vae.py 35.8 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
# Copyright 2023 The HuggingFace Team. All rights reserved.
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
from dataclasses import dataclass
15
from typing import Optional, Tuple
Partho's avatar
Partho committed
16

patil-suraj's avatar
patil-suraj committed
17
18
19
20
import numpy as np
import torch
import torch.nn as nn

21
22
23
24
from ...utils import BaseOutput, is_torch_version
from ...utils.torch_utils import randn_tensor
from ..activations import get_activation
from ..attention_processor import SpatialNorm
25
from ..unets.unet_2d_blocks import (
Suraj Patil's avatar
Suraj Patil committed
26
27
28
29
30
    AutoencoderTinyBlock,
    UNetMidBlock2D,
    get_down_block,
    get_up_block,
)
patil-suraj's avatar
patil-suraj committed
31
32


33
34
@dataclass
class DecoderOutput(BaseOutput):
35
    r"""
36
37
38
39
    Output of decoding method.

    Args:
        sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Steven Liu's avatar
Steven Liu committed
40
            The decoded output sample from the last layer of the model.
41
42
43
44
45
    """

    sample: torch.FloatTensor


patil-suraj's avatar
patil-suraj committed
46
class Encoder(nn.Module):
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
    r"""
    The `Encoder` layer of a variational autoencoder that encodes its input into a latent representation.

    Args:
        in_channels (`int`, *optional*, defaults to 3):
            The number of input channels.
        out_channels (`int`, *optional*, defaults to 3):
            The number of output channels.
        down_block_types (`Tuple[str, ...]`, *optional*, defaults to `("DownEncoderBlock2D",)`):
            The types of down blocks to use. See `~diffusers.models.unet_2d_blocks.get_down_block` for available
            options.
        block_out_channels (`Tuple[int, ...]`, *optional*, defaults to `(64,)`):
            The number of output channels for each block.
        layers_per_block (`int`, *optional*, defaults to 2):
            The number of layers per block.
        norm_num_groups (`int`, *optional*, defaults to 32):
            The number of groups for normalization.
        act_fn (`str`, *optional*, defaults to `"silu"`):
            The activation function to use. See `~diffusers.models.activations.get_activation` for available options.
        double_z (`bool`, *optional*, defaults to `True`):
            Whether to double the number of output channels for the last block.
    """

patil-suraj's avatar
patil-suraj committed
70
71
    def __init__(
        self,
72
73
74
75
76
77
78
79
        in_channels: int = 3,
        out_channels: int = 3,
        down_block_types: Tuple[str, ...] = ("DownEncoderBlock2D",),
        block_out_channels: Tuple[int, ...] = (64,),
        layers_per_block: int = 2,
        norm_num_groups: int = 32,
        act_fn: str = "silu",
        double_z: bool = True,
Will Berman's avatar
Will Berman committed
80
        mid_block_add_attention=True,
patil-suraj's avatar
patil-suraj committed
81
82
    ):
        super().__init__()
83
84
        self.layers_per_block = layers_per_block

Kashif Rasul's avatar
Kashif Rasul committed
85
        self.conv_in = nn.Conv2d(
86
87
88
89
90
91
            in_channels,
            block_out_channels[0],
            kernel_size=3,
            stride=1,
            padding=1,
        )
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109

        self.mid_block = None
        self.down_blocks = nn.ModuleList([])

        # down
        output_channel = block_out_channels[0]
        for i, down_block_type in enumerate(down_block_types):
            input_channel = output_channel
            output_channel = block_out_channels[i]
            is_final_block = i == len(block_out_channels) - 1

            down_block = get_down_block(
                down_block_type,
                num_layers=self.layers_per_block,
                in_channels=input_channel,
                out_channels=output_channel,
                add_downsample=not is_final_block,
                resnet_eps=1e-6,
110
                downsample_padding=0,
111
                resnet_act_fn=act_fn,
112
                resnet_groups=norm_num_groups,
113
                attention_head_dim=output_channel,
114
115
116
117
118
119
120
121
122
123
124
                temb_channels=None,
            )
            self.down_blocks.append(down_block)

        # mid
        self.mid_block = UNetMidBlock2D(
            in_channels=block_out_channels[-1],
            resnet_eps=1e-6,
            resnet_act_fn=act_fn,
            output_scale_factor=1,
            resnet_time_scale_shift="default",
125
            attention_head_dim=block_out_channels[-1],
126
            resnet_groups=norm_num_groups,
127
            temb_channels=None,
Will Berman's avatar
Will Berman committed
128
            add_attention=mid_block_add_attention,
patil-suraj's avatar
patil-suraj committed
129
130
        )

131
        # out
132
        self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[-1], num_groups=norm_num_groups, eps=1e-6)
133
134
135
136
        self.conv_act = nn.SiLU()

        conv_out_channels = 2 * out_channels if double_z else out_channels
        self.conv_out = nn.Conv2d(block_out_channels[-1], conv_out_channels, 3, padding=1)
patil-suraj's avatar
patil-suraj committed
137

138
139
        self.gradient_checkpointing = False

140
    def forward(self, sample: torch.FloatTensor) -> torch.FloatTensor:
141
        r"""The forward method of the `Encoder` class."""
142

143
144
        sample = self.conv_in(sample)

145
146
147
148
149
150
151
152
153
        if self.training and self.gradient_checkpointing:

            def create_custom_forward(module):
                def custom_forward(*inputs):
                    return module(*inputs)

                return custom_forward

            # down
154
155
156
157
158
159
160
161
162
163
164
165
166
167
            if is_torch_version(">=", "1.11.0"):
                for down_block in self.down_blocks:
                    sample = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(down_block), sample, use_reentrant=False
                    )
                # middle
                sample = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(self.mid_block), sample, use_reentrant=False
                )
            else:
                for down_block in self.down_blocks:
                    sample = torch.utils.checkpoint.checkpoint(create_custom_forward(down_block), sample)
                # middle
                sample = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block), sample)
168
169
170
171
172

        else:
            # down
            for down_block in self.down_blocks:
                sample = down_block(sample)
patil-suraj's avatar
patil-suraj committed
173

174
175
            # middle
            sample = self.mid_block(sample)
176
177
178
179
180
181
182

        # post-process
        sample = self.conv_norm_out(sample)
        sample = self.conv_act(sample)
        sample = self.conv_out(sample)

        return sample
patil-suraj's avatar
patil-suraj committed
183
184
185


class Decoder(nn.Module):
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
    r"""
    The `Decoder` layer of a variational autoencoder that decodes its latent representation into an output sample.

    Args:
        in_channels (`int`, *optional*, defaults to 3):
            The number of input channels.
        out_channels (`int`, *optional*, defaults to 3):
            The number of output channels.
        up_block_types (`Tuple[str, ...]`, *optional*, defaults to `("UpDecoderBlock2D",)`):
            The types of up blocks to use. See `~diffusers.models.unet_2d_blocks.get_up_block` for available options.
        block_out_channels (`Tuple[int, ...]`, *optional*, defaults to `(64,)`):
            The number of output channels for each block.
        layers_per_block (`int`, *optional*, defaults to 2):
            The number of layers per block.
        norm_num_groups (`int`, *optional*, defaults to 32):
            The number of groups for normalization.
        act_fn (`str`, *optional*, defaults to `"silu"`):
            The activation function to use. See `~diffusers.models.activations.get_activation` for available options.
        norm_type (`str`, *optional*, defaults to `"group"`):
            The normalization type to use. Can be either `"group"` or `"spatial"`.
    """

patil-suraj's avatar
patil-suraj committed
208
209
    def __init__(
        self,
210
211
212
213
214
215
216
217
        in_channels: int = 3,
        out_channels: int = 3,
        up_block_types: Tuple[str, ...] = ("UpDecoderBlock2D",),
        block_out_channels: Tuple[int, ...] = (64,),
        layers_per_block: int = 2,
        norm_num_groups: int = 32,
        act_fn: str = "silu",
        norm_type: str = "group",  # group, spatial
Will Berman's avatar
Will Berman committed
218
        mid_block_add_attention=True,
patil-suraj's avatar
patil-suraj committed
219
220
    ):
        super().__init__()
221
222
        self.layers_per_block = layers_per_block

223
224
225
226
227
228
229
        self.conv_in = nn.Conv2d(
            in_channels,
            block_out_channels[-1],
            kernel_size=3,
            stride=1,
            padding=1,
        )
230
231
232
233

        self.mid_block = None
        self.up_blocks = nn.ModuleList([])

YiYi Xu's avatar
YiYi Xu committed
234
235
        temb_channels = in_channels if norm_type == "spatial" else None

236
237
238
239
240
241
        # mid
        self.mid_block = UNetMidBlock2D(
            in_channels=block_out_channels[-1],
            resnet_eps=1e-6,
            resnet_act_fn=act_fn,
            output_scale_factor=1,
YiYi Xu's avatar
YiYi Xu committed
242
            resnet_time_scale_shift="default" if norm_type == "group" else norm_type,
243
            attention_head_dim=block_out_channels[-1],
244
            resnet_groups=norm_num_groups,
YiYi Xu's avatar
YiYi Xu committed
245
            temb_channels=temb_channels,
Will Berman's avatar
Will Berman committed
246
            add_attention=mid_block_add_attention,
patil-suraj's avatar
patil-suraj committed
247
248
        )

249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
        # up
        reversed_block_out_channels = list(reversed(block_out_channels))
        output_channel = reversed_block_out_channels[0]
        for i, up_block_type in enumerate(up_block_types):
            prev_output_channel = output_channel
            output_channel = reversed_block_out_channels[i]

            is_final_block = i == len(block_out_channels) - 1

            up_block = get_up_block(
                up_block_type,
                num_layers=self.layers_per_block + 1,
                in_channels=prev_output_channel,
                out_channels=output_channel,
                prev_output_channel=None,
                add_upsample=not is_final_block,
                resnet_eps=1e-6,
                resnet_act_fn=act_fn,
267
                resnet_groups=norm_num_groups,
268
                attention_head_dim=output_channel,
YiYi Xu's avatar
YiYi Xu committed
269
270
                temb_channels=temb_channels,
                resnet_time_scale_shift=norm_type,
271
272
273
274
275
            )
            self.up_blocks.append(up_block)
            prev_output_channel = output_channel

        # out
YiYi Xu's avatar
YiYi Xu committed
276
277
278
279
        if norm_type == "spatial":
            self.conv_norm_out = SpatialNorm(block_out_channels[0], temb_channels)
        else:
            self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=1e-6)
280
281
        self.conv_act = nn.SiLU()
        self.conv_out = nn.Conv2d(block_out_channels[0], out_channels, 3, padding=1)
patil-suraj's avatar
patil-suraj committed
282

283
284
        self.gradient_checkpointing = False

285
    def forward(
Suraj Patil's avatar
Suraj Patil committed
286
287
288
        self,
        sample: torch.FloatTensor,
        latent_embeds: Optional[torch.FloatTensor] = None,
289
    ) -> torch.FloatTensor:
290
        r"""The forward method of the `Decoder` class."""
291

292
        sample = self.conv_in(sample)
patil-suraj's avatar
patil-suraj committed
293

294
        upscale_dtype = next(iter(self.up_blocks.parameters())).dtype
295
        if self.training and self.gradient_checkpointing:
patil-suraj's avatar
patil-suraj committed
296

297
298
299
300
301
302
            def create_custom_forward(module):
                def custom_forward(*inputs):
                    return module(*inputs)

                return custom_forward

303
304
305
            if is_torch_version(">=", "1.11.0"):
                # middle
                sample = torch.utils.checkpoint.checkpoint(
Suraj Patil's avatar
Suraj Patil committed
306
307
308
309
                    create_custom_forward(self.mid_block),
                    sample,
                    latent_embeds,
                    use_reentrant=False,
310
311
312
313
314
315
                )
                sample = sample.to(upscale_dtype)

                # up
                for up_block in self.up_blocks:
                    sample = torch.utils.checkpoint.checkpoint(
Suraj Patil's avatar
Suraj Patil committed
316
317
318
319
                        create_custom_forward(up_block),
                        sample,
                        latent_embeds,
                        use_reentrant=False,
320
321
322
                    )
            else:
                # middle
YiYi Xu's avatar
YiYi Xu committed
323
324
325
                sample = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(self.mid_block), sample, latent_embeds
                )
326
327
328
329
                sample = sample.to(upscale_dtype)

                # up
                for up_block in self.up_blocks:
YiYi Xu's avatar
YiYi Xu committed
330
                    sample = torch.utils.checkpoint.checkpoint(create_custom_forward(up_block), sample, latent_embeds)
331
332
        else:
            # middle
YiYi Xu's avatar
YiYi Xu committed
333
            sample = self.mid_block(sample, latent_embeds)
334
            sample = sample.to(upscale_dtype)
335
336
337

            # up
            for up_block in self.up_blocks:
YiYi Xu's avatar
YiYi Xu committed
338
                sample = up_block(sample, latent_embeds)
patil-suraj's avatar
patil-suraj committed
339

340
        # post-process
YiYi Xu's avatar
YiYi Xu committed
341
342
343
344
        if latent_embeds is None:
            sample = self.conv_norm_out(sample)
        else:
            sample = self.conv_norm_out(sample, latent_embeds)
345
346
347
348
        sample = self.conv_act(sample)
        sample = self.conv_out(sample)

        return sample
patil-suraj's avatar
patil-suraj committed
349
350


Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
351
class UpSample(nn.Module):
352
353
354
355
356
357
358
359
360
361
    r"""
    The `UpSample` layer of a variational autoencoder that upsamples its input.

    Args:
        in_channels (`int`, *optional*, defaults to 3):
            The number of input channels.
        out_channels (`int`, *optional*, defaults to 3):
            The number of output channels.
    """

Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
362
363
364
365
366
367
368
369
370
371
372
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
    ) -> None:
        super().__init__()
        self.in_channels = in_channels
        self.out_channels = out_channels
        self.deconv = nn.ConvTranspose2d(in_channels, out_channels, kernel_size=4, stride=2, padding=1)

    def forward(self, x: torch.FloatTensor) -> torch.FloatTensor:
373
        r"""The forward method of the `UpSample` class."""
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
        x = torch.relu(x)
        x = self.deconv(x)
        return x


class MaskConditionEncoder(nn.Module):
    """
    used in AsymmetricAutoencoderKL
    """

    def __init__(
        self,
        in_ch: int,
        out_ch: int = 192,
        res_ch: int = 768,
        stride: int = 16,
    ) -> None:
        super().__init__()

        channels = []
        while stride > 1:
            stride = stride // 2
            in_ch_ = out_ch * 2
            if out_ch > res_ch:
                out_ch = res_ch
            if stride == 1:
                in_ch_ = res_ch
            channels.append((in_ch_, out_ch))
            out_ch *= 2

        out_channels = []
        for _in_ch, _out_ch in channels:
            out_channels.append(_out_ch)
        out_channels.append(channels[-1][0])

        layers = []
        in_ch_ = in_ch
        for l in range(len(out_channels)):
            out_ch_ = out_channels[l]
            if l == 0 or l == 1:
                layers.append(nn.Conv2d(in_ch_, out_ch_, kernel_size=3, stride=1, padding=1))
            else:
                layers.append(nn.Conv2d(in_ch_, out_ch_, kernel_size=4, stride=2, padding=1))
            in_ch_ = out_ch_

        self.layers = nn.Sequential(*layers)

    def forward(self, x: torch.FloatTensor, mask=None) -> torch.FloatTensor:
422
        r"""The forward method of the `MaskConditionEncoder` class."""
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
423
424
425
426
427
428
429
430
431
432
        out = {}
        for l in range(len(self.layers)):
            layer = self.layers[l]
            x = layer(x)
            out[str(tuple(x.shape))] = x
            x = torch.relu(x)
        return out


class MaskConditionDecoder(nn.Module):
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
    r"""The `MaskConditionDecoder` should be used in combination with [`AsymmetricAutoencoderKL`] to enhance the model's
    decoder with a conditioner on the mask and masked image.

    Args:
        in_channels (`int`, *optional*, defaults to 3):
            The number of input channels.
        out_channels (`int`, *optional*, defaults to 3):
            The number of output channels.
        up_block_types (`Tuple[str, ...]`, *optional*, defaults to `("UpDecoderBlock2D",)`):
            The types of up blocks to use. See `~diffusers.models.unet_2d_blocks.get_up_block` for available options.
        block_out_channels (`Tuple[int, ...]`, *optional*, defaults to `(64,)`):
            The number of output channels for each block.
        layers_per_block (`int`, *optional*, defaults to 2):
            The number of layers per block.
        norm_num_groups (`int`, *optional*, defaults to 32):
            The number of groups for normalization.
        act_fn (`str`, *optional*, defaults to `"silu"`):
            The activation function to use. See `~diffusers.models.activations.get_activation` for available options.
        norm_type (`str`, *optional*, defaults to `"group"`):
            The normalization type to use. Can be either `"group"` or `"spatial"`.
    """
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
454
455
456

    def __init__(
        self,
457
458
459
460
461
462
463
464
        in_channels: int = 3,
        out_channels: int = 3,
        up_block_types: Tuple[str, ...] = ("UpDecoderBlock2D",),
        block_out_channels: Tuple[int, ...] = (64,),
        layers_per_block: int = 2,
        norm_num_groups: int = 32,
        act_fn: str = "silu",
        norm_type: str = "group",  # group, spatial
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
    ):
        super().__init__()
        self.layers_per_block = layers_per_block

        self.conv_in = nn.Conv2d(
            in_channels,
            block_out_channels[-1],
            kernel_size=3,
            stride=1,
            padding=1,
        )

        self.mid_block = None
        self.up_blocks = nn.ModuleList([])

        temb_channels = in_channels if norm_type == "spatial" else None

        # mid
        self.mid_block = UNetMidBlock2D(
            in_channels=block_out_channels[-1],
            resnet_eps=1e-6,
            resnet_act_fn=act_fn,
            output_scale_factor=1,
            resnet_time_scale_shift="default" if norm_type == "group" else norm_type,
            attention_head_dim=block_out_channels[-1],
            resnet_groups=norm_num_groups,
            temb_channels=temb_channels,
        )

        # up
        reversed_block_out_channels = list(reversed(block_out_channels))
        output_channel = reversed_block_out_channels[0]
        for i, up_block_type in enumerate(up_block_types):
            prev_output_channel = output_channel
            output_channel = reversed_block_out_channels[i]

            is_final_block = i == len(block_out_channels) - 1

            up_block = get_up_block(
                up_block_type,
                num_layers=self.layers_per_block + 1,
                in_channels=prev_output_channel,
                out_channels=output_channel,
                prev_output_channel=None,
                add_upsample=not is_final_block,
                resnet_eps=1e-6,
                resnet_act_fn=act_fn,
                resnet_groups=norm_num_groups,
                attention_head_dim=output_channel,
                temb_channels=temb_channels,
                resnet_time_scale_shift=norm_type,
            )
            self.up_blocks.append(up_block)
            prev_output_channel = output_channel

        # condition encoder
        self.condition_encoder = MaskConditionEncoder(
            in_ch=out_channels,
            out_ch=block_out_channels[0],
            res_ch=block_out_channels[-1],
        )

        # out
        if norm_type == "spatial":
            self.conv_norm_out = SpatialNorm(block_out_channels[0], temb_channels)
        else:
            self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=1e-6)
        self.conv_act = nn.SiLU()
        self.conv_out = nn.Conv2d(block_out_channels[0], out_channels, 3, padding=1)

        self.gradient_checkpointing = False

537
538
539
540
541
542
543
544
    def forward(
        self,
        z: torch.FloatTensor,
        image: Optional[torch.FloatTensor] = None,
        mask: Optional[torch.FloatTensor] = None,
        latent_embeds: Optional[torch.FloatTensor] = None,
    ) -> torch.FloatTensor:
        r"""The forward method of the `MaskConditionDecoder` class."""
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
        sample = z
        sample = self.conv_in(sample)

        upscale_dtype = next(iter(self.up_blocks.parameters())).dtype
        if self.training and self.gradient_checkpointing:

            def create_custom_forward(module):
                def custom_forward(*inputs):
                    return module(*inputs)

                return custom_forward

            if is_torch_version(">=", "1.11.0"):
                # middle
                sample = torch.utils.checkpoint.checkpoint(
Suraj Patil's avatar
Suraj Patil committed
560
561
562
563
                    create_custom_forward(self.mid_block),
                    sample,
                    latent_embeds,
                    use_reentrant=False,
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
564
565
566
567
568
569
570
                )
                sample = sample.to(upscale_dtype)

                # condition encoder
                if image is not None and mask is not None:
                    masked_image = (1 - mask) * image
                    im_x = torch.utils.checkpoint.checkpoint(
Suraj Patil's avatar
Suraj Patil committed
571
572
573
574
                        create_custom_forward(self.condition_encoder),
                        masked_image,
                        mask,
                        use_reentrant=False,
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
575
576
577
578
579
580
581
582
583
                    )

                # up
                for up_block in self.up_blocks:
                    if image is not None and mask is not None:
                        sample_ = im_x[str(tuple(sample.shape))]
                        mask_ = nn.functional.interpolate(mask, size=sample.shape[-2:], mode="nearest")
                        sample = sample * mask_ + sample_ * (1 - mask_)
                    sample = torch.utils.checkpoint.checkpoint(
Suraj Patil's avatar
Suraj Patil committed
584
585
586
587
                        create_custom_forward(up_block),
                        sample,
                        latent_embeds,
                        use_reentrant=False,
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
588
589
590
591
592
593
594
595
596
597
598
599
600
601
                    )
                if image is not None and mask is not None:
                    sample = sample * mask + im_x[str(tuple(sample.shape))] * (1 - mask)
            else:
                # middle
                sample = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(self.mid_block), sample, latent_embeds
                )
                sample = sample.to(upscale_dtype)

                # condition encoder
                if image is not None and mask is not None:
                    masked_image = (1 - mask) * image
                    im_x = torch.utils.checkpoint.checkpoint(
Suraj Patil's avatar
Suraj Patil committed
602
603
604
                        create_custom_forward(self.condition_encoder),
                        masked_image,
                        mask,
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
                    )

                # up
                for up_block in self.up_blocks:
                    if image is not None and mask is not None:
                        sample_ = im_x[str(tuple(sample.shape))]
                        mask_ = nn.functional.interpolate(mask, size=sample.shape[-2:], mode="nearest")
                        sample = sample * mask_ + sample_ * (1 - mask_)
                    sample = torch.utils.checkpoint.checkpoint(create_custom_forward(up_block), sample, latent_embeds)
                if image is not None and mask is not None:
                    sample = sample * mask + im_x[str(tuple(sample.shape))] * (1 - mask)
        else:
            # middle
            sample = self.mid_block(sample, latent_embeds)
            sample = sample.to(upscale_dtype)

            # condition encoder
            if image is not None and mask is not None:
                masked_image = (1 - mask) * image
                im_x = self.condition_encoder(masked_image, mask)

            # up
            for up_block in self.up_blocks:
                if image is not None and mask is not None:
                    sample_ = im_x[str(tuple(sample.shape))]
                    mask_ = nn.functional.interpolate(mask, size=sample.shape[-2:], mode="nearest")
                    sample = sample * mask_ + sample_ * (1 - mask_)
                sample = up_block(sample, latent_embeds)
            if image is not None and mask is not None:
                sample = sample * mask + im_x[str(tuple(sample.shape))] * (1 - mask)

        # post-process
        if latent_embeds is None:
            sample = self.conv_norm_out(sample)
        else:
            sample = self.conv_norm_out(sample, latent_embeds)
        sample = self.conv_act(sample)
        sample = self.conv_out(sample)

        return sample


patil-suraj's avatar
patil-suraj committed
647
648
649
650
651
652
653
654
655
class VectorQuantizer(nn.Module):
    """
    Improved version over VectorQuantizer, can be used as a drop-in replacement. Mostly avoids costly matrix
    multiplications and allows for post-hoc remapping of indices.
    """

    # NOTE: due to a bug the beta term was applied to the wrong term. for
    # backwards compatibility we use the buggy version by default, but you can
    # specify legacy=False to fix it.
Will Berman's avatar
Will Berman committed
656
    def __init__(
657
658
659
660
661
662
663
664
        self,
        n_e: int,
        vq_embed_dim: int,
        beta: float,
        remap=None,
        unknown_index: str = "random",
        sane_index_shape: bool = False,
        legacy: bool = True,
Will Berman's avatar
Will Berman committed
665
    ):
patil-suraj's avatar
patil-suraj committed
666
667
        super().__init__()
        self.n_e = n_e
Will Berman's avatar
Will Berman committed
668
        self.vq_embed_dim = vq_embed_dim
patil-suraj's avatar
patil-suraj committed
669
670
671
        self.beta = beta
        self.legacy = legacy

Will Berman's avatar
Will Berman committed
672
        self.embedding = nn.Embedding(self.n_e, self.vq_embed_dim)
patil-suraj's avatar
patil-suraj committed
673
674
675
676
677
        self.embedding.weight.data.uniform_(-1.0 / self.n_e, 1.0 / self.n_e)

        self.remap = remap
        if self.remap is not None:
            self.register_buffer("used", torch.tensor(np.load(self.remap)))
678
            self.used: torch.Tensor
patil-suraj's avatar
patil-suraj committed
679
680
681
682
683
684
685
686
687
688
689
690
691
692
            self.re_embed = self.used.shape[0]
            self.unknown_index = unknown_index  # "random" or "extra" or integer
            if self.unknown_index == "extra":
                self.unknown_index = self.re_embed
                self.re_embed = self.re_embed + 1
            print(
                f"Remapping {self.n_e} indices to {self.re_embed} indices. "
                f"Using {self.unknown_index} for unknown indices."
            )
        else:
            self.re_embed = n_e

        self.sane_index_shape = sane_index_shape

693
    def remap_to_used(self, inds: torch.LongTensor) -> torch.LongTensor:
patil-suraj's avatar
patil-suraj committed
694
695
696
697
698
699
700
701
702
703
704
705
706
        ishape = inds.shape
        assert len(ishape) > 1
        inds = inds.reshape(ishape[0], -1)
        used = self.used.to(inds)
        match = (inds[:, :, None] == used[None, None, ...]).long()
        new = match.argmax(-1)
        unknown = match.sum(2) < 1
        if self.unknown_index == "random":
            new[unknown] = torch.randint(0, self.re_embed, size=new[unknown].shape).to(device=new.device)
        else:
            new[unknown] = self.unknown_index
        return new.reshape(ishape)

707
    def unmap_to_all(self, inds: torch.LongTensor) -> torch.LongTensor:
patil-suraj's avatar
patil-suraj committed
708
709
710
711
712
713
714
715
716
        ishape = inds.shape
        assert len(ishape) > 1
        inds = inds.reshape(ishape[0], -1)
        used = self.used.to(inds)
        if self.re_embed > self.used.shape[0]:  # extra token
            inds[inds >= self.used.shape[0]] = 0  # simply set to zero
        back = torch.gather(used[None, :][inds.shape[0] * [0], :], 1, inds)
        return back.reshape(ishape)

717
    def forward(self, z: torch.FloatTensor) -> Tuple[torch.FloatTensor, torch.FloatTensor, Tuple]:
patil-suraj's avatar
patil-suraj committed
718
719
        # reshape z -> (batch, height, width, channel) and flatten
        z = z.permute(0, 2, 3, 1).contiguous()
Will Berman's avatar
Will Berman committed
720
        z_flattened = z.view(-1, self.vq_embed_dim)
patil-suraj's avatar
patil-suraj committed
721

722
723
        # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z
        min_encoding_indices = torch.argmin(torch.cdist(z_flattened, self.embedding.weight), dim=1)
patil-suraj's avatar
patil-suraj committed
724
725
726
727
728
729
730
731
732
733
734
735

        z_q = self.embedding(min_encoding_indices).view(z.shape)
        perplexity = None
        min_encodings = None

        # compute loss for embedding
        if not self.legacy:
            loss = self.beta * torch.mean((z_q.detach() - z) ** 2) + torch.mean((z_q - z.detach()) ** 2)
        else:
            loss = torch.mean((z_q.detach() - z) ** 2) + self.beta * torch.mean((z_q - z.detach()) ** 2)

        # preserve gradients
736
        z_q: torch.FloatTensor = z + (z_q - z).detach()
patil-suraj's avatar
patil-suraj committed
737
738
739
740
741
742
743
744
745
746
747
748
749
750

        # reshape back to match original input shape
        z_q = z_q.permute(0, 3, 1, 2).contiguous()

        if self.remap is not None:
            min_encoding_indices = min_encoding_indices.reshape(z.shape[0], -1)  # add batch axis
            min_encoding_indices = self.remap_to_used(min_encoding_indices)
            min_encoding_indices = min_encoding_indices.reshape(-1, 1)  # flatten

        if self.sane_index_shape:
            min_encoding_indices = min_encoding_indices.reshape(z_q.shape[0], z_q.shape[2], z_q.shape[3])

        return z_q, loss, (perplexity, min_encodings, min_encoding_indices)

751
    def get_codebook_entry(self, indices: torch.LongTensor, shape: Tuple[int, ...]) -> torch.FloatTensor:
patil-suraj's avatar
patil-suraj committed
752
753
754
755
756
757
758
        # shape specifying (batch, height, width, channel)
        if self.remap is not None:
            indices = indices.reshape(shape[0], -1)  # add batch axis
            indices = self.unmap_to_all(indices)
            indices = indices.reshape(-1)  # flatten again

        # get quantized latent vectors
759
        z_q: torch.FloatTensor = self.embedding(indices)
patil-suraj's avatar
patil-suraj committed
760
761
762
763
764
765
766
767
768
769

        if shape is not None:
            z_q = z_q.view(shape)
            # reshape back to match original input shape
            z_q = z_q.permute(0, 3, 1, 2).contiguous()

        return z_q


class DiagonalGaussianDistribution(object):
770
    def __init__(self, parameters: torch.Tensor, deterministic: bool = False):
patil-suraj's avatar
patil-suraj committed
771
772
773
774
775
776
777
        self.parameters = parameters
        self.mean, self.logvar = torch.chunk(parameters, 2, dim=1)
        self.logvar = torch.clamp(self.logvar, -30.0, 20.0)
        self.deterministic = deterministic
        self.std = torch.exp(0.5 * self.logvar)
        self.var = torch.exp(self.logvar)
        if self.deterministic:
778
779
780
            self.var = self.std = torch.zeros_like(
                self.mean, device=self.parameters.device, dtype=self.parameters.dtype
            )
patil-suraj's avatar
patil-suraj committed
781

Partho's avatar
Partho committed
782
    def sample(self, generator: Optional[torch.Generator] = None) -> torch.FloatTensor:
783
        # make sure sample is on the same device as the parameters and has same dtype
784
        sample = randn_tensor(
Suraj Patil's avatar
Suraj Patil committed
785
786
787
788
            self.mean.shape,
            generator=generator,
            device=self.parameters.device,
            dtype=self.parameters.dtype,
789
        )
790
        x = self.mean + self.std * sample
patil-suraj's avatar
patil-suraj committed
791
792
        return x

793
    def kl(self, other: "DiagonalGaussianDistribution" = None) -> torch.Tensor:
patil-suraj's avatar
patil-suraj committed
794
795
796
797
        if self.deterministic:
            return torch.Tensor([0.0])
        else:
            if other is None:
Suraj Patil's avatar
Suraj Patil committed
798
799
800
801
                return 0.5 * torch.sum(
                    torch.pow(self.mean, 2) + self.var - 1.0 - self.logvar,
                    dim=[1, 2, 3],
                )
patil-suraj's avatar
patil-suraj committed
802
803
804
805
806
807
808
809
810
811
            else:
                return 0.5 * torch.sum(
                    torch.pow(self.mean - other.mean, 2) / other.var
                    + self.var / other.var
                    - 1.0
                    - self.logvar
                    + other.logvar,
                    dim=[1, 2, 3],
                )

812
    def nll(self, sample: torch.Tensor, dims: Tuple[int, ...] = [1, 2, 3]) -> torch.Tensor:
patil-suraj's avatar
patil-suraj committed
813
814
815
        if self.deterministic:
            return torch.Tensor([0.0])
        logtwopi = np.log(2.0 * np.pi)
Suraj Patil's avatar
Suraj Patil committed
816
817
818
819
        return 0.5 * torch.sum(
            logtwopi + self.logvar + torch.pow(sample - self.mean, 2) / self.var,
            dim=dims,
        )
patil-suraj's avatar
patil-suraj committed
820

821
    def mode(self) -> torch.Tensor:
patil-suraj's avatar
patil-suraj committed
822
        return self.mean
823
824
825


class EncoderTiny(nn.Module):
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
    r"""
    The `EncoderTiny` layer is a simpler version of the `Encoder` layer.

    Args:
        in_channels (`int`):
            The number of input channels.
        out_channels (`int`):
            The number of output channels.
        num_blocks (`Tuple[int, ...]`):
            Each value of the tuple represents a Conv2d layer followed by `value` number of `AutoencoderTinyBlock`'s to
            use.
        block_out_channels (`Tuple[int, ...]`):
            The number of output channels for each block.
        act_fn (`str`):
            The activation function to use. See `~diffusers.models.activations.get_activation` for available options.
    """

843
844
845
846
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
847
848
        num_blocks: Tuple[int, ...],
        block_out_channels: Tuple[int, ...],
849
850
851
852
853
854
855
856
857
858
859
        act_fn: str,
    ):
        super().__init__()

        layers = []
        for i, num_block in enumerate(num_blocks):
            num_channels = block_out_channels[i]

            if i == 0:
                layers.append(nn.Conv2d(in_channels, num_channels, kernel_size=3, padding=1))
            else:
Suraj Patil's avatar
Suraj Patil committed
860
861
862
863
864
865
866
867
868
869
                layers.append(
                    nn.Conv2d(
                        num_channels,
                        num_channels,
                        kernel_size=3,
                        padding=1,
                        stride=2,
                        bias=False,
                    )
                )
870
871
872
873
874
875
876
877
878

            for _ in range(num_block):
                layers.append(AutoencoderTinyBlock(num_channels, num_channels, act_fn))

        layers.append(nn.Conv2d(block_out_channels[-1], out_channels, kernel_size=3, padding=1))

        self.layers = nn.Sequential(*layers)
        self.gradient_checkpointing = False

879
880
    def forward(self, x: torch.FloatTensor) -> torch.FloatTensor:
        r"""The forward method of the `EncoderTiny` class."""
881
882
883
884
885
886
887
888
889
890
891
892
893
894
        if self.training and self.gradient_checkpointing:

            def create_custom_forward(module):
                def custom_forward(*inputs):
                    return module(*inputs)

                return custom_forward

            if is_torch_version(">=", "1.11.0"):
                x = torch.utils.checkpoint.checkpoint(create_custom_forward(self.layers), x, use_reentrant=False)
            else:
                x = torch.utils.checkpoint.checkpoint(create_custom_forward(self.layers), x)

        else:
895
896
            # scale image from [-1, 1] to [0, 1] to match TAESD convention
            x = self.layers(x.add(1).div(2))
897
898
899
900
901

        return x


class DecoderTiny(nn.Module):
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
    r"""
    The `DecoderTiny` layer is a simpler version of the `Decoder` layer.

    Args:
        in_channels (`int`):
            The number of input channels.
        out_channels (`int`):
            The number of output channels.
        num_blocks (`Tuple[int, ...]`):
            Each value of the tuple represents a Conv2d layer followed by `value` number of `AutoencoderTinyBlock`'s to
            use.
        block_out_channels (`Tuple[int, ...]`):
            The number of output channels for each block.
        upsampling_scaling_factor (`int`):
            The scaling factor to use for upsampling.
        act_fn (`str`):
            The activation function to use. See `~diffusers.models.activations.get_activation` for available options.
    """

921
922
923
924
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
925
926
        num_blocks: Tuple[int, ...],
        block_out_channels: Tuple[int, ...],
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
        upsampling_scaling_factor: int,
        act_fn: str,
    ):
        super().__init__()

        layers = [
            nn.Conv2d(in_channels, block_out_channels[0], kernel_size=3, padding=1),
            get_activation(act_fn),
        ]

        for i, num_block in enumerate(num_blocks):
            is_final_block = i == (len(num_blocks) - 1)
            num_channels = block_out_channels[i]

            for _ in range(num_block):
                layers.append(AutoencoderTinyBlock(num_channels, num_channels, act_fn))

            if not is_final_block:
                layers.append(nn.Upsample(scale_factor=upsampling_scaling_factor))

            conv_out_channel = num_channels if not is_final_block else out_channels
Suraj Patil's avatar
Suraj Patil committed
948
949
950
951
952
953
954
955
956
            layers.append(
                nn.Conv2d(
                    num_channels,
                    conv_out_channel,
                    kernel_size=3,
                    padding=1,
                    bias=is_final_block,
                )
            )
957
958
959
960

        self.layers = nn.Sequential(*layers)
        self.gradient_checkpointing = False

961
962
    def forward(self, x: torch.FloatTensor) -> torch.FloatTensor:
        r"""The forward method of the `DecoderTiny` class."""
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
        # Clamp.
        x = torch.tanh(x / 3) * 3

        if self.training and self.gradient_checkpointing:

            def create_custom_forward(module):
                def custom_forward(*inputs):
                    return module(*inputs)

                return custom_forward

            if is_torch_version(">=", "1.11.0"):
                x = torch.utils.checkpoint.checkpoint(create_custom_forward(self.layers), x, use_reentrant=False)
            else:
                x = torch.utils.checkpoint.checkpoint(create_custom_forward(self.layers), x)

        else:
            x = self.layers(x)

982
983
        # scale image from [0, 1] to [-1, 1] to match diffusers convention
        return x.mul(2).sub(1)