torch2.0.mdx 9.99 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
<!--Copyright 2023 The HuggingFace Team. All rights reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->

# Torch2.0 support in Diffusers

Starting from version `0.13.0`, Diffusers supports the latest optimization from the upcoming [PyTorch 2.0](https://pytorch.org/get-started/pytorch-2.0/) release. These include:
1. Support for native flash and memory-efficient attention without any extra dependencies.
patil-suraj's avatar
patil-suraj committed
17
2. [torch.compile](https://pytorch.org/tutorials/intermediate/torch_compile_tutorial.html) support for compiling individual models for extra performance boost.
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109


## Installation
To benefit from the native efficient attention and `torch.compile`, we will need to install the nightly version of PyTorch as the stable version is yet to be released. The first step is to install CUDA11.7 or CUDA11.8, 
as torch2.0 does not support the previous versions. Once CUDA is installed, torch nightly can be installed using:

```bash
pip install --pre torch torchvision --index-url https://download.pytorch.org/whl/nightly/cu117
```

## Using efficient attention and torch.compile.


1. **Efficient Attention**

   Efficient attention is implemented via the [`torch.nn.functional.scaled_dot_product_attention`](https://pytorch.org/docs/master/generated/torch.nn.functional.scaled_dot_product_attention) function, which automatically enables flash/memory efficient attention, depending on the input and the GPU type. This is the same as the `memory_efficient_attention` from [xFormers](https://github.com/facebookresearch/xformers) but built natively into PyTorch. 

   Efficient attention will be enabled by default in Diffusers if torch2.0 is installed and if `torch.nn.functional.scaled_dot_product_attention` is available. To use it, you can install torch2.0 as suggested above and use the pipeline. For example:

    ```Python
    import torch
    from diffusers import StableDiffusionPipeline

    pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16)
    pipe = pipe.to("cuda")

    prompt = "a photo of an astronaut riding a horse on mars"
    image = pipe(prompt).images[0]
    ```

    If you want to enable it explicitly (which is not required), you can do so as shown below.

    ```Python
    import torch
    from diffusers import StableDiffusionPipeline
    from diffusers.models.cross_attention import AttnProccesor2_0

    pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16).to("cuda")
    pipe.unet.set_attn_processor(AttnProccesor2_0())

    prompt = "a photo of an astronaut riding a horse on mars"
    image = pipe(prompt).images[0]
    ```

    This should be as fast and memory efficient as `xFormers`.


2. **torch.compile**

    To get an additional speedup, we can use the new `torch.compile` feature. To do so, we wrap our `unet` with `torch.compile`. For more information and different options, refer to the 
    [torch compile docs](https://pytorch.org/tutorials/intermediate/torch_compile_tutorial.html).

    ```python
    import torch
    from diffusers import StableDiffusionPipeline

    pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16).to(
        "cuda"
    )
    pipe.unet = torch.compile(pipe.unet)

    batch_size = 10
    prompt = "A photo of an astronaut riding a horse on marse."
    images = pipe(prompt, num_inference_steps=steps, num_images_per_prompt=batch_size).images
    ```

    Depending on the type of GPU it can give between 2-9% speed-up over efficient attention. But note that as of now the speed-up is mostly noticeable on the more recent GPU architectures, such as in the A100.
    
    Note that compilation will also take some time to complete, so it is best suited for situations where you need to prepare your pipeline once and then perform the same type of inference operations multiple times.


## Benchmark

We conducted a simple benchmark on different GPUs to compare vanilla attention, xFormers, `torch.nn.functional.scaled_dot_product_attention` and `torch.compile+torch.nn.functional.scaled_dot_product_attention`.
For the benchmark we used the the [stable-diffusion-v1-4](https://huggingface.co/CompVis/stable-diffusion-v1-4) model with 50 steps. `xFormers` benchmark is done using the `torch==1.13.1` version. The table below summarizes the result that we got.
The `Speed over xformers` columns denotes the speed-up gained over `xFormers` using the `torch.compile+torch.nn.functional.scaled_dot_product_attention`.


### FP16 benchmark

The table below shows the benchmark results for inference using `fp16`. As we can see, `torch.nn.functional.scaled_dot_product_attention` is as fast as `xFormers` (sometimes slightly faster/slower) on all the GPUs we tested.
And using `torch.compile` gives further speed-up up to 10% over `xFormers`, but it's mostly noticeable on the A100 GPU.

___The time reported is in seconds.___

| GPU | Batch Size | Vanilla Attention | xFormers | PyTorch2.0 SDPA | SDPA + torch.compile | Speed over xformers (%) |
| --- | --- | --- | --- | --- | --- | --- |
| A100 | 10 | 12.02 | 8.7 | 8.79 | 7.89 | 9.31 |
| A100 | 16 | 18.95 | 13.57 | 13.67 | 12.25 | 9.73 |
| A100 | 32 (1) | OOM | 26.56 | 26.68 | 24.08 | 9.34 |
| A100 | 64(2) | | 52.51 | 53.03 | 47.81 | 8.95 |
| | | | | | | |
patil-suraj's avatar
patil-suraj committed
110
111
112
113
114
115
116
| A10 | 4 | 13.94 | 9.81 | 10.01 | 9.35 | 4.69 |
| A10 | 8 | 27.09 | 19 | 19.53 | 18.33 | 3.53 |
| A10 | 10 | 33.69 | 23.53 | 24.19 | 22.52 | 4.29 |
| A10 | 16 | OOM | 37.55 | 38.31 | 36.81 | 1.97 |
| A10 | 32 (1) | | 77.19 | 78.43 | 76.64 | 0.71 |
| A10 | 64 (1) | | 173.59 | 158.99 | 155.14 | 10.63 |
| | | | | | | |
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
| T4 | 4 | 38.81 | 30.09 | 29.74 | 27.55 | 8.44 |
| T4 | 8 | OOM | 55.71 | 55.99 | 53.85 | 3.34 |
| T4 | 10 | OOM | 68.96 | 69.86 | 65.35 | 5.23 |
| T4 | 16 | OOM | 111.47 | 113.26  | 106.93  | 4.07 |
| | | | | | | |
| V100 | 4 | 9.84 | 8.16 | 8.09 | 7.65 | 6.25 |
| V100 | 8 | OOM | 15.62 | 15.44 | 14.59 | 6.59 |
| V100 | 10 | OOM | 19.52 | 19.28 | 18.18 | 6.86 |
| V100 | 16 | OOM | 30.29 | 29.84 | 28.22 | 6.83 |
| | | | | | | |
| 3090 | 4 | 10.04 | 7.82 | 7.89 | 7.47 | 4.48 |
| 3090 | 8 | 19.27 | 14.97 | 15.04 | 14.22 | 5.01 |
| 3090 | 10| 24.08 | 18.7 | 18.7 | 17.69 | 5.40 |
| 3090 | 16 | OOM | 29.06 | 29.06 | 28.2 | 2.96 |
| 3090 | 32 (1) | | 58.05 | 58 | 54.88 | 5.46 |
| 3090 | 64 (1) | | 126.54 | 126.03 | 117.33 | 7.28 |
| | | | | | | |
| 3090 Ti | 4 | 9.07 | 7.14 | 7.15 | 6.81 | 4.62 |
| 3090 Ti | 8 | 17.51 | 13.65 | 13.72 | 12.99 | 4.84 |
| 3090 Ti | 10 (2) | 21.79 | 16.85 | 16.93 | 16.02 | 4.93 |
| 3090 Ti | 16 | OOM | 26.1 | 26.28 | 25.46 | 2.45 |
| 3090 Ti | 32 (1) | | 51.78 | 52.04 | 49.15 | 5.08 |
| 3090 Ti | 64 (1) | | 112.02 | 112.33 | 103.91 | 7.24 |


				
### FP32 benchmark

The table below shows the benchmark results for inference using `fp32`. As we can see, `torch.nn.functional.scaled_dot_product_attention` is as fast as `xFormers` (sometimes slightly faster/slower) on all the GPUs we tested.
Using `torch.compile` with efficient attention gives up to 18% performance improvement over `xFormers` in Ampere cards, and up to 20% over vanilla attention.

| GPU | Batch Size | Vanilla Attention | xFormers | PyTorch2.0 SDPA | SDPA + torch.compile | Speed over xformers (%) | Speed over vanilla (%) |
| --- | --- | --- | --- | --- | --- | --- | --- |
| A100 | 4 | 16.56 | 12.42 | 12.2 | 11.84 | 4.67 | 28.50 |
| A100 | 10 | OOM | 29.93 | 29.44 | 28.5 | 4.78 | |
| A100 | 16 | | 47.08 | 46.27 | 44.8 | 4.84 | |
| A100 | 32 | | 92.89 | 91.34 | 88.35 | 4.89 | |
| A100 | 64 | | 185.3 | 182.71 | 176.48 | 4.76 | |
| | | | | | | |
patil-suraj's avatar
patil-suraj committed
156
157
158
159
160
161
162
| A10 | 1 | 10.59 | 8.81 | 7.51 | 7.35 | 16.57 | 30.59 |
| A10 | 4 | 34.77 | 27.63 | 22.77 | 22.07 | 20.12 | 36.53 |
| A10 | 8 | | 56.19 | 43.53 | 43.86 | 21.94 | |
| A10 | 16 | | 116.49 | 88.56 | 86.64 | 25.62 | |
| A10 | 32 | | 221.95 | 175.74 | 168.18 | 24.23 | |
| A10 | 48 | | 333.23 | 264.84 | | 20.52 | |
| | | | | | | |
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
| T4 | 1 | 28.2 | 24.49 | 23.93 | 23.56 | 3.80 | 16.45 |
| T4 | 2 | 52.77 | 45.7 | 45.88 | 45.06 | 1.40 | 14.61 |
| T4 | 4 | OOM | 85.72 | 85.78 | 84.48 | 1.45 | |
| T4 | 8 | | 149.64 | 150.75 | 148.4 | 0.83 | |
| | | | | | | |
| V100 | 1 | 7.4 | 6.84 | 6.8 | 6.66 | 2.63 | 10.00 |
| V100 | 2 | 13.85 | 12.81 | 12.66 | 12.35 | 3.59 | 10.83 |
| V100 | 4 | OOM | 25.73 | 25.31 | 24.78 | 3.69 | |
| V100 | 8 | | 43.95 | 43.37 | 42.25 | 3.87 | |
| V100 | 16 | | 84.99 | 84.73 | 82.55 | 2.87 | |
| | | | | | | |
| 3090 | 1 | 7.09 | 6.78 | 6.11 | 6.03 | 11.06 | 14.95 |
| 3090 | 4 | 22.69 | 21.45 | 18.67 | 18.09 | 15.66 | 20.27 |
| 3090 | 8 (2) | | 42.59 | 36.75 | 35.59 | 16.44 | |
| 3090 | 16 | | 85.35 | 72.37 | 70.25 | 17.69 | |
| 3090 | 32 (1) | | 162.05 | 138.99 | 134.53 | 16.98 | |
| 3090 | 48 | | 241.91 | 207.75 | | 14.12 | |
| | | | | | | |
| 3090 Ti | 1 | 6.45 | 6.19 | 5.64 | 5.49 | 11.31 | 14.88 |
| 3090 Ti | 4 | 20.32 | 19.31 | 16.9 | 16.37 | 15.23 | 19.44 |
| 3090 Ti | 8 (2) | | 37.93 | 33.05 | 31.99 | 15.66 | |
| 3090 Ti | 16 | | 75.37 | 65.25 | 64.32 | 14.66 | |
| 3090 Ti | 32 (1) | | 142.55 | 124.44 | 120.74 | 15.30 | |
| 3090 Ti | 48 | | 213.19 | 186.55 | | 12.50 | |
| | | | | | | |
patil-suraj's avatar
patil-suraj committed
188
189
190
| 4090 | 1 | 5.54 | 4.99 | 4.51 | | | |
| 4090 | 4 | 13.67 | 11.4 | 10.3 | | | |
| 4090 | 8 (2) | | 19.79 | 17.13 | | | |
patil-suraj's avatar
patil-suraj committed
191
| 4090 | 16 | | 38.62 | 33.14 | | | |
patil-suraj's avatar
patil-suraj committed
192
| 4090 | 32 (1) | | 76.57 | 65.96 | | | |
patil-suraj's avatar
patil-suraj committed
193
| 4090 | 48 | | 114.44 | 98.78 | | | |
patil-suraj's avatar
patil-suraj committed
194

195
196
197
198
199
200


(1) Batch Size >= 32 requires enable_vae_slicing() because of https://github.com/pytorch/pytorch/issues/81665																										
This is required for PyTorch 1.13.1, and also for PyTorch 2.0 and batch size of 64

For more details about how this benchmark was run, please refer to [this PR](https://github.com/huggingface/diffusers/pull/2303).