ip_adapter.py 15.9 KB
Newer Older
1
# Copyright 2024 The HuggingFace Team. All rights reserved.
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14

15
from pathlib import Path
16
from typing import Dict, List, Optional, Union
17
18

import torch
19
from huggingface_hub.utils import validate_hf_hub_args
20
21
from safetensors import safe_open

22
from ..models.modeling_utils import _LOW_CPU_MEM_USAGE_DEFAULT, load_state_dict
23
from ..utils import (
24
    USE_PEFT_BACKEND,
25
    _get_model_file,
26
27
    is_accelerate_available,
    is_torch_version,
28
29
30
    is_transformers_available,
    logging,
)
Jenyuan-Huang's avatar
Jenyuan-Huang committed
31
from .unet_loader_utils import _maybe_expand_lora_scales
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50


if is_transformers_available():
    from transformers import (
        CLIPImageProcessor,
        CLIPVisionModelWithProjection,
    )

    from ..models.attention_processor import (
        IPAdapterAttnProcessor,
        IPAdapterAttnProcessor2_0,
    )

logger = logging.get_logger(__name__)


class IPAdapterMixin:
    """Mixin for handling IP Adapters."""

51
    @validate_hf_hub_args
52
53
    def load_ip_adapter(
        self,
54
55
56
        pretrained_model_name_or_path_or_dict: Union[str, List[str], Dict[str, torch.Tensor]],
        subfolder: Union[str, List[str]],
        weight_name: Union[str, List[str]],
57
        image_encoder_folder: Optional[str] = "image_encoder",
58
59
60
61
        **kwargs,
    ):
        """
        Parameters:
62
            pretrained_model_name_or_path_or_dict (`str` or `List[str]` or `os.PathLike` or `List[os.PathLike]` or `dict` or `List[dict]`):
63
64
65
66
67
68
69
70
                Can be either:

                    - A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
                      the Hub.
                    - A path to a *directory* (for example `./my_model_directory`) containing the model weights saved
                      with [`ModelMixin.save_pretrained`].
                    - A [torch state
                      dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).
71
            subfolder (`str` or `List[str]`):
72
73
                The subfolder location of a model file within a larger model repository on the Hub or locally. If a
                list is passed, it should have the same length as `weight_name`.
74
75
76
77
78
            weight_name (`str` or `List[str]`):
                The name of the weight file to load. If a list is passed, it should have the same length as
                `weight_name`.
            image_encoder_folder (`str`, *optional*, defaults to `image_encoder`):
                The subfolder location of the image encoder within a larger model repository on the Hub or locally.
79
80
81
82
83
                Pass `None` to not load the image encoder. If the image encoder is located in a folder inside
                `subfolder`, you only need to pass the name of the folder that contains image encoder weights, e.g.
                `image_encoder_folder="image_encoder"`. If the image encoder is located in a folder other than
                `subfolder`, you should pass the path to the folder that contains image encoder weights, for example,
                `image_encoder_folder="different_subfolder/image_encoder"`.
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
            cache_dir (`Union[str, os.PathLike]`, *optional*):
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
            resume_download (`bool`, *optional*, defaults to `False`):
                Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
                incompletely downloaded files are deleted.
            proxies (`Dict[str, str]`, *optional*):
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            local_files_only (`bool`, *optional*, defaults to `False`):
                Whether to only load local model weights and configuration files or not. If set to `True`, the model
                won't be downloaded from the Hub.
99
            token (`str` or *bool*, *optional*):
100
101
102
103
104
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
            revision (`str`, *optional*, defaults to `"main"`):
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
105
106
107
108
109
            low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`):
                Speed up model loading only loading the pretrained weights and not initializing the weights. This also
                tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model.
                Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this
                argument to `True` will raise an error.
110
111
        """

112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
        # handle the list inputs for multiple IP Adapters
        if not isinstance(weight_name, list):
            weight_name = [weight_name]

        if not isinstance(pretrained_model_name_or_path_or_dict, list):
            pretrained_model_name_or_path_or_dict = [pretrained_model_name_or_path_or_dict]
        if len(pretrained_model_name_or_path_or_dict) == 1:
            pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict * len(weight_name)

        if not isinstance(subfolder, list):
            subfolder = [subfolder]
        if len(subfolder) == 1:
            subfolder = subfolder * len(weight_name)

        if len(weight_name) != len(pretrained_model_name_or_path_or_dict):
            raise ValueError("`weight_name` and `pretrained_model_name_or_path_or_dict` must have the same length.")

        if len(weight_name) != len(subfolder):
            raise ValueError("`weight_name` and `subfolder` must have the same length.")

132
        # Load the main state dict first.
133
        cache_dir = kwargs.pop("cache_dir", None)
134
135
136
        force_download = kwargs.pop("force_download", False)
        resume_download = kwargs.pop("resume_download", False)
        proxies = kwargs.pop("proxies", None)
137
138
        local_files_only = kwargs.pop("local_files_only", None)
        token = kwargs.pop("token", None)
139
        revision = kwargs.pop("revision", None)
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
        low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT)

        if low_cpu_mem_usage and not is_accelerate_available():
            low_cpu_mem_usage = False
            logger.warning(
                "Cannot initialize model with low cpu memory usage because `accelerate` was not found in the"
                " environment. Defaulting to `low_cpu_mem_usage=False`. It is strongly recommended to install"
                " `accelerate` for faster and less memory-intense model loading. You can do so with: \n```\npip"
                " install accelerate\n```\n."
            )

        if low_cpu_mem_usage is True and not is_torch_version(">=", "1.9.0"):
            raise NotImplementedError(
                "Low memory initialization requires torch >= 1.9.0. Please either update your PyTorch version or set"
                " `low_cpu_mem_usage=False`."
            )
156
157
158
159
160

        user_agent = {
            "file_type": "attn_procs_weights",
            "framework": "pytorch",
        }
161
162
163
164
        state_dicts = []
        for pretrained_model_name_or_path_or_dict, weight_name, subfolder in zip(
            pretrained_model_name_or_path_or_dict, weight_name, subfolder
        ):
165
            if not isinstance(pretrained_model_name_or_path_or_dict, dict):
166
                model_file = _get_model_file(
167
                    pretrained_model_name_or_path_or_dict,
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
                    weights_name=weight_name,
                    cache_dir=cache_dir,
                    force_download=force_download,
                    resume_download=resume_download,
                    proxies=proxies,
                    local_files_only=local_files_only,
                    token=token,
                    revision=revision,
                    subfolder=subfolder,
                    user_agent=user_agent,
                )
                if weight_name.endswith(".safetensors"):
                    state_dict = {"image_proj": {}, "ip_adapter": {}}
                    with safe_open(model_file, framework="pt", device="cpu") as f:
                        for key in f.keys():
                            if key.startswith("image_proj."):
                                state_dict["image_proj"][key.replace("image_proj.", "")] = f.get_tensor(key)
                            elif key.startswith("ip_adapter."):
                                state_dict["ip_adapter"][key.replace("ip_adapter.", "")] = f.get_tensor(key)
                else:
188
                    state_dict = load_state_dict(model_file)
189
            else:
190
191
192
193
194
195
196
197
198
199
                state_dict = pretrained_model_name_or_path_or_dict

            keys = list(state_dict.keys())
            if keys != ["image_proj", "ip_adapter"]:
                raise ValueError("Required keys are (`image_proj` and `ip_adapter`) missing from the state dict.")

            state_dicts.append(state_dict)

            # load CLIP image encoder here if it has not been registered to the pipeline yet
            if hasattr(self, "image_encoder") and getattr(self, "image_encoder", None) is None:
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
                if image_encoder_folder is not None:
                    if not isinstance(pretrained_model_name_or_path_or_dict, dict):
                        logger.info(f"loading image_encoder from {pretrained_model_name_or_path_or_dict}")
                        if image_encoder_folder.count("/") == 0:
                            image_encoder_subfolder = Path(subfolder, image_encoder_folder).as_posix()
                        else:
                            image_encoder_subfolder = Path(image_encoder_folder).as_posix()

                        image_encoder = CLIPVisionModelWithProjection.from_pretrained(
                            pretrained_model_name_or_path_or_dict,
                            subfolder=image_encoder_subfolder,
                            low_cpu_mem_usage=low_cpu_mem_usage,
                        ).to(self.device, dtype=self.dtype)
                        self.register_modules(image_encoder=image_encoder)
                    else:
                        raise ValueError(
                            "`image_encoder` cannot be loaded because `pretrained_model_name_or_path_or_dict` is a state dict."
                        )
218
                else:
219
220
                    logger.warning(
                        "image_encoder is not loaded since `image_encoder_folder=None` passed. You will not be able to use `ip_adapter_image` when calling the pipeline with IP-Adapter."
221
                        "Use `ip_adapter_image_embeds` to pass pre-generated image embedding instead."
222
                    )
223
224
225
226
227
228

            # create feature extractor if it has not been registered to the pipeline yet
            if hasattr(self, "feature_extractor") and getattr(self, "feature_extractor", None) is None:
                feature_extractor = CLIPImageProcessor()
                self.register_modules(feature_extractor=feature_extractor)

229
        # load ip-adapter into unet
230
        unet = getattr(self, self.unet_name) if not hasattr(self, "unet") else self.unet
231
        unet._load_ip_adapter_weights(state_dicts, low_cpu_mem_usage=low_cpu_mem_usage)
232

233
234
235
236
237
238
239
240
241
242
243
244
        extra_loras = unet._load_ip_adapter_loras(state_dicts)
        if extra_loras != {}:
            if not USE_PEFT_BACKEND:
                logger.warning("PEFT backend is required to load these weights.")
            else:
                # apply the IP Adapter Face ID LoRA weights
                peft_config = getattr(unet, "peft_config", {})
                for k, lora in extra_loras.items():
                    if f"faceid_{k}" not in peft_config:
                        self.load_lora_weights(lora, adapter_name=f"faceid_{k}")
                        self.set_adapters([f"faceid_{k}"], adapter_weights=[1.0])

245
    def set_ip_adapter_scale(self, scale):
Steven Liu's avatar
Steven Liu committed
246
        """
Jenyuan-Huang's avatar
Jenyuan-Huang committed
247
248
        Set IP-Adapter scales per-transformer block. Input `scale` could be a single config or a list of configs for
        granular control over each IP-Adapter behavior. A config can be a float or a dictionary.
Steven Liu's avatar
Steven Liu committed
249
250
251
252

        Example:

        ```py
Jenyuan-Huang's avatar
Jenyuan-Huang committed
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
        # To use original IP-Adapter
        scale = 1.0
        pipeline.set_ip_adapter_scale(scale)

        # To use style block only
        scale = {
            "up": {"block_0": [0.0, 1.0, 0.0]},
        }
        pipeline.set_ip_adapter_scale(scale)

        # To use style+layout blocks
        scale = {
            "down": {"block_2": [0.0, 1.0]},
            "up": {"block_0": [0.0, 1.0, 0.0]},
        }
        pipeline.set_ip_adapter_scale(scale)

        # To use style and layout from 2 reference images
        scales = [{"down": {"block_2": [0.0, 1.0]}}, {"up": {"block_0": [0.0, 1.0, 0.0]}}]
        pipeline.set_ip_adapter_scale(scales)
Steven Liu's avatar
Steven Liu committed
273
274
        ```
        """
275
        unet = getattr(self, self.unet_name) if not hasattr(self, "unet") else self.unet
Jenyuan-Huang's avatar
Jenyuan-Huang committed
276
277
278
279
280
        if not isinstance(scale, list):
            scale = [scale]
        scale_configs = _maybe_expand_lora_scales(unet, scale, default_scale=0.0)

        for attn_name, attn_processor in unet.attn_processors.items():
281
            if isinstance(attn_processor, (IPAdapterAttnProcessor, IPAdapterAttnProcessor2_0)):
Jenyuan-Huang's avatar
Jenyuan-Huang committed
282
                if len(scale_configs) != len(attn_processor.scale):
283
                    raise ValueError(
Jenyuan-Huang's avatar
Jenyuan-Huang committed
284
285
                        f"Cannot assign {len(scale_configs)} scale_configs to "
                        f"{len(attn_processor.scale)} IP-Adapter."
286
                    )
Jenyuan-Huang's avatar
Jenyuan-Huang committed
287
288
289
290
291
292
293
294
295
                elif len(scale_configs) == 1:
                    scale_configs = scale_configs * len(attn_processor.scale)
                for i, scale_config in enumerate(scale_configs):
                    if isinstance(scale_config, dict):
                        for k, s in scale_config.items():
                            if attn_name.startswith(k):
                                attn_processor.scale[i] = s
                    else:
                        attn_processor.scale[i] = scale_config
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313

    def unload_ip_adapter(self):
        """
        Unloads the IP Adapter weights

        Examples:

        ```python
        >>> # Assuming `pipeline` is already loaded with the IP Adapter weights.
        >>> pipeline.unload_ip_adapter()
        >>> ...
        ```
        """
        # remove CLIP image encoder
        if hasattr(self, "image_encoder") and getattr(self, "image_encoder", None) is not None:
            self.image_encoder = None
            self.register_to_config(image_encoder=[None, None])

314
315
316
317
318
319
        # remove feature extractor only when safety_checker is None as safety_checker uses
        # the feature_extractor later
        if not hasattr(self, "safety_checker"):
            if hasattr(self, "feature_extractor") and getattr(self, "feature_extractor", None) is not None:
                self.feature_extractor = None
                self.register_to_config(feature_extractor=[None, None])
320
321
322
323
324
325
326

        # remove hidden encoder
        self.unet.encoder_hid_proj = None
        self.config.encoder_hid_dim_type = None

        # restore original Unet attention processors layers
        self.unet.set_default_attn_processor()