test_ddpm.py 4.39 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest

import numpy as np
import torch

from diffusers import DDPMPipeline, DDPMScheduler, UNet2DModel
22
from diffusers.utils import deprecate
23
24
25
26
27
28
29
30
31
from diffusers.utils.testing_utils import require_torch, slow, torch_device

from ...test_pipelines_common import PipelineTesterMixin


torch.backends.cuda.matmul.allow_tf32 = False


class DDPMPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
    @property
    def dummy_uncond_unet(self):
        torch.manual_seed(0)
        model = UNet2DModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=3,
            out_channels=3,
            down_block_types=("DownBlock2D", "AttnDownBlock2D"),
            up_block_types=("AttnUpBlock2D", "UpBlock2D"),
        )
        return model

    def test_inference(self):
        unet = self.dummy_uncond_unet
        scheduler = DDPMScheduler()

        ddpm = DDPMPipeline(unet=unet, scheduler=scheduler)
        ddpm.to(torch_device)
        ddpm.set_progress_bar_config(disable=None)

        # Warmup pass when using mps (see #372)
        if torch_device == "mps":
            _ = ddpm(num_inference_steps=1)

        generator = torch.manual_seed(0)
        image = ddpm(generator=generator, num_inference_steps=2, output_type="numpy").images

        generator = torch.manual_seed(0)
        image_from_tuple = ddpm(generator=generator, num_inference_steps=2, output_type="numpy", return_dict=False)[0]

        image_slice = image[0, -3:, -3:, -1]
        image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]

        assert image.shape == (1, 32, 32, 3)
        expected_slice = np.array(
            [5.589e-01, 7.089e-01, 2.632e-01, 6.841e-01, 1.000e-04, 9.999e-01, 1.973e-01, 1.000e-04, 8.010e-02]
        )
        tolerance = 1e-2 if torch_device != "mps" else 3e-2
        assert np.abs(image_slice.flatten() - expected_slice).max() < tolerance
        assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < tolerance

    def test_inference_predict_epsilon(self):
        deprecate("remove this test", "0.10.0", "remove")
        unet = self.dummy_uncond_unet
        scheduler = DDPMScheduler(predict_epsilon=False)

        ddpm = DDPMPipeline(unet=unet, scheduler=scheduler)
        ddpm.to(torch_device)
        ddpm.set_progress_bar_config(disable=None)

        # Warmup pass when using mps (see #372)
        if torch_device == "mps":
            _ = ddpm(num_inference_steps=1)

        generator = torch.manual_seed(0)
        image = ddpm(generator=generator, num_inference_steps=2, output_type="numpy").images

        generator = torch.manual_seed(0)
        image_eps = ddpm(generator=generator, num_inference_steps=2, output_type="numpy", predict_epsilon=False)[0]

        image_slice = image[0, -3:, -3:, -1]
        image_eps_slice = image_eps[0, -3:, -3:, -1]

        assert image.shape == (1, 32, 32, 3)
        tolerance = 1e-2 if torch_device != "mps" else 3e-2
        assert np.abs(image_slice.flatten() - image_eps_slice.flatten()).max() < tolerance
100
101
102
103
104
105
106
107


@slow
@require_torch
class DDPMPipelineIntegrationTests(unittest.TestCase):
    def test_inference_cifar10(self):
        model_id = "google/ddpm-cifar10-32"

108
        unet = UNet2DModel.from_pretrained(model_id)
109
110
111
112
113
114
115
116
117
118
119
120
121
122
        scheduler = DDPMScheduler.from_config(model_id)

        ddpm = DDPMPipeline(unet=unet, scheduler=scheduler)
        ddpm.to(torch_device)
        ddpm.set_progress_bar_config(disable=None)

        generator = torch.manual_seed(0)
        image = ddpm(generator=generator, output_type="numpy").images

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 32, 32, 3)
        expected_slice = np.array([0.41995, 0.35885, 0.19385, 0.38475, 0.3382, 0.2647, 0.41545, 0.3582, 0.33845])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2