train_unconditional.py 16.3 KB
Newer Older
anton-l's avatar
anton-l committed
1
import argparse
2
import inspect
3
import math
anton-l's avatar
anton-l committed
4
import os
5
6
from pathlib import Path
from typing import Optional
anton-l's avatar
anton-l committed
7
8
9
10

import torch
import torch.nn.functional as F

11
from accelerate import Accelerator
12
from accelerate.logging import get_logger
anton-l's avatar
anton-l committed
13
from datasets import load_dataset
anton-l's avatar
anton-l committed
14
from diffusers import DDPMPipeline, DDPMScheduler, UNet2DModel
15
from diffusers.optimization import get_scheduler
anton-l's avatar
anton-l committed
16
from diffusers.training_utils import EMAModel
17
from huggingface_hub import HfFolder, Repository, whoami
anton-l's avatar
anton-l committed
18
from torchvision.transforms import (
Patrick von Platen's avatar
Patrick von Platen committed
19
    CenterCrop,
anton-l's avatar
anton-l committed
20
21
    Compose,
    InterpolationMode,
anton-l's avatar
anton-l committed
22
    Normalize,
anton-l's avatar
anton-l committed
23
24
25
26
    RandomHorizontalFlip,
    Resize,
    ToTensor,
)
anton-l's avatar
anton-l committed
27
from tqdm.auto import tqdm
anton-l's avatar
anton-l committed
28
29


30
logger = get_logger(__name__)
anton-l's avatar
anton-l committed
31
32


33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
def _extract_into_tensor(arr, timesteps, broadcast_shape):
    """
    Extract values from a 1-D numpy array for a batch of indices.

    :param arr: the 1-D numpy array.
    :param timesteps: a tensor of indices into the array to extract.
    :param broadcast_shape: a larger shape of K dimensions with the batch
                            dimension equal to the length of timesteps.
    :return: a tensor of shape [batch_size, 1, ...] where the shape has K dims.
    """
    if not isinstance(arr, torch.Tensor):
        arr = torch.from_numpy(arr)
    res = arr[timesteps].float().to(timesteps.device)
    while len(res.shape) < len(broadcast_shape):
        res = res[..., None]
    return res.expand(broadcast_shape)


51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
def parse_args():
    parser = argparse.ArgumentParser(description="Simple example of a training script.")
    parser.add_argument(
        "--dataset_name",
        type=str,
        default=None,
        help=(
            "The name of the Dataset (from the HuggingFace hub) to train on (could be your own, possibly private,"
            " dataset). It can also be a path pointing to a local copy of a dataset in your filesystem,"
            " or to a folder containing files that HF Datasets can understand."
        ),
    )
    parser.add_argument(
        "--dataset_config_name",
        type=str,
        default=None,
        help="The config of the Dataset, leave as None if there's only one config.",
    )
    parser.add_argument(
        "--train_data_dir",
        type=str,
        default=None,
        help=(
            "A folder containing the training data. Folder contents must follow the structure described in"
            " https://huggingface.co/docs/datasets/image_dataset#imagefolder. In particular, a `metadata.jsonl` file"
            " must exist to provide the captions for the images. Ignored if `dataset_name` is specified."
        ),
    )
    parser.add_argument(
        "--output_dir",
        type=str,
        default="ddpm-model-64",
        help="The output directory where the model predictions and checkpoints will be written.",
    )
    parser.add_argument("--overwrite_output_dir", action="store_true")
    parser.add_argument(
        "--cache_dir",
        type=str,
        default=None,
        help="The directory where the downloaded models and datasets will be stored.",
    )
    parser.add_argument(
        "--resolution",
        type=int,
        default=64,
        help=(
            "The resolution for input images, all the images in the train/validation dataset will be resized to this"
            " resolution"
        ),
    )
    parser.add_argument(
        "--train_batch_size", type=int, default=16, help="Batch size (per device) for the training dataloader."
    )
    parser.add_argument(
105
106
107
108
109
110
111
112
113
114
        "--eval_batch_size", type=int, default=16, help="The number of images to generate for evaluation."
    )
    parser.add_argument(
        "--dataloader_num_workers",
        type=int,
        default=0,
        help=(
            "The number of subprocesses to use for data loading. 0 means that the data will be loaded in the main"
            " process."
        ),
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
    )
    parser.add_argument("--num_epochs", type=int, default=100)
    parser.add_argument("--save_images_epochs", type=int, default=10, help="How often to save images during training.")
    parser.add_argument(
        "--save_model_epochs", type=int, default=10, help="How often to save the model during training."
    )
    parser.add_argument(
        "--gradient_accumulation_steps",
        type=int,
        default=1,
        help="Number of updates steps to accumulate before performing a backward/update pass.",
    )
    parser.add_argument(
        "--learning_rate",
        type=float,
        default=1e-4,
        help="Initial learning rate (after the potential warmup period) to use.",
    )
    parser.add_argument(
        "--lr_scheduler",
        type=str,
        default="cosine",
        help=(
            'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
            ' "constant", "constant_with_warmup"]'
        ),
    )
    parser.add_argument(
        "--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler."
    )
    parser.add_argument("--adam_beta1", type=float, default=0.95, help="The beta1 parameter for the Adam optimizer.")
    parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.")
    parser.add_argument(
        "--adam_weight_decay", type=float, default=1e-6, help="Weight decay magnitude for the Adam optimizer."
    )
    parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer.")
    parser.add_argument(
        "--use_ema",
        action="store_true",
        default=True,
        help="Whether to use Exponential Moving Average for the final model weights.",
    )
    parser.add_argument("--ema_inv_gamma", type=float, default=1.0, help="The inverse gamma value for the EMA decay.")
    parser.add_argument("--ema_power", type=float, default=3 / 4, help="The power value for the EMA decay.")
    parser.add_argument("--ema_max_decay", type=float, default=0.9999, help="The maximum decay magnitude for EMA.")
    parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")
    parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.")
    parser.add_argument(
        "--hub_model_id",
        type=str,
        default=None,
        help="The name of the repository to keep in sync with the local `output_dir`.",
    )
    parser.add_argument(
        "--hub_private_repo", action="store_true", help="Whether or not to create a private repository."
    )
    parser.add_argument(
        "--logging_dir",
        type=str,
        default="logs",
        help=(
            "[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
            " *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
        ),
    )
    parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
    parser.add_argument(
        "--mixed_precision",
        type=str,
        default="no",
        choices=["no", "fp16", "bf16"],
        help=(
            "Whether to use mixed precision. Choose"
            "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."
            "and an Nvidia Ampere GPU."
        ),
    )

193
    parser.add_argument(
194
195
196
197
        "--predict_epsilon",
        action="store_true",
        default=True,
        help="Whether the model should predict the 'epsilon'/noise error or directly the reconstructed image 'x0'.",
198
199
200
201
202
    )

    parser.add_argument("--ddpm_num_steps", type=int, default=1000)
    parser.add_argument("--ddpm_beta_schedule", type=str, default="linear")

203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
    args = parser.parse_args()
    env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
    if env_local_rank != -1 and env_local_rank != args.local_rank:
        args.local_rank = env_local_rank

    if args.dataset_name is None and args.train_data_dir is None:
        raise ValueError("You must specify either a dataset name from the hub or a train data directory.")

    return args


def get_full_repo_name(model_id: str, organization: Optional[str] = None, token: Optional[str] = None):
    if token is None:
        token = HfFolder.get_token()
    if organization is None:
        username = whoami(token)["name"]
        return f"{username}/{model_id}"
    else:
        return f"{organization}/{model_id}"


anton-l's avatar
anton-l committed
224
def main(args):
225
    logging_dir = os.path.join(args.output_dir, args.logging_dir)
226
    accelerator = Accelerator(
227
        gradient_accumulation_steps=args.gradient_accumulation_steps,
228
229
230
231
        mixed_precision=args.mixed_precision,
        log_with="tensorboard",
        logging_dir=logging_dir,
    )
anton-l's avatar
anton-l committed
232

anton-l's avatar
anton-l committed
233
234
    model = UNet2DModel(
        sample_size=args.resolution,
235
236
        in_channels=3,
        out_channels=3,
anton-l's avatar
anton-l committed
237
238
239
240
241
242
243
244
245
        layers_per_block=2,
        block_out_channels=(128, 128, 256, 256, 512, 512),
        down_block_types=(
            "DownBlock2D",
            "DownBlock2D",
            "DownBlock2D",
            "DownBlock2D",
            "AttnDownBlock2D",
            "DownBlock2D",
246
        ),
anton-l's avatar
anton-l committed
247
248
249
250
251
252
253
        up_block_types=(
            "UpBlock2D",
            "AttnUpBlock2D",
            "UpBlock2D",
            "UpBlock2D",
            "UpBlock2D",
            "UpBlock2D",
254
        ),
anton-l's avatar
anton-l committed
255
    )
256
257
258
259
260
261
262
263
264
265
266
    accepts_predict_epsilon = "predict_epsilon" in set(inspect.signature(DDPMScheduler.__init__).parameters.keys())

    if accepts_predict_epsilon:
        noise_scheduler = DDPMScheduler(
            num_train_timesteps=args.ddpm_num_steps,
            beta_schedule=args.ddpm_beta_schedule,
            predict_epsilon=args.predict_epsilon,
        )
    else:
        noise_scheduler = DDPMScheduler(num_train_timesteps=args.ddpm_num_steps, beta_schedule=args.ddpm_beta_schedule)

267
268
269
270
271
272
273
    optimizer = torch.optim.AdamW(
        model.parameters(),
        lr=args.learning_rate,
        betas=(args.adam_beta1, args.adam_beta2),
        weight_decay=args.adam_weight_decay,
        eps=args.adam_epsilon,
    )
anton-l's avatar
anton-l committed
274
275
276

    augmentations = Compose(
        [
anton-l's avatar
anton-l committed
277
            Resize(args.resolution, interpolation=InterpolationMode.BILINEAR),
anton-l's avatar
anton-l committed
278
            CenterCrop(args.resolution),
anton-l's avatar
anton-l committed
279
280
            RandomHorizontalFlip(),
            ToTensor(),
anton-l's avatar
anton-l committed
281
            Normalize([0.5], [0.5]),
anton-l's avatar
anton-l committed
282
283
        ]
    )
284
285
286
287
288
289
290
291
292
293

    if args.dataset_name is not None:
        dataset = load_dataset(
            args.dataset_name,
            args.dataset_config_name,
            cache_dir=args.cache_dir,
            split="train",
        )
    else:
        dataset = load_dataset("imagefolder", data_dir=args.train_data_dir, cache_dir=args.cache_dir, split="train")
anton-l's avatar
anton-l committed
294
295
296
297
298

    def transforms(examples):
        images = [augmentations(image.convert("RGB")) for image in examples["image"]]
        return {"input": images}

299
300
    logger.info(f"Dataset size: {len(dataset)}")

anton-l's avatar
anton-l committed
301
    dataset.set_transform(transforms)
302
303
304
    train_dataloader = torch.utils.data.DataLoader(
        dataset, batch_size=args.train_batch_size, shuffle=True, num_workers=args.dataloader_num_workers
    )
anton-l's avatar
anton-l committed
305

anton-l's avatar
anton-l committed
306
    lr_scheduler = get_scheduler(
307
        args.lr_scheduler,
anton-l's avatar
anton-l committed
308
        optimizer=optimizer,
309
        num_warmup_steps=args.lr_warmup_steps,
anton-l's avatar
anton-l committed
310
        num_training_steps=(len(train_dataloader) * args.num_epochs) // args.gradient_accumulation_steps,
anton-l's avatar
anton-l committed
311
312
313
314
315
316
    )

    model, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
        model, optimizer, train_dataloader, lr_scheduler
    )

317
318
    num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)

319
    ema_model = EMAModel(model, inv_gamma=args.ema_inv_gamma, power=args.ema_power, max_value=args.ema_max_decay)
anton-l's avatar
anton-l committed
320

321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
    # Handle the repository creation
    if accelerator.is_main_process:
        if args.push_to_hub:
            if args.hub_model_id is None:
                repo_name = get_full_repo_name(Path(args.output_dir).name, token=args.hub_token)
            else:
                repo_name = args.hub_model_id
            repo = Repository(args.output_dir, clone_from=repo_name)

            with open(os.path.join(args.output_dir, ".gitignore"), "w+") as gitignore:
                if "step_*" not in gitignore:
                    gitignore.write("step_*\n")
                if "epoch_*" not in gitignore:
                    gitignore.write("epoch_*\n")
        elif args.output_dir is not None:
            os.makedirs(args.output_dir, exist_ok=True)
anton-l's avatar
anton-l committed
337

338
339
340
341
    if accelerator.is_main_process:
        run = os.path.split(__file__)[-1].split(".")[0]
        accelerator.init_trackers(run)

anton-l's avatar
anton-l committed
342
    global_step = 0
anton-l's avatar
anton-l committed
343
    for epoch in range(args.num_epochs):
anton-l's avatar
anton-l committed
344
        model.train()
345
        progress_bar = tqdm(total=num_update_steps_per_epoch, disable=not accelerator.is_local_main_process)
346
347
348
        progress_bar.set_description(f"Epoch {epoch}")
        for step, batch in enumerate(train_dataloader):
            clean_images = batch["input"]
349
350
            # Sample noise that we'll add to the images
            noise = torch.randn(clean_images.shape).to(clean_images.device)
351
            bsz = clean_images.shape[0]
352
353
            # Sample a random timestep for each image
            timesteps = torch.randint(
354
                0, noise_scheduler.config.num_train_timesteps, (bsz,), device=clean_images.device
355
            ).long()
356

357
            # Add noise to the clean images according to the noise magnitude at each timestep
358
            # (this is the forward diffusion process)
359
360
361
362
            noisy_images = noise_scheduler.add_noise(clean_images, noise, timesteps)

            with accelerator.accumulate(model):
                # Predict the noise residual
363
364
                model_output = model(noisy_images, timesteps).sample

365
                if args.predict_epsilon:
366
                    loss = F.mse_loss(model_output, noise)  # this could have different weights!
367
                else:
368
369
370
371
372
373
374
375
376
                    alpha_t = _extract_into_tensor(
                        noise_scheduler.alphas_cumprod, timesteps, (clean_images.shape[0], 1, 1, 1)
                    )
                    snr_weights = alpha_t / (1 - alpha_t)
                    loss = snr_weights * F.mse_loss(
                        model_output, clean_images, reduction="none"
                    )  # use SNR weighting from distillation paper
                    loss = loss.mean()

377
                accelerator.backward(loss)
378

379
380
                if accelerator.sync_gradients:
                    accelerator.clip_grad_norm_(model.parameters(), 1.0)
381
382
                optimizer.step()
                lr_scheduler.step()
383
384
                if args.use_ema:
                    ema_model.step(model)
385
                optimizer.zero_grad()
386

387
388
389
390
391
            # Checks if the accelerator has performed an optimization step behind the scenes
            if accelerator.sync_gradients:
                progress_bar.update(1)
                global_step += 1

392
393
394
395
396
            logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0], "step": global_step}
            if args.use_ema:
                logs["ema_decay"] = ema_model.decay
            progress_bar.set_postfix(**logs)
            accelerator.log(logs, step=global_step)
397
        progress_bar.close()
anton-l's avatar
anton-l committed
398

anton-l's avatar
anton-l committed
399
        accelerator.wait_for_everyone()
anton-l's avatar
anton-l committed
400

anton-l's avatar
anton-l committed
401
        # Generate sample images for visual inspection
anton-l's avatar
anton-l committed
402
        if accelerator.is_main_process:
anton-l's avatar
anton-l committed
403
            if epoch % args.save_images_epochs == 0 or epoch == args.num_epochs - 1:
404
405
406
                pipeline = DDPMPipeline(
                    unet=accelerator.unwrap_model(ema_model.averaged_model if args.use_ema else model),
                    scheduler=noise_scheduler,
anton-l's avatar
anton-l committed
407
                )
anton-l's avatar
anton-l committed
408
409

                generator = torch.manual_seed(0)
anton-l's avatar
anton-l committed
410
                # run pipeline in inference (sample random noise and denoise)
411
412
413
414
415
                images = pipeline(
                    generator=generator,
                    batch_size=args.eval_batch_size,
                    output_type="numpy",
                ).images
anton-l's avatar
anton-l committed
416

anton-l's avatar
anton-l committed
417
418
419
420
421
                # denormalize the images and save to tensorboard
                images_processed = (images * 255).round().astype("uint8")
                accelerator.trackers[0].writer.add_images(
                    "test_samples", images_processed.transpose(0, 3, 1, 2), epoch
                )
anton-l's avatar
anton-l committed
422

423
424
            if epoch % args.save_model_epochs == 0 or epoch == args.num_epochs - 1:
                # save the model
425
                pipeline.save_pretrained(args.output_dir)
426
                if args.push_to_hub:
427
                    repo.push_to_hub(commit_message=f"Epoch {epoch}", blocking=False)
anton-l's avatar
anton-l committed
428
        accelerator.wait_for_everyone()
anton-l's avatar
anton-l committed
429

430
431
    accelerator.end_training()

anton-l's avatar
anton-l committed
432
433

if __name__ == "__main__":
434
    args = parse_args()
anton-l's avatar
anton-l committed
435
    main(args)