pipeline_ddim.py 2.86 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and

# limitations under the License.


import torch

import tqdm
Patrick von Platen's avatar
Patrick von Platen committed
20
from ..pipeline_utils import DiffusionPipeline
Patrick von Platen's avatar
Patrick von Platen committed
21
22
23
24
25
26
27
28
29
30
31
32


class DDIM(DiffusionPipeline):
    def __init__(self, unet, noise_scheduler):
        super().__init__()
        self.register_modules(unet=unet, noise_scheduler=noise_scheduler)

    def __call__(self, batch_size=1, generator=None, torch_device=None, eta=0.0, num_inference_steps=50):
        # eta corresponds to η in paper and should be between [0, 1]
        if torch_device is None:
            torch_device = "cuda" if torch.cuda.is_available() else "cpu"

Patrick von Platen's avatar
Patrick von Platen committed
33
        num_trained_timesteps = self.noise_scheduler.timesteps
Patrick von Platen's avatar
Patrick von Platen committed
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
        inference_step_times = range(0, num_trained_timesteps, num_trained_timesteps // num_inference_steps)

        self.unet.to(torch_device)

        # Sample gaussian noise to begin loop
        image = self.noise_scheduler.sample_noise(
            (batch_size, self.unet.in_channels, self.unet.resolution, self.unet.resolution),
            device=torch_device,
            generator=generator,
        )

        # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf
        # Ideally, read DDIM paper in-detail understanding

        # Notation (<variable name> -> <name in paper>
        # - pred_noise_t -> e_theta(x_t, t)
        # - pred_original_image -> f_theta(x_t, t) or x_0
        # - std_dev_t -> sigma_t
        # - eta -> η
        # - pred_image_direction -> "direction pointingc to x_t"
        # - pred_prev_image -> "x_t-1"
        for t in tqdm.tqdm(reversed(range(num_inference_steps)), total=num_inference_steps):
            # 1. predict noise residual
            with torch.no_grad():
                residual = self.unet(image, inference_step_times[t])

            # 2. predict previous mean of image x_t-1
            pred_prev_image = self.noise_scheduler.step(residual, image, t, num_inference_steps, eta)

            # 3. optionally sample variance
            variance = 0
            if eta > 0:
                noise = self.noise_scheduler.sample_noise(image.shape, device=image.device, generator=generator)
Patrick von Platen's avatar
Patrick von Platen committed
67
                variance = self.noise_scheduler.get_variance(t, num_inference_steps).sqrt() * eta * noise
Patrick von Platen's avatar
Patrick von Platen committed
68
69
70
71
72

            # 4. set current image to prev_image: x_t -> x_t-1
            image = pred_prev_image + variance

        return image