"examples/pytorch/graphsage/dist/train_dist.py" did not exist on "97863ab85bcbcface04970252502a25122986fa3"
test_modeling_common.py 43.5 KB
Newer Older
1
# coding=utf-8
2
# Copyright 2024 HuggingFace Inc.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import inspect
17
18
import json
import os
19
import tempfile
20
import traceback
21
import unittest
22
import unittest.mock as mock
23
import uuid
24
from typing import Dict, List, Tuple
25
26

import numpy as np
27
import requests_mock
28
import torch
29
from accelerate.utils import compute_module_sizes
30
31
from huggingface_hub import ModelCard, delete_repo
from huggingface_hub.utils import is_jinja_available
32
from requests.exceptions import HTTPError
33

34
from diffusers.models import UNet2DConditionModel
35
36
37
38
39
40
from diffusers.models.attention_processor import (
    AttnProcessor,
    AttnProcessor2_0,
    AttnProcessorNPU,
    XFormersAttnProcessor,
)
41
from diffusers.training_utils import EMAModel
42
from diffusers.utils import SAFE_WEIGHTS_INDEX_NAME, is_torch_npu_available, is_xformers_available, logging
43
from diffusers.utils.hub_utils import _add_variant
44
45
from diffusers.utils.testing_utils import (
    CaptureLogger,
46
    get_python_version,
47
    is_torch_compile,
48
    require_torch_2,
Arsalan's avatar
Arsalan committed
49
    require_torch_accelerator_with_training,
50
    require_torch_gpu,
51
    require_torch_multi_gpu,
52
    run_test_in_subprocess,
Dhruv Nair's avatar
Dhruv Nair committed
53
    torch_device,
54
55
56
)

from ..others.test_utils import TOKEN, USER, is_staging_test
57
58


59
60
61
62
63
64
65
66
67
def caculate_expected_num_shards(index_map_path):
    with open(index_map_path) as f:
        weight_map_dict = json.load(f)["weight_map"]
    first_key = list(weight_map_dict.keys())[0]
    weight_loc = weight_map_dict[first_key]  # e.g., diffusion_pytorch_model-00001-of-00002.safetensors
    expected_num_shards = int(weight_loc.split("-")[-1].split(".")[0])
    return expected_num_shards


68
69
70
71
72
73
74
75
76
77
78
# Will be run via run_test_in_subprocess
def _test_from_save_pretrained_dynamo(in_queue, out_queue, timeout):
    error = None
    try:
        init_dict, model_class = in_queue.get(timeout=timeout)

        model = model_class(**init_dict)
        model.to(torch_device)
        model = torch.compile(model)

        with tempfile.TemporaryDirectory() as tmpdirname:
79
            model.save_pretrained(tmpdirname, safe_serialization=False)
80
81
82
83
84
85
86
87
88
89
            new_model = model_class.from_pretrained(tmpdirname)
            new_model.to(torch_device)

        assert new_model.__class__ == model_class
    except Exception:
        error = f"{traceback.format_exc()}"

    results = {"error": error}
    out_queue.put(results, timeout=timeout)
    out_queue.join()
90
91


92
class ModelUtilsTest(unittest.TestCase):
93
94
95
    def tearDown(self):
        super().tearDown()

96
97
98
99
100
101
102
    def test_accelerate_loading_error_message(self):
        with self.assertRaises(ValueError) as error_context:
            UNet2DConditionModel.from_pretrained("hf-internal-testing/stable-diffusion-broken", subfolder="unet")

        # make sure that error message states what keys are missing
        assert "conv_out.bias" in str(error_context.exception)

103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
    def test_cached_files_are_used_when_no_internet(self):
        # A mock response for an HTTP head request to emulate server down
        response_mock = mock.Mock()
        response_mock.status_code = 500
        response_mock.headers = {}
        response_mock.raise_for_status.side_effect = HTTPError
        response_mock.json.return_value = {}

        # Download this model to make sure it's in the cache.
        orig_model = UNet2DConditionModel.from_pretrained(
            "hf-internal-testing/tiny-stable-diffusion-torch", subfolder="unet"
        )

        # Under the mock environment we get a 500 error when trying to reach the model.
        with mock.patch("requests.request", return_value=response_mock):
            # Download this model to make sure it's in the cache.
            model = UNet2DConditionModel.from_pretrained(
                "hf-internal-testing/tiny-stable-diffusion-torch", subfolder="unet", local_files_only=True
            )

        for p1, p2 in zip(orig_model.parameters(), model.parameters()):
            if p1.data.ne(p2.data).sum() > 0:
                assert False, "Parameters not the same!"

127
    @unittest.skip("Flaky behaviour on CI. Re-enable after migrating to new runners")
128
    @unittest.skipIf(torch_device == "mps", reason="Test not supported for MPS.")
129
    def test_one_request_upon_cached(self):
130
        use_safetensors = False
131
132
133
134

        with tempfile.TemporaryDirectory() as tmpdirname:
            with requests_mock.mock(real_http=True) as m:
                UNet2DConditionModel.from_pretrained(
135
136
137
138
                    "hf-internal-testing/tiny-stable-diffusion-torch",
                    subfolder="unet",
                    cache_dir=tmpdirname,
                    use_safetensors=use_safetensors,
139
140
141
                )

            download_requests = [r.method for r in m.request_history]
142
143
144
            assert (
                download_requests.count("HEAD") == 3
            ), "3 HEAD requests one for config, one for model, and one for shard index file."
145
146
147
148
            assert download_requests.count("GET") == 2, "2 GET requests one for config, one for model"

            with requests_mock.mock(real_http=True) as m:
                UNet2DConditionModel.from_pretrained(
149
150
151
152
                    "hf-internal-testing/tiny-stable-diffusion-torch",
                    subfolder="unet",
                    cache_dir=tmpdirname,
                    use_safetensors=use_safetensors,
153
154
155
156
                )

            cache_requests = [r.method for r in m.request_history]
            assert (
157
158
                "HEAD" == cache_requests[0] and len(cache_requests) == 2
            ), "We should call only `model_info` to check for commit hash and  knowing if shard index is present."
159

160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
    def test_weight_overwrite(self):
        with tempfile.TemporaryDirectory() as tmpdirname, self.assertRaises(ValueError) as error_context:
            UNet2DConditionModel.from_pretrained(
                "hf-internal-testing/tiny-stable-diffusion-torch",
                subfolder="unet",
                cache_dir=tmpdirname,
                in_channels=9,
            )

        # make sure that error message states what keys are missing
        assert "Cannot load" in str(error_context.exception)

        with tempfile.TemporaryDirectory() as tmpdirname:
            model = UNet2DConditionModel.from_pretrained(
                "hf-internal-testing/tiny-stable-diffusion-torch",
                subfolder="unet",
                cache_dir=tmpdirname,
                in_channels=9,
                low_cpu_mem_usage=False,
                ignore_mismatched_sizes=True,
            )

        assert model.config.in_channels == 9

184

185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
class UNetTesterMixin:
    def test_forward_with_norm_groups(self):
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

        init_dict["norm_num_groups"] = 16
        init_dict["block_out_channels"] = (16, 32)

        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.eval()

        with torch.no_grad():
            output = model(**inputs_dict)

            if isinstance(output, dict):
                output = output.to_tuple()[0]

        self.assertIsNotNone(output)
        expected_shape = inputs_dict["sample"].shape
        self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match")


207
class ModelTesterMixin:
208
209
    main_input_name = None  # overwrite in model specific tester class
    base_precision = 1e-3
Will Berman's avatar
Will Berman committed
210
    forward_requires_fresh_args = False
211
    model_split_percents = [0.5, 0.7, 0.9]
212
    uses_custom_attn_processor = False
213
214
215
216
217
218
219
220
221
222
223
224
225
226

    def check_device_map_is_respected(self, model, device_map):
        for param_name, param in model.named_parameters():
            # Find device in device_map
            while len(param_name) > 0 and param_name not in device_map:
                param_name = ".".join(param_name.split(".")[:-1])
            if param_name not in device_map:
                raise ValueError("device map is incomplete, it does not contain any device for `param_name`.")

            param_device = device_map[param_name]
            if param_device in ["cpu", "disk"]:
                self.assertEqual(param.device, torch.device("meta"))
            else:
                self.assertEqual(param.device, torch.device(param_device))
227

228
    def test_from_save_pretrained(self, expected_max_diff=5e-5):
Will Berman's avatar
Will Berman committed
229
230
231
232
233
        if self.forward_requires_fresh_args:
            model = self.model_class(**self.init_dict)
        else:
            init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
            model = self.model_class(**init_dict)
234

235
236
        if hasattr(model, "set_default_attn_processor"):
            model.set_default_attn_processor()
237
238
239
240
        model.to(torch_device)
        model.eval()

        with tempfile.TemporaryDirectory() as tmpdirname:
241
            model.save_pretrained(tmpdirname, safe_serialization=False)
242
            new_model = self.model_class.from_pretrained(tmpdirname)
243
244
            if hasattr(new_model, "set_default_attn_processor"):
                new_model.set_default_attn_processor()
245
246
247
            new_model.to(torch_device)

        with torch.no_grad():
Will Berman's avatar
Will Berman committed
248
249
250
251
252
            if self.forward_requires_fresh_args:
                image = model(**self.inputs_dict(0))
            else:
                image = model(**inputs_dict)

253
            if isinstance(image, dict):
254
                image = image.to_tuple()[0]
255

Will Berman's avatar
Will Berman committed
256
257
258
259
            if self.forward_requires_fresh_args:
                new_image = new_model(**self.inputs_dict(0))
            else:
                new_image = new_model(**inputs_dict)
260
261

            if isinstance(new_image, dict):
262
                new_image = new_image.to_tuple()[0]
263

264
265
        max_diff = (image - new_image).abs().max().item()
        self.assertLessEqual(max_diff, expected_max_diff, "Models give different forward passes")
266

267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
    def test_getattr_is_correct(self):
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**init_dict)

        # save some things to test
        model.dummy_attribute = 5
        model.register_to_config(test_attribute=5)

        logger = logging.get_logger("diffusers.models.modeling_utils")
        # 30 for warning
        logger.setLevel(30)
        with CaptureLogger(logger) as cap_logger:
            assert hasattr(model, "dummy_attribute")
            assert getattr(model, "dummy_attribute") == 5
            assert model.dummy_attribute == 5

        # no warning should be thrown
        assert cap_logger.out == ""

        logger = logging.get_logger("diffusers.models.modeling_utils")
        # 30 for warning
        logger.setLevel(30)
        with CaptureLogger(logger) as cap_logger:
            assert hasattr(model, "save_pretrained")
            fn = model.save_pretrained
            fn_1 = getattr(model, "save_pretrained")

            assert fn == fn_1
        # no warning should be thrown
        assert cap_logger.out == ""

        # warning should be thrown
        with self.assertWarns(FutureWarning):
            assert model.test_attribute == 5

        with self.assertWarns(FutureWarning):
            assert getattr(model, "test_attribute") == 5

        with self.assertRaises(AttributeError) as error:
            model.does_not_exist

        assert str(error.exception) == f"'{type(model).__name__}' object has no attribute 'does_not_exist'"

310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
    @unittest.skipIf(
        torch_device != "npu" or not is_torch_npu_available(),
        reason="torch npu flash attention is only available with NPU and `torch_npu` installed",
    )
    def test_set_torch_npu_flash_attn_processor_determinism(self):
        torch.use_deterministic_algorithms(False)
        if self.forward_requires_fresh_args:
            model = self.model_class(**self.init_dict)
        else:
            init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
            model = self.model_class(**init_dict)
        model.to(torch_device)

        if not hasattr(model, "set_attn_processor"):
            # If not has `set_attn_processor`, skip test
            return

        model.set_default_attn_processor()
        assert all(type(proc) == AttnProcessorNPU for proc in model.attn_processors.values())
        with torch.no_grad():
            if self.forward_requires_fresh_args:
                output = model(**self.inputs_dict(0))[0]
            else:
                output = model(**inputs_dict)[0]

        model.enable_npu_flash_attention()
        assert all(type(proc) == AttnProcessorNPU for proc in model.attn_processors.values())
        with torch.no_grad():
            if self.forward_requires_fresh_args:
                output_2 = model(**self.inputs_dict(0))[0]
            else:
                output_2 = model(**inputs_dict)[0]

        model.set_attn_processor(AttnProcessorNPU())
        assert all(type(proc) == AttnProcessorNPU for proc in model.attn_processors.values())
        with torch.no_grad():
            if self.forward_requires_fresh_args:
                output_3 = model(**self.inputs_dict(0))[0]
            else:
                output_3 = model(**inputs_dict)[0]

        torch.use_deterministic_algorithms(True)

        assert torch.allclose(output, output_2, atol=self.base_precision)
        assert torch.allclose(output, output_3, atol=self.base_precision)
        assert torch.allclose(output_2, output_3, atol=self.base_precision)

Dhruv Nair's avatar
Dhruv Nair committed
357
358
359
360
361
362
    @unittest.skipIf(
        torch_device != "cuda" or not is_xformers_available(),
        reason="XFormers attention is only available with CUDA and `xformers` installed",
    )
    def test_set_xformers_attn_processor_for_determinism(self):
        torch.use_deterministic_algorithms(False)
Will Berman's avatar
Will Berman committed
363
364
365
366
367
        if self.forward_requires_fresh_args:
            model = self.model_class(**self.init_dict)
        else:
            init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
            model = self.model_class(**init_dict)
Dhruv Nair's avatar
Dhruv Nair committed
368
369
370
371
        model.to(torch_device)

        if not hasattr(model, "set_attn_processor"):
            # If not has `set_attn_processor`, skip test
Dhruv Nair's avatar
Dhruv Nair committed
372
373
374
375
            return

        if not hasattr(model, "set_default_attn_processor"):
            # If not has `set_attn_processor`, skip test
Dhruv Nair's avatar
Dhruv Nair committed
376
377
378
379
380
            return

        model.set_default_attn_processor()
        assert all(type(proc) == AttnProcessor for proc in model.attn_processors.values())
        with torch.no_grad():
Will Berman's avatar
Will Berman committed
381
382
383
384
            if self.forward_requires_fresh_args:
                output = model(**self.inputs_dict(0))[0]
            else:
                output = model(**inputs_dict)[0]
Dhruv Nair's avatar
Dhruv Nair committed
385
386
387
388

        model.enable_xformers_memory_efficient_attention()
        assert all(type(proc) == XFormersAttnProcessor for proc in model.attn_processors.values())
        with torch.no_grad():
Will Berman's avatar
Will Berman committed
389
390
391
392
            if self.forward_requires_fresh_args:
                output_2 = model(**self.inputs_dict(0))[0]
            else:
                output_2 = model(**inputs_dict)[0]
Dhruv Nair's avatar
Dhruv Nair committed
393

394
395
396
        model.set_attn_processor(XFormersAttnProcessor())
        assert all(type(proc) == XFormersAttnProcessor for proc in model.attn_processors.values())
        with torch.no_grad():
Will Berman's avatar
Will Berman committed
397
398
399
400
            if self.forward_requires_fresh_args:
                output_3 = model(**self.inputs_dict(0))[0]
            else:
                output_3 = model(**inputs_dict)[0]
401
402
403

        torch.use_deterministic_algorithms(True)

Dhruv Nair's avatar
Dhruv Nair committed
404
        assert torch.allclose(output, output_2, atol=self.base_precision)
405
406
        assert torch.allclose(output, output_3, atol=self.base_precision)
        assert torch.allclose(output_2, output_3, atol=self.base_precision)
Dhruv Nair's avatar
Dhruv Nair committed
407

408
409
    @require_torch_gpu
    def test_set_attn_processor_for_determinism(self):
410
411
412
        if self.uses_custom_attn_processor:
            return

413
        torch.use_deterministic_algorithms(False)
Will Berman's avatar
Will Berman committed
414
415
416
417
418
419
        if self.forward_requires_fresh_args:
            model = self.model_class(**self.init_dict)
        else:
            init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
            model = self.model_class(**init_dict)

420
421
422
423
424
425
426
427
        model.to(torch_device)

        if not hasattr(model, "set_attn_processor"):
            # If not has `set_attn_processor`, skip test
            return

        assert all(type(proc) == AttnProcessor2_0 for proc in model.attn_processors.values())
        with torch.no_grad():
Will Berman's avatar
Will Berman committed
428
429
430
431
            if self.forward_requires_fresh_args:
                output_1 = model(**self.inputs_dict(0))[0]
            else:
                output_1 = model(**inputs_dict)[0]
432
433
434
435

        model.set_default_attn_processor()
        assert all(type(proc) == AttnProcessor for proc in model.attn_processors.values())
        with torch.no_grad():
Will Berman's avatar
Will Berman committed
436
437
438
439
            if self.forward_requires_fresh_args:
                output_2 = model(**self.inputs_dict(0))[0]
            else:
                output_2 = model(**inputs_dict)[0]
440
441
442
443

        model.set_attn_processor(AttnProcessor2_0())
        assert all(type(proc) == AttnProcessor2_0 for proc in model.attn_processors.values())
        with torch.no_grad():
Will Berman's avatar
Will Berman committed
444
445
446
447
            if self.forward_requires_fresh_args:
                output_4 = model(**self.inputs_dict(0))[0]
            else:
                output_4 = model(**inputs_dict)[0]
448
449
450
451

        model.set_attn_processor(AttnProcessor())
        assert all(type(proc) == AttnProcessor for proc in model.attn_processors.values())
        with torch.no_grad():
Will Berman's avatar
Will Berman committed
452
453
454
455
            if self.forward_requires_fresh_args:
                output_5 = model(**self.inputs_dict(0))[0]
            else:
                output_5 = model(**inputs_dict)[0]
456
457
458
459
460
461
462
463

        torch.use_deterministic_algorithms(True)

        # make sure that outputs match
        assert torch.allclose(output_2, output_1, atol=self.base_precision)
        assert torch.allclose(output_2, output_4, atol=self.base_precision)
        assert torch.allclose(output_2, output_5, atol=self.base_precision)

464
    def test_from_save_pretrained_variant(self, expected_max_diff=5e-5):
Will Berman's avatar
Will Berman committed
465
466
467
468
469
        if self.forward_requires_fresh_args:
            model = self.model_class(**self.init_dict)
        else:
            init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
            model = self.model_class(**init_dict)
470

471
472
        if hasattr(model, "set_default_attn_processor"):
            model.set_default_attn_processor()
473

474
475
476
477
        model.to(torch_device)
        model.eval()

        with tempfile.TemporaryDirectory() as tmpdirname:
478
            model.save_pretrained(tmpdirname, variant="fp16", safe_serialization=False)
479
            new_model = self.model_class.from_pretrained(tmpdirname, variant="fp16")
480
481
            if hasattr(new_model, "set_default_attn_processor"):
                new_model.set_default_attn_processor()
482
483
484
485
486
487
488
489
490
491
492

            # non-variant cannot be loaded
            with self.assertRaises(OSError) as error_context:
                self.model_class.from_pretrained(tmpdirname)

            # make sure that error message states what keys are missing
            assert "Error no file named diffusion_pytorch_model.bin found in directory" in str(error_context.exception)

            new_model.to(torch_device)

        with torch.no_grad():
Will Berman's avatar
Will Berman committed
493
494
495
496
            if self.forward_requires_fresh_args:
                image = model(**self.inputs_dict(0))
            else:
                image = model(**inputs_dict)
497
            if isinstance(image, dict):
498
                image = image.to_tuple()[0]
499

Will Berman's avatar
Will Berman committed
500
501
502
503
            if self.forward_requires_fresh_args:
                new_image = new_model(**self.inputs_dict(0))
            else:
                new_image = new_model(**inputs_dict)
504
505

            if isinstance(new_image, dict):
506
                new_image = new_image.to_tuple()[0]
507

508
509
        max_diff = (image - new_image).abs().max().item()
        self.assertLessEqual(max_diff, expected_max_diff, "Models give different forward passes")
510

511
    @is_torch_compile
512
    @require_torch_2
513
514
515
516
    @unittest.skipIf(
        get_python_version == (3, 12),
        reason="Torch Dynamo isn't yet supported for Python 3.12.",
    )
517
    def test_from_save_pretrained_dynamo(self):
518
519
520
        init_dict, _ = self.prepare_init_args_and_inputs_for_common()
        inputs = [init_dict, self.model_class]
        run_test_in_subprocess(test_case=self, target_func=_test_from_save_pretrained_dynamo, inputs=inputs)
521

522
523
524
525
526
527
528
529
530
531
532
533
    def test_from_save_pretrained_dtype(self):
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.eval()

        for dtype in [torch.float32, torch.float16, torch.bfloat16]:
            if torch_device == "mps" and dtype == torch.bfloat16:
                continue
            with tempfile.TemporaryDirectory() as tmpdirname:
                model.to(dtype)
534
                model.save_pretrained(tmpdirname, safe_serialization=False)
535
                new_model = self.model_class.from_pretrained(tmpdirname, low_cpu_mem_usage=True, torch_dtype=dtype)
536
                assert new_model.dtype == dtype
537
                new_model = self.model_class.from_pretrained(tmpdirname, low_cpu_mem_usage=False, torch_dtype=dtype)
538
539
                assert new_model.dtype == dtype

540
    def test_determinism(self, expected_max_diff=1e-5):
Will Berman's avatar
Will Berman committed
541
542
543
544
545
        if self.forward_requires_fresh_args:
            model = self.model_class(**self.init_dict)
        else:
            init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
            model = self.model_class(**init_dict)
546
547
        model.to(torch_device)
        model.eval()
548

549
        with torch.no_grad():
Will Berman's avatar
Will Berman committed
550
551
552
553
            if self.forward_requires_fresh_args:
                first = model(**self.inputs_dict(0))
            else:
                first = model(**inputs_dict)
554
            if isinstance(first, dict):
555
                first = first.to_tuple()[0]
556

Will Berman's avatar
Will Berman committed
557
558
559
560
            if self.forward_requires_fresh_args:
                second = model(**self.inputs_dict(0))
            else:
                second = model(**inputs_dict)
561
            if isinstance(second, dict):
562
                second = second.to_tuple()[0]
563
564
565
566
567
568

        out_1 = first.cpu().numpy()
        out_2 = second.cpu().numpy()
        out_1 = out_1[~np.isnan(out_1)]
        out_2 = out_2[~np.isnan(out_2)]
        max_diff = np.amax(np.abs(out_1 - out_2))
569
        self.assertLessEqual(max_diff, expected_max_diff)
570

571
    def test_output(self, expected_output_shape=None):
572
573
574
575
576
577
578
579
580
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.eval()

        with torch.no_grad():
            output = model(**inputs_dict)

            if isinstance(output, dict):
581
                output = output.to_tuple()[0]
582
583

        self.assertIsNotNone(output)
584

585
586
        # input & output have to have the same shape
        input_tensor = inputs_dict[self.main_input_name]
587
588
589
590
591
592

        if expected_output_shape is None:
            expected_shape = input_tensor.shape
            self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match")
        else:
            self.assertEqual(output.shape, expected_output_shape, "Input and output shapes do not match")
593

594
    def test_model_from_pretrained(self):
595
596
597
598
599
600
601
602
603
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.eval()

        # test if the model can be loaded from the config
        # and has all the expected shape
        with tempfile.TemporaryDirectory() as tmpdirname:
604
            model.save_pretrained(tmpdirname, safe_serialization=False)
605
            new_model = self.model_class.from_pretrained(tmpdirname)
606
607
608
            new_model.to(torch_device)
            new_model.eval()

609
        # check if all parameters shape are the same
610
611
612
613
614
615
616
617
618
        for param_name in model.state_dict().keys():
            param_1 = model.state_dict()[param_name]
            param_2 = new_model.state_dict()[param_name]
            self.assertEqual(param_1.shape, param_2.shape)

        with torch.no_grad():
            output_1 = model(**inputs_dict)

            if isinstance(output_1, dict):
619
                output_1 = output_1.to_tuple()[0]
620
621
622
623

            output_2 = new_model(**inputs_dict)

            if isinstance(output_2, dict):
624
                output_2 = output_2.to_tuple()[0]
625
626
627

        self.assertEqual(output_1.shape, output_2.shape)

Arsalan's avatar
Arsalan committed
628
    @require_torch_accelerator_with_training
629
630
631
632
633
634
635
636
637
    def test_training(self):
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.train()
        output = model(**inputs_dict)

        if isinstance(output, dict):
638
            output = output.to_tuple()[0]
639

640
641
        input_tensor = inputs_dict[self.main_input_name]
        noise = torch.randn((input_tensor.shape[0],) + self.output_shape).to(torch_device)
642
643
644
        loss = torch.nn.functional.mse_loss(output, noise)
        loss.backward()

Arsalan's avatar
Arsalan committed
645
    @require_torch_accelerator_with_training
646
647
648
649
650
651
    def test_ema_training(self):
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.train()
652
        ema_model = EMAModel(model.parameters())
653
654
655
656

        output = model(**inputs_dict)

        if isinstance(output, dict):
657
            output = output.to_tuple()[0]
658

659
660
        input_tensor = inputs_dict[self.main_input_name]
        noise = torch.randn((input_tensor.shape[0],) + self.output_shape).to(torch_device)
661
662
        loss = torch.nn.functional.mse_loss(output, noise)
        loss.backward()
663
        ema_model.step(model.parameters())
664

665
    def test_outputs_equivalence(self):
666
        def set_nan_tensor_to_zero(t):
667
668
669
670
671
            # Temporary fallback until `aten::_index_put_impl_` is implemented in mps
            # Track progress in https://github.com/pytorch/pytorch/issues/77764
            device = t.device
            if device.type == "mps":
                t = t.to("cpu")
672
            t[t != t] = 0
673
            return t.to(device)
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696

        def recursive_check(tuple_object, dict_object):
            if isinstance(tuple_object, (List, Tuple)):
                for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object.values()):
                    recursive_check(tuple_iterable_value, dict_iterable_value)
            elif isinstance(tuple_object, Dict):
                for tuple_iterable_value, dict_iterable_value in zip(tuple_object.values(), dict_object.values()):
                    recursive_check(tuple_iterable_value, dict_iterable_value)
            elif tuple_object is None:
                return
            else:
                self.assertTrue(
                    torch.allclose(
                        set_nan_tensor_to_zero(tuple_object), set_nan_tensor_to_zero(dict_object), atol=1e-5
                    ),
                    msg=(
                        "Tuple and dict output are not equal. Difference:"
                        f" {torch.max(torch.abs(tuple_object - dict_object))}. Tuple has `nan`:"
                        f" {torch.isnan(tuple_object).any()} and `inf`: {torch.isinf(tuple_object)}. Dict has"
                        f" `nan`: {torch.isnan(dict_object).any()} and `inf`: {torch.isinf(dict_object)}."
                    ),
                )

Will Berman's avatar
Will Berman committed
697
698
699
700
701
        if self.forward_requires_fresh_args:
            model = self.model_class(**self.init_dict)
        else:
            init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
            model = self.model_class(**init_dict)
702
703
704
705

        model.to(torch_device)
        model.eval()

706
        with torch.no_grad():
Will Berman's avatar
Will Berman committed
707
708
709
710
711
712
            if self.forward_requires_fresh_args:
                outputs_dict = model(**self.inputs_dict(0))
                outputs_tuple = model(**self.inputs_dict(0), return_dict=False)
            else:
                outputs_dict = model(**inputs_dict)
                outputs_tuple = model(**inputs_dict, return_dict=False)
713
714

        recursive_check(outputs_tuple, outputs_dict)
715

Arsalan's avatar
Arsalan committed
716
    @require_torch_accelerator_with_training
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
    def test_enable_disable_gradient_checkpointing(self):
        if not self.model_class._supports_gradient_checkpointing:
            return  # Skip test if model does not support gradient checkpointing

        init_dict, _ = self.prepare_init_args_and_inputs_for_common()

        # at init model should have gradient checkpointing disabled
        model = self.model_class(**init_dict)
        self.assertFalse(model.is_gradient_checkpointing)

        # check enable works
        model.enable_gradient_checkpointing()
        self.assertTrue(model.is_gradient_checkpointing)

        # check disable works
        model.disable_gradient_checkpointing()
        self.assertFalse(model.is_gradient_checkpointing)
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753

    def test_deprecated_kwargs(self):
        has_kwarg_in_model_class = "kwargs" in inspect.signature(self.model_class.__init__).parameters
        has_deprecated_kwarg = len(self.model_class._deprecated_kwargs) > 0

        if has_kwarg_in_model_class and not has_deprecated_kwarg:
            raise ValueError(
                f"{self.model_class} has `**kwargs` in its __init__ method but has not defined any deprecated kwargs"
                " under the `_deprecated_kwargs` class attribute. Make sure to either remove `**kwargs` if there are"
                " no deprecated arguments or add the deprecated argument with `_deprecated_kwargs ="
                " [<deprecated_argument>]`"
            )

        if not has_kwarg_in_model_class and has_deprecated_kwarg:
            raise ValueError(
                f"{self.model_class} doesn't have `**kwargs` in its __init__ method but has defined deprecated kwargs"
                " under the `_deprecated_kwargs` class attribute. Make sure to either add the `**kwargs` argument to"
                f" {self.model_class}.__init__ if there are deprecated arguments or remove the deprecated argument"
                " from `_deprecated_kwargs = [<deprecated_argument>]`"
            )
754

755
756
757
758
    @require_torch_gpu
    def test_cpu_offload(self):
        config, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**config).eval()
759
760
761
        if model._no_split_modules is None:
            return

762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
        model = model.to(torch_device)

        torch.manual_seed(0)
        base_output = model(**inputs_dict)

        model_size = compute_module_sizes(model)[""]
        # We test several splits of sizes to make sure it works.
        max_gpu_sizes = [int(p * model_size) for p in self.model_split_percents[1:]]
        with tempfile.TemporaryDirectory() as tmp_dir:
            model.cpu().save_pretrained(tmp_dir)

            for max_size in max_gpu_sizes:
                max_memory = {0: max_size, "cpu": model_size * 2}
                new_model = self.model_class.from_pretrained(tmp_dir, device_map="auto", max_memory=max_memory)
                # Making sure part of the model will actually end up offloaded
                self.assertSetEqual(set(new_model.hf_device_map.values()), {0, "cpu"})

                self.check_device_map_is_respected(new_model, new_model.hf_device_map)
                torch.manual_seed(0)
                new_output = new_model(**inputs_dict)

                self.assertTrue(torch.allclose(base_output[0], new_output[0], atol=1e-5))

    @require_torch_gpu
    def test_disk_offload_without_safetensors(self):
        config, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**config).eval()
789
790
791
        if model._no_split_modules is None:
            return

792
793
794
795
796
797
798
799
800
801
        model = model.to(torch_device)

        torch.manual_seed(0)
        base_output = model(**inputs_dict)

        model_size = compute_module_sizes(model)[""]
        with tempfile.TemporaryDirectory() as tmp_dir:
            model.cpu().save_pretrained(tmp_dir, safe_serialization=False)

            with self.assertRaises(ValueError):
802
                max_size = int(self.model_split_percents[0] * model_size)
803
804
805
806
                max_memory = {0: max_size, "cpu": max_size}
                # This errors out because it's missing an offload folder
                new_model = self.model_class.from_pretrained(tmp_dir, device_map="auto", max_memory=max_memory)

807
            max_size = int(self.model_split_percents[0] * model_size)
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
            max_memory = {0: max_size, "cpu": max_size}
            new_model = self.model_class.from_pretrained(
                tmp_dir, device_map="auto", max_memory=max_memory, offload_folder=tmp_dir
            )

            self.check_device_map_is_respected(new_model, new_model.hf_device_map)
            torch.manual_seed(0)
            new_output = new_model(**inputs_dict)

            self.assertTrue(torch.allclose(base_output[0], new_output[0], atol=1e-5))

    @require_torch_gpu
    def test_disk_offload_with_safetensors(self):
        config, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**config).eval()
823
824
825
        if model._no_split_modules is None:
            return

826
827
828
829
830
831
832
833
834
        model = model.to(torch_device)

        torch.manual_seed(0)
        base_output = model(**inputs_dict)

        model_size = compute_module_sizes(model)[""]
        with tempfile.TemporaryDirectory() as tmp_dir:
            model.cpu().save_pretrained(tmp_dir)

835
            max_size = int(self.model_split_percents[0] * model_size)
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
            max_memory = {0: max_size, "cpu": max_size}
            new_model = self.model_class.from_pretrained(
                tmp_dir, device_map="auto", offload_folder=tmp_dir, max_memory=max_memory
            )

            self.check_device_map_is_respected(new_model, new_model.hf_device_map)
            torch.manual_seed(0)
            new_output = new_model(**inputs_dict)

            self.assertTrue(torch.allclose(base_output[0], new_output[0], atol=1e-5))

    @require_torch_multi_gpu
    def test_model_parallelism(self):
        config, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**config).eval()
851
852
853
        if model._no_split_modules is None:
            return

854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
        model = model.to(torch_device)

        torch.manual_seed(0)
        base_output = model(**inputs_dict)

        model_size = compute_module_sizes(model)[""]
        # We test several splits of sizes to make sure it works.
        max_gpu_sizes = [int(p * model_size) for p in self.model_split_percents[1:]]
        with tempfile.TemporaryDirectory() as tmp_dir:
            model.cpu().save_pretrained(tmp_dir)

            for max_size in max_gpu_sizes:
                max_memory = {0: max_size, 1: model_size * 2, "cpu": model_size * 2}
                new_model = self.model_class.from_pretrained(tmp_dir, device_map="auto", max_memory=max_memory)
                # Making sure part of the model will actually end up offloaded
                self.assertSetEqual(set(new_model.hf_device_map.values()), {0, 1})

                self.check_device_map_is_respected(new_model, new_model.hf_device_map)

                torch.manual_seed(0)
                new_output = new_model(**inputs_dict)

                self.assertTrue(torch.allclose(base_output[0], new_output[0], atol=1e-5))

878
879
    @require_torch_gpu
    def test_sharded_checkpoints(self):
880
        torch.manual_seed(0)
881
882
        config, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**config).eval()
883
884
885
886
887
888
889
890
891
892
893
894
895
        model = model.to(torch_device)

        base_output = model(**inputs_dict)

        model_size = compute_module_sizes(model)[""]
        max_shard_size = int((model_size * 0.75) / (2**10))  # Convert to KB as these test models are small.
        with tempfile.TemporaryDirectory() as tmp_dir:
            model.cpu().save_pretrained(tmp_dir, max_shard_size=f"{max_shard_size}KB")
            self.assertTrue(os.path.exists(os.path.join(tmp_dir, SAFE_WEIGHTS_INDEX_NAME)))

            # Now check if the right number of shards exists. First, let's get the number of shards.
            # Since this number can be dependent on the model being tested, it's important that we calculate it
            # instead of hardcoding it.
896
            expected_num_shards = caculate_expected_num_shards(os.path.join(tmp_dir, SAFE_WEIGHTS_INDEX_NAME))
897
898
899
            actual_num_shards = len([file for file in os.listdir(tmp_dir) if file.endswith(".safetensors")])
            self.assertTrue(actual_num_shards == expected_num_shards)

900
            new_model = self.model_class.from_pretrained(tmp_dir).eval()
901
            new_model = new_model.to(torch_device)
902
903

            torch.manual_seed(0)
904
905
            if "generator" in inputs_dict:
                _, inputs_dict = self.prepare_init_args_and_inputs_for_common()
906
            new_output = new_model(**inputs_dict)
907

908
909
            self.assertTrue(torch.allclose(base_output[0], new_output[0], atol=1e-5))

910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
    @require_torch_gpu
    def test_sharded_checkpoints_with_variant(self):
        torch.manual_seed(0)
        config, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**config).eval()
        model = model.to(torch_device)

        base_output = model(**inputs_dict)

        model_size = compute_module_sizes(model)[""]
        max_shard_size = int((model_size * 0.75) / (2**10))  # Convert to KB as these test models are small.
        variant = "fp16"
        with tempfile.TemporaryDirectory() as tmp_dir:
            # It doesn't matter if the actual model is in fp16 or not. Just adding the variant and
            # testing if loading works with the variant when the checkpoint is sharded should be
            # enough.
            model.cpu().save_pretrained(tmp_dir, max_shard_size=f"{max_shard_size}KB", variant=variant)
            index_filename = _add_variant(SAFE_WEIGHTS_INDEX_NAME, variant)
            self.assertTrue(os.path.exists(os.path.join(tmp_dir, index_filename)))

            # Now check if the right number of shards exists. First, let's get the number of shards.
            # Since this number can be dependent on the model being tested, it's important that we calculate it
            # instead of hardcoding it.
            expected_num_shards = caculate_expected_num_shards(os.path.join(tmp_dir, index_filename))
            actual_num_shards = len([file for file in os.listdir(tmp_dir) if file.endswith(".safetensors")])
            self.assertTrue(actual_num_shards == expected_num_shards)

            new_model = self.model_class.from_pretrained(tmp_dir, variant=variant).eval()
            new_model = new_model.to(torch_device)

            torch.manual_seed(0)
            if "generator" in inputs_dict:
                _, inputs_dict = self.prepare_init_args_and_inputs_for_common()
            new_output = new_model(**inputs_dict)

            self.assertTrue(torch.allclose(base_output[0], new_output[0], atol=1e-5))

947
948
949
950
    @require_torch_gpu
    def test_sharded_checkpoints_device_map(self):
        config, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**config).eval()
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
        if model._no_split_modules is None:
            return
        model = model.to(torch_device)

        torch.manual_seed(0)
        base_output = model(**inputs_dict)

        model_size = compute_module_sizes(model)[""]
        max_shard_size = int((model_size * 0.75) / (2**10))  # Convert to KB as these test models are small.
        with tempfile.TemporaryDirectory() as tmp_dir:
            model.cpu().save_pretrained(tmp_dir, max_shard_size=f"{max_shard_size}KB")
            self.assertTrue(os.path.exists(os.path.join(tmp_dir, SAFE_WEIGHTS_INDEX_NAME)))

            # Now check if the right number of shards exists. First, let's get the number of shards.
            # Since this number can be dependent on the model being tested, it's important that we calculate it
            # instead of hardcoding it.
967
            expected_num_shards = caculate_expected_num_shards(os.path.join(tmp_dir, SAFE_WEIGHTS_INDEX_NAME))
968
969
970
971
972
973
            actual_num_shards = len([file for file in os.listdir(tmp_dir) if file.endswith(".safetensors")])
            self.assertTrue(actual_num_shards == expected_num_shards)

            new_model = self.model_class.from_pretrained(tmp_dir, device_map="auto")

            torch.manual_seed(0)
974
975
            if "generator" in inputs_dict:
                _, inputs_dict = self.prepare_init_args_and_inputs_for_common()
976
977
978
            new_output = new_model(**inputs_dict)
            self.assertTrue(torch.allclose(base_output[0], new_output[0], atol=1e-5))

979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046

@is_staging_test
class ModelPushToHubTester(unittest.TestCase):
    identifier = uuid.uuid4()
    repo_id = f"test-model-{identifier}"
    org_repo_id = f"valid_org/{repo_id}-org"

    def test_push_to_hub(self):
        model = UNet2DConditionModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=4,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
        )
        model.push_to_hub(self.repo_id, token=TOKEN)

        new_model = UNet2DConditionModel.from_pretrained(f"{USER}/{self.repo_id}")
        for p1, p2 in zip(model.parameters(), new_model.parameters()):
            self.assertTrue(torch.equal(p1, p2))

        # Reset repo
        delete_repo(token=TOKEN, repo_id=self.repo_id)

        # Push to hub via save_pretrained
        with tempfile.TemporaryDirectory() as tmp_dir:
            model.save_pretrained(tmp_dir, repo_id=self.repo_id, push_to_hub=True, token=TOKEN)

        new_model = UNet2DConditionModel.from_pretrained(f"{USER}/{self.repo_id}")
        for p1, p2 in zip(model.parameters(), new_model.parameters()):
            self.assertTrue(torch.equal(p1, p2))

        # Reset repo
        delete_repo(self.repo_id, token=TOKEN)

    def test_push_to_hub_in_organization(self):
        model = UNet2DConditionModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=4,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
        )
        model.push_to_hub(self.org_repo_id, token=TOKEN)

        new_model = UNet2DConditionModel.from_pretrained(self.org_repo_id)
        for p1, p2 in zip(model.parameters(), new_model.parameters()):
            self.assertTrue(torch.equal(p1, p2))

        # Reset repo
        delete_repo(token=TOKEN, repo_id=self.org_repo_id)

        # Push to hub via save_pretrained
        with tempfile.TemporaryDirectory() as tmp_dir:
            model.save_pretrained(tmp_dir, push_to_hub=True, token=TOKEN, repo_id=self.org_repo_id)

        new_model = UNet2DConditionModel.from_pretrained(self.org_repo_id)
        for p1, p2 in zip(model.parameters(), new_model.parameters()):
            self.assertTrue(torch.equal(p1, p2))

        # Reset repo
        delete_repo(self.org_repo_id, token=TOKEN)
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069

    @unittest.skipIf(
        not is_jinja_available(),
        reason="Model card tests cannot be performed without Jinja installed.",
    )
    def test_push_to_hub_library_name(self):
        model = UNet2DConditionModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=4,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
        )
        model.push_to_hub(self.repo_id, token=TOKEN)

        model_card = ModelCard.load(f"{USER}/{self.repo_id}", token=TOKEN).data
        assert model_card.library_name == "diffusers"

        # Reset repo
        delete_repo(self.repo_id, token=TOKEN)