


def update_state_dict_inplace(state_dict: Dict[str, Any], old_key: str, new_key: str) -> Dict[str, Any]:
    state_dict[new_key] = state_dict.pop(old_key)


def convert_transformer(
    ckpt_path: str,
    dtype: torch.dtype,
Aryan's avatar
Aryan committed
129
    version: str = "0.9.0",
Aryan's avatar
Aryan committed
130
):
Aryan's avatar
Aryan committed
131
    PREFIX_KEY = "model.diffusion_model."
Aryan's avatar
Aryan committed
132
133

    original_state_dict = get_state_dict(load_file(ckpt_path))
Aryan's avatar
Aryan committed
134
135
136
    config = {}
    if version == "0.9.5":
        config["_use_causal_rope_fix"] = True
Aryan's avatar
Aryan committed
137
    with init_empty_weights():
Aryan's avatar
Aryan committed
138
        transformer = LTXVideoTransformer3DModel(**config)
Aryan's avatar
Aryan committed
139
140

    for key in list(original_state_dict.keys()):
Aryan's avatar
Aryan committed
141
142
143
        new_key = key[:]
        if new_key.startswith(PREFIX_KEY):
            new_key = key[len(PREFIX_KEY) :]
Aryan's avatar
Aryan committed
144
145
146
147
148
149
150
151
152
153
        for replace_key, rename_key in TRANSFORMER_KEYS_RENAME_DICT.items():
            new_key = new_key.replace(replace_key, rename_key)
        update_state_dict_inplace(original_state_dict, key, new_key)

    for key in list(original_state_dict.keys()):
        for special_key, handler_fn_inplace in TRANSFORMER_SPECIAL_KEYS_REMAP.items():
            if special_key not in key:
                continue
            handler_fn_inplace(key, original_state_dict)

Aryan's avatar
Aryan committed
154
    transformer.load_state_dict(original_state_dict, strict=True, assign=True)
Aryan's avatar
Aryan committed
155
156
157
    return transformer


Aryan's avatar
Aryan committed
158
159
160
def convert_vae(ckpt_path: str, config, dtype: torch.dtype):
    PREFIX_KEY = "vae."

Aryan's avatar
Aryan committed
161
    original_state_dict = get_state_dict(load_file(ckpt_path))
Aryan's avatar
Aryan committed
162
163
    with init_empty_weights():
        vae = AutoencoderKLLTXVideo(**config)
Aryan's avatar
Aryan committed
164
165
166

    for key in list(original_state_dict.keys()):
        new_key = key[:]
Aryan's avatar
Aryan committed
167
168
        if new_key.startswith(PREFIX_KEY):
            new_key = key[len(PREFIX_KEY) :]
Aryan's avatar
Aryan committed
169
170
171
172
173
174
175
176
177
178
        for replace_key, rename_key in VAE_KEYS_RENAME_DICT.items():
            new_key = new_key.replace(replace_key, rename_key)
        update_state_dict_inplace(original_state_dict, key, new_key)

    for key in list(original_state_dict.keys()):
        for special_key, handler_fn_inplace in VAE_SPECIAL_KEYS_REMAP.items():
            if special_key not in key:
                continue
            handler_fn_inplace(key, original_state_dict)

Aryan's avatar
Aryan committed
179
    vae.load_state_dict(original_state_dict, strict=True, assign=True)
Aryan's avatar
Aryan committed
180
181
182
    return vae


Aryan's avatar
Aryan committed
183
184
185
186
187
188
189
def get_vae_config(version: str) -> Dict[str, Any]:
    if version == "0.9.0":
        config = {
            "in_channels": 3,
            "out_channels": 3,
            "latent_channels": 128,
            "block_out_channels": (128, 256, 512, 512),
Aryan's avatar
Aryan committed
190
191
192
193
194
195
            "down_block_types": (
                "LTXVideoDownBlock3D",
                "LTXVideoDownBlock3D",
                "LTXVideoDownBlock3D",
                "LTXVideoDownBlock3D",
            ),
Aryan's avatar
Aryan committed
196
197
198
199
200
201
            "decoder_block_out_channels": (128, 256, 512, 512),
            "layers_per_block": (4, 3, 3, 3, 4),
            "decoder_layers_per_block": (4, 3, 3, 3, 4),
            "spatio_temporal_scaling": (True, True, True, False),
            "decoder_spatio_temporal_scaling": (True, True, True, False),
            "decoder_inject_noise": (False, False, False, False, False),
Aryan's avatar
Aryan committed
202
            "downsample_type": ("conv", "conv", "conv", "conv"),
Aryan's avatar
Aryan committed
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
            "upsample_residual": (False, False, False, False),
            "upsample_factor": (1, 1, 1, 1),
            "patch_size": 4,
            "patch_size_t": 1,
            "resnet_norm_eps": 1e-6,
            "scaling_factor": 1.0,
            "encoder_causal": True,
            "decoder_causal": False,
            "timestep_conditioning": False,
        }
    elif version == "0.9.1":
        config = {
            "in_channels": 3,
            "out_channels": 3,
            "latent_channels": 128,
            "block_out_channels": (128, 256, 512, 512),
Aryan's avatar
Aryan committed
219
220
221
222
223
224
            "down_block_types": (
                "LTXVideoDownBlock3D",
                "LTXVideoDownBlock3D",
                "LTXVideoDownBlock3D",
                "LTXVideoDownBlock3D",
            ),
Aryan's avatar
Aryan committed
225
226
227
228
229
230
            "decoder_block_out_channels": (256, 512, 1024),
            "layers_per_block": (4, 3, 3, 3, 4),
            "decoder_layers_per_block": (5, 6, 7, 8),
            "spatio_temporal_scaling": (True, True, True, False),
            "decoder_spatio_temporal_scaling": (True, True, True),
            "decoder_inject_noise": (True, True, True, False),
Aryan's avatar
Aryan committed
231
            "downsample_type": ("conv", "conv", "conv", "conv"),
Aryan's avatar
Aryan committed
232
233
234
235
236
237
238
239
240
241
242
            "upsample_residual": (True, True, True),
            "upsample_factor": (2, 2, 2),
            "timestep_conditioning": True,
            "patch_size": 4,
            "patch_size_t": 1,
            "resnet_norm_eps": 1e-6,
            "scaling_factor": 1.0,
            "encoder_causal": True,
            "decoder_causal": False,
        }
        VAE_KEYS_RENAME_DICT.update(VAE_091_RENAME_DICT)
Aryan's avatar
Aryan committed
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
    elif version == "0.9.5":
        config = {
            "in_channels": 3,
            "out_channels": 3,
            "latent_channels": 128,
            "block_out_channels": (128, 256, 512, 1024, 2048),
            "down_block_types": (
                "LTXVideo095DownBlock3D",
                "LTXVideo095DownBlock3D",
                "LTXVideo095DownBlock3D",
                "LTXVideo095DownBlock3D",
            ),
            "decoder_block_out_channels": (256, 512, 1024),
            "layers_per_block": (4, 6, 6, 2, 2),
            "decoder_layers_per_block": (5, 5, 5, 5),
            "spatio_temporal_scaling": (True, True, True, True),
            "decoder_spatio_temporal_scaling": (True, True, True),
            "decoder_inject_noise": (False, False, False, False),
            "downsample_type": ("spatial", "temporal", "spatiotemporal", "spatiotemporal"),
            "upsample_residual": (True, True, True),
            "upsample_factor": (2, 2, 2),
            "timestep_conditioning": True,
            "patch_size": 4,
            "patch_size_t": 1,
            "resnet_norm_eps": 1e-6,
            "scaling_factor": 1.0,
            "encoder_causal": True,
            "decoder_causal": False,
            "spatial_compression_ratio": 32,
            "temporal_compression_ratio": 8,
        }
        VAE_KEYS_RENAME_DICT.update(VAE_095_RENAME_DICT)
Aryan's avatar
Aryan committed
275
276
277
    return config


Aryan's avatar
Aryan committed
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
def get_args():
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--transformer_ckpt_path", type=str, default=None, help="Path to original transformer checkpoint"
    )
    parser.add_argument("--vae_ckpt_path", type=str, default=None, help="Path to original vae checkpoint")
    parser.add_argument(
        "--text_encoder_cache_dir", type=str, default=None, help="Path to text encoder cache directory"
    )
    parser.add_argument(
        "--typecast_text_encoder",
        action="store_true",
        default=False,
        help="Whether or not to apply fp16/bf16 precision to text_encoder",
    )
    parser.add_argument("--save_pipeline", action="store_true")
    parser.add_argument("--output_path", type=str, required=True, help="Path where converted model should be saved")
    parser.add_argument("--dtype", default="fp32", help="Torch dtype to save the model in.")
Aryan's avatar
Aryan committed
296
    parser.add_argument(
Aryan's avatar
Aryan committed
297
        "--version", type=str, default="0.9.0", choices=["0.9.0", "0.9.1", "0.9.5"], help="Version of the LTX model"
Aryan's avatar
Aryan committed
298
    )
Aryan's avatar
Aryan committed
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
    return parser.parse_args()


DTYPE_MAPPING = {
    "fp32": torch.float32,
    "fp16": torch.float16,
    "bf16": torch.bfloat16,
}

VARIANT_MAPPING = {
    "fp32": None,
    "fp16": "fp16",
    "bf16": "bf16",
}


if __name__ == "__main__":
    args = get_args()

    transformer = None
    dtype = DTYPE_MAPPING[args.dtype]
    variant = VARIANT_MAPPING[args.dtype]
Aryan's avatar
Aryan committed
321
    output_path = Path(args.output_path)
Aryan's avatar
Aryan committed
322
323
324
325
326
327
328
329

    if args.save_pipeline:
        assert args.transformer_ckpt_path is not None and args.vae_ckpt_path is not None

    if args.transformer_ckpt_path is not None:
        transformer: LTXVideoTransformer3DModel = convert_transformer(args.transformer_ckpt_path, dtype)
        if not args.save_pipeline:
            transformer.save_pretrained(
Aryan's avatar
Aryan committed
330
                output_path / "transformer", safe_serialization=True, max_shard_size="5GB", variant=variant
Aryan's avatar
Aryan committed
331
332
333
            )

    if args.vae_ckpt_path is not None:
Aryan's avatar
Aryan committed
334
335
        config = get_vae_config(args.version)
        vae: AutoencoderKLLTXVideo = convert_vae(args.vae_ckpt_path, config, dtype)
Aryan's avatar
Aryan committed
336
        if not args.save_pipeline:
Aryan's avatar
Aryan committed
337
            vae.save_pretrained(output_path / "vae", safe_serialization=True, max_shard_size="5GB", variant=variant)
Aryan's avatar
Aryan committed
338
339
340
341
342
343
344
345
346
347
348
349
350

    if args.save_pipeline:
        text_encoder_id = "google/t5-v1_1-xxl"
        tokenizer = T5Tokenizer.from_pretrained(text_encoder_id, model_max_length=TOKENIZER_MAX_LENGTH)
        text_encoder = T5EncoderModel.from_pretrained(text_encoder_id, cache_dir=args.text_encoder_cache_dir)

        if args.typecast_text_encoder:
            text_encoder = text_encoder.to(dtype=dtype)

        # Apparently, the conversion does not work anymore without this :shrug:
        for param in text_encoder.parameters():
            param.data = param.data.contiguous()

Aryan's avatar
Aryan committed
351
352
353
354
355
356
357
358
359
360
361
        if args.version == "0.9.5":
            scheduler = FlowMatchEulerDiscreteScheduler(use_dynamic_shifting=False)
        else:
            scheduler = FlowMatchEulerDiscreteScheduler(
                use_dynamic_shifting=True,
                base_shift=0.95,
                max_shift=2.05,
                base_image_seq_len=1024,
                max_image_seq_len=4096,
                shift_terminal=0.1,
            )
Aryan's avatar
Aryan committed
362
363
364
365
366
367
368
369
370
371

        pipe = LTXPipeline(
            scheduler=scheduler,
            vae=vae,
            text_encoder=text_encoder,
            tokenizer=tokenizer,
            transformer=transformer,
        )

        pipe.save_pretrained(args.output_path, safe_serialization=True, variant=variant, max_shard_size="5GB")