test_amused_inpaint.py 9.04 KB
Newer Older
Will Berman's avatar
Will Berman committed
1
# coding=utf-8
2
# Copyright 2024 HuggingFace Inc.
Will Berman's avatar
Will Berman committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest

import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer

from diffusers import AmusedInpaintPipeline, AmusedScheduler, UVit2DModel, VQModel
from diffusers.utils import load_image
Dhruv Nair's avatar
Dhruv Nair committed
24
25
26
27
28
29
from diffusers.utils.testing_utils import (
    enable_full_determinism,
    require_torch_gpu,
    slow,
    torch_device,
)
Will Berman's avatar
Will Berman committed
30
31
32
33
34
35
36
37
38
39
40
41

from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
from ..test_pipelines_common import PipelineTesterMixin


enable_full_determinism()


class AmusedInpaintPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
    pipeline_class = AmusedInpaintPipeline
    params = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"width", "height"}
    batch_params = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS
Dhruv Nair's avatar
Dhruv Nair committed
42
    required_optional_params = PipelineTesterMixin.required_optional_params - {"latents"}
Will Berman's avatar
Will Berman committed
43
44
45
46

    def get_dummy_components(self):
        torch.manual_seed(0)
        transformer = UVit2DModel(
47
            hidden_size=8,
Will Berman's avatar
Will Berman committed
48
49
            use_bias=False,
            hidden_dropout=0.0,
50
            cond_embed_dim=8,
Will Berman's avatar
Will Berman committed
51
52
            micro_cond_encode_dim=2,
            micro_cond_embed_dim=10,
53
            encoder_hidden_size=8,
Will Berman's avatar
Will Berman committed
54
            vocab_size=32,
Dhruv Nair's avatar
Dhruv Nair committed
55
            codebook_size=32,
56
57
            in_channels=8,
            block_out_channels=8,
Will Berman's avatar
Will Berman committed
58
59
60
61
62
63
64
            num_res_blocks=1,
            downsample=True,
            upsample=True,
            block_num_heads=1,
            num_hidden_layers=1,
            num_attention_heads=1,
            attention_dropout=0.0,
65
            intermediate_size=8,
Will Berman's avatar
Will Berman committed
66
67
68
69
70
71
72
            layer_norm_eps=1e-06,
            ln_elementwise_affine=True,
        )
        scheduler = AmusedScheduler(mask_token_id=31)
        torch.manual_seed(0)
        vqvae = VQModel(
            act_fn="silu",
73
            block_out_channels=[8],
Dhruv Nair's avatar
Dhruv Nair committed
74
            down_block_types=["DownEncoderBlock2D"],
Will Berman's avatar
Will Berman committed
75
            in_channels=3,
76
77
78
            latent_channels=8,
            layers_per_block=1,
            norm_num_groups=8,
Dhruv Nair's avatar
Dhruv Nair committed
79
            num_vq_embeddings=32,
Will Berman's avatar
Will Berman committed
80
            out_channels=3,
81
            sample_size=8,
Dhruv Nair's avatar
Dhruv Nair committed
82
            up_block_types=["UpDecoderBlock2D"],
Will Berman's avatar
Will Berman committed
83
84
85
86
87
88
89
            mid_block_add_attention=False,
            lookup_from_codebook=True,
        )
        torch.manual_seed(0)
        text_encoder_config = CLIPTextConfig(
            bos_token_id=0,
            eos_token_id=2,
90
91
            hidden_size=8,
            intermediate_size=8,
Will Berman's avatar
Will Berman committed
92
            layer_norm_eps=1e-05,
93
94
            num_attention_heads=1,
            num_hidden_layers=1,
Will Berman's avatar
Will Berman committed
95
96
            pad_token_id=1,
            vocab_size=1000,
97
            projection_dim=8,
Will Berman's avatar
Will Berman committed
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
        )
        text_encoder = CLIPTextModelWithProjection(text_encoder_config)
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
        components = {
            "transformer": transformer,
            "scheduler": scheduler,
            "vqvae": vqvae,
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
        }
        return components

    def get_dummy_inputs(self, device, seed=0):
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)
        image = torch.full((1, 3, 4, 4), 1.0, dtype=torch.float32, device=device)
        mask_image = torch.full((1, 1, 4, 4), 1.0, dtype=torch.float32, device=device)
        mask_image[0, 0, 0, 0] = 0
        mask_image[0, 0, 0, 1] = 0
        inputs = {
            "prompt": "A painting of a squirrel eating a burger",
            "generator": generator,
            "num_inference_steps": 2,
            "output_type": "np",
            "image": image,
            "mask_image": mask_image,
        }
        return inputs

    def test_inference_batch_consistent(self, batch_sizes=[2]):
        self._test_inference_batch_consistent(batch_sizes=batch_sizes, batch_generator=False)

    @unittest.skip("aMUSEd does not support lists of generators")
    def test_inference_batch_single_identical(self):
        ...


@slow
@require_torch_gpu
class AmusedInpaintPipelineSlowTests(unittest.TestCase):
    def test_amused_256(self):
141
        pipe = AmusedInpaintPipeline.from_pretrained("amused/amused-256")
Will Berman's avatar
Will Berman committed
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
        pipe.to(torch_device)
        image = (
            load_image("https://huggingface.co/datasets/diffusers/docs-images/resolve/main/open_muse/mountains_1.jpg")
            .resize((256, 256))
            .convert("RGB")
        )
        mask_image = (
            load_image(
                "https://huggingface.co/datasets/diffusers/docs-images/resolve/main/open_muse/mountains_1_mask.png"
            )
            .resize((256, 256))
            .convert("L")
        )
        image = pipe(
            "winter mountains",
            image,
            mask_image,
            generator=torch.Generator().manual_seed(0),
            num_inference_steps=2,
            output_type="np",
        ).images
        image_slice = image[0, -3:, -3:, -1].flatten()
        assert image.shape == (1, 256, 256, 3)
        expected_slice = np.array([0.0699, 0.0716, 0.0608, 0.0715, 0.0797, 0.0638, 0.0802, 0.0924, 0.0634])
        assert np.abs(image_slice - expected_slice).max() < 0.1

    def test_amused_256_fp16(self):
169
        pipe = AmusedInpaintPipeline.from_pretrained("amused/amused-256", variant="fp16", torch_dtype=torch.float16)
Will Berman's avatar
Will Berman committed
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
        pipe.to(torch_device)
        image = (
            load_image("https://huggingface.co/datasets/diffusers/docs-images/resolve/main/open_muse/mountains_1.jpg")
            .resize((256, 256))
            .convert("RGB")
        )
        mask_image = (
            load_image(
                "https://huggingface.co/datasets/diffusers/docs-images/resolve/main/open_muse/mountains_1_mask.png"
            )
            .resize((256, 256))
            .convert("L")
        )
        image = pipe(
            "winter mountains",
            image,
            mask_image,
            generator=torch.Generator().manual_seed(0),
            num_inference_steps=2,
            output_type="np",
        ).images
        image_slice = image[0, -3:, -3:, -1].flatten()
        assert image.shape == (1, 256, 256, 3)
Dhruv Nair's avatar
Dhruv Nair committed
193
        expected_slice = np.array([0.0735, 0.0749, 0.065, 0.0739, 0.0805, 0.0667, 0.0802, 0.0923, 0.0622])
Will Berman's avatar
Will Berman committed
194
195
196
        assert np.abs(image_slice - expected_slice).max() < 0.1

    def test_amused_512(self):
197
        pipe = AmusedInpaintPipeline.from_pretrained("amused/amused-512")
Will Berman's avatar
Will Berman committed
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
        pipe.to(torch_device)
        image = (
            load_image("https://huggingface.co/datasets/diffusers/docs-images/resolve/main/open_muse/mountains_1.jpg")
            .resize((512, 512))
            .convert("RGB")
        )
        mask_image = (
            load_image(
                "https://huggingface.co/datasets/diffusers/docs-images/resolve/main/open_muse/mountains_1_mask.png"
            )
            .resize((512, 512))
            .convert("L")
        )
        image = pipe(
            "winter mountains",
            image,
            mask_image,
            generator=torch.Generator().manual_seed(0),
            num_inference_steps=2,
            output_type="np",
        ).images
        image_slice = image[0, -3:, -3:, -1].flatten()
        assert image.shape == (1, 512, 512, 3)
        expected_slice = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0005, 0.0])
        assert np.abs(image_slice - expected_slice).max() < 0.05

    def test_amused_512_fp16(self):
225
        pipe = AmusedInpaintPipeline.from_pretrained("amused/amused-512", variant="fp16", torch_dtype=torch.float16)
Will Berman's avatar
Will Berman committed
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
        pipe.to(torch_device)
        image = (
            load_image("https://huggingface.co/datasets/diffusers/docs-images/resolve/main/open_muse/mountains_1.jpg")
            .resize((512, 512))
            .convert("RGB")
        )
        mask_image = (
            load_image(
                "https://huggingface.co/datasets/diffusers/docs-images/resolve/main/open_muse/mountains_1_mask.png"
            )
            .resize((512, 512))
            .convert("L")
        )
        image = pipe(
            "winter mountains",
            image,
            mask_image,
            generator=torch.Generator().manual_seed(0),
            num_inference_steps=2,
            output_type="np",
        ).images
        image_slice = image[0, -3:, -3:, -1].flatten()

        assert image.shape == (1, 512, 512, 3)
Dhruv Nair's avatar
Dhruv Nair committed
250
251
        expected_slice = np.array([0.0227, 0.0157, 0.0098, 0.0213, 0.0250, 0.0127, 0.0280, 0.0380, 0.0095])
        assert np.abs(image_slice - expected_slice).max() < 0.003