model_loading_utils.py 29.2 KB
Newer Older
1
# coding=utf-8
2
# Copyright 2025 The HuggingFace Inc. team.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# Copyright (c) 2022, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

17
import functools
18
import importlib
19
import inspect
20
import math
21
import os
22
from array import array
23
from collections import OrderedDict, defaultdict
24
from concurrent.futures import ThreadPoolExecutor, as_completed
25
from pathlib import Path
26
27
from typing import Dict, List, Optional, Union
from zipfile import is_zipfile
28
29
30

import safetensors
import torch
Marc Sun's avatar
Marc Sun committed
31
from huggingface_hub import DDUFEntry
32
from huggingface_hub.utils import EntryNotFoundError
33

34
from ..quantizers import DiffusersQuantizer
35
from ..utils import (
36
    DEFAULT_HF_PARALLEL_LOADING_WORKERS,
37
    GGUF_FILE_EXTENSION,
38
    SAFE_WEIGHTS_INDEX_NAME,
39
    SAFETENSORS_FILE_EXTENSION,
40
41
42
    WEIGHTS_INDEX_NAME,
    _add_variant,
    _get_model_file,
43
    deprecate,
44
    is_accelerate_available,
45
    is_accelerate_version,
46
47
    is_gguf_available,
    is_torch_available,
48
49
50
51
52
53
54
    is_torch_version,
    logging,
)


logger = logging.get_logger(__name__)

55
56
57
58
59
60
61
_CLASS_REMAPPING_DICT = {
    "Transformer2DModel": {
        "ada_norm_zero": "DiTTransformer2DModel",
        "ada_norm_single": "PixArtTransformer2DModel",
    }
}

62
63
64

if is_accelerate_available():
    from accelerate import infer_auto_device_map
65
    from accelerate.utils import get_balanced_memory, get_max_memory, offload_weight, set_module_tensor_to_device
66
67
68


# Adapted from `transformers` (see modeling_utils.py)
69
70
71
def _determine_device_map(
    model: torch.nn.Module, device_map, max_memory, torch_dtype, keep_in_fp32_modules=[], hf_quantizer=None
):
72
    if isinstance(device_map, str):
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
        special_dtypes = {}
        if hf_quantizer is not None:
            special_dtypes.update(hf_quantizer.get_special_dtypes_update(model, torch_dtype))
        special_dtypes.update(
            {
                name: torch.float32
                for name, _ in model.named_parameters()
                if any(m in name for m in keep_in_fp32_modules)
            }
        )

        target_dtype = torch_dtype
        if hf_quantizer is not None:
            target_dtype = hf_quantizer.adjust_target_dtype(target_dtype)

88
89
90
        no_split_modules = model._get_no_split_modules(device_map)
        device_map_kwargs = {"no_split_module_classes": no_split_modules}

91
92
93
94
95
96
97
98
        if "special_dtypes" in inspect.signature(infer_auto_device_map).parameters:
            device_map_kwargs["special_dtypes"] = special_dtypes
        elif len(special_dtypes) > 0:
            logger.warning(
                "This model has some weights that should be kept in higher precision, you need to upgrade "
                "`accelerate` to properly deal with them (`pip install --upgrade accelerate`)."
            )

99
100
101
102
103
104
105
106
107
108
109
        if device_map != "sequential":
            max_memory = get_balanced_memory(
                model,
                dtype=torch_dtype,
                low_zero=(device_map == "balanced_low_0"),
                max_memory=max_memory,
                **device_map_kwargs,
            )
        else:
            max_memory = get_max_memory(max_memory)

110
111
112
        if hf_quantizer is not None:
            max_memory = hf_quantizer.adjust_max_memory(max_memory)

113
        device_map_kwargs["max_memory"] = max_memory
114
115
116
117
        device_map = infer_auto_device_map(model, dtype=target_dtype, **device_map_kwargs)

        if hf_quantizer is not None:
            hf_quantizer.validate_environment(device_map=device_map)
118
119
120
121

    return device_map


122
123
def _fetch_remapped_cls_from_config(config, old_class):
    previous_class_name = old_class.__name__
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
    remapped_class_name = _CLASS_REMAPPING_DICT.get(previous_class_name).get(config["norm_type"], None)

    # Details:
    # https://github.com/huggingface/diffusers/pull/7647#discussion_r1621344818
    if remapped_class_name:
        # load diffusers library to import compatible and original scheduler
        diffusers_library = importlib.import_module(__name__.split(".")[0])
        remapped_class = getattr(diffusers_library, remapped_class_name)
        logger.info(
            f"Changing class object to be of `{remapped_class_name}` type from `{previous_class_name}` type."
            f"This is because `{previous_class_name}` is scheduled to be deprecated in a future version. Note that this"
            " DOESN'T affect the final results."
        )
        return remapped_class
    else:
        return old_class
140
141


142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
def _determine_param_device(param_name: str, device_map: Optional[Dict[str, Union[int, str, torch.device]]]):
    """
    Find the device of param_name from the device_map.
    """
    if device_map is None:
        return "cpu"
    else:
        module_name = param_name
        # find next higher level module that is defined in device_map:
        # bert.lm_head.weight -> bert.lm_head -> bert -> ''
        while len(module_name) > 0 and module_name not in device_map:
            module_name = ".".join(module_name.split(".")[:-1])
        if module_name == "" and "" not in device_map:
            raise ValueError(f"{param_name} doesn't have any device set.")
        return device_map[module_name]


159
def load_state_dict(
Marc Sun's avatar
Marc Sun committed
160
161
162
    checkpoint_file: Union[str, os.PathLike],
    dduf_entries: Optional[Dict[str, DDUFEntry]] = None,
    disable_mmap: bool = False,
163
    map_location: Union[str, torch.device] = "cpu",
164
):
165
166
167
    """
    Reads a checkpoint file, returning properly formatted errors if they arise.
    """
168
    # TODO: maybe refactor a bit this part where we pass a dict here
169
170
    if isinstance(checkpoint_file, dict):
        return checkpoint_file
171
172
173
    try:
        file_extension = os.path.basename(checkpoint_file).split(".")[-1]
        if file_extension == SAFETENSORS_FILE_EXTENSION:
Marc Sun's avatar
Marc Sun committed
174
175
176
177
            if dduf_entries:
                # tensors are loaded on cpu
                with dduf_entries[checkpoint_file].as_mmap() as mm:
                    return safetensors.torch.load(mm)
178
179
180
            if disable_mmap:
                return safetensors.torch.load(open(checkpoint_file, "rb").read())
            else:
181
                return safetensors.torch.load_file(checkpoint_file, device=map_location)
182
183
        elif file_extension == GGUF_FILE_EXTENSION:
            return load_gguf_checkpoint(checkpoint_file)
184
        else:
185
            extra_args = {}
186
            weights_only_kwarg = {"weights_only": True} if is_torch_version(">=", "1.13") else {}
187
188
189
190
191
192
193
194
195
196
            # mmap can only be used with files serialized with zipfile-based format.
            if (
                isinstance(checkpoint_file, str)
                and map_location != "meta"
                and is_torch_version(">=", "2.1.0")
                and is_zipfile(checkpoint_file)
                and not disable_mmap
            ):
                extra_args = {"mmap": True}
            return torch.load(checkpoint_file, map_location=map_location, **weights_only_kwarg, **extra_args)
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
    except Exception as e:
        try:
            with open(checkpoint_file) as f:
                if f.read().startswith("version"):
                    raise OSError(
                        "You seem to have cloned a repository without having git-lfs installed. Please install "
                        "git-lfs and run `git lfs install` followed by `git lfs pull` in the folder "
                        "you cloned."
                    )
                else:
                    raise ValueError(
                        f"Unable to locate the file {checkpoint_file} which is necessary to load this pretrained "
                        "model. Make sure you have saved the model properly."
                    ) from e
        except (UnicodeDecodeError, ValueError):
            raise OSError(
213
                f"Unable to load weights from checkpoint file for '{checkpoint_file}' at '{checkpoint_file}'. "
214
215
216
217
218
219
220
221
            )


def load_model_dict_into_meta(
    model,
    state_dict: OrderedDict,
    dtype: Optional[Union[str, torch.dtype]] = None,
    model_name_or_path: Optional[str] = None,
222
223
224
225
226
227
228
229
    hf_quantizer: Optional[DiffusersQuantizer] = None,
    keep_in_fp32_modules: Optional[List] = None,
    device_map: Optional[Dict[str, Union[int, str, torch.device]]] = None,
    unexpected_keys: Optional[List[str]] = None,
    offload_folder: Optional[Union[str, os.PathLike]] = None,
    offload_index: Optional[Dict] = None,
    state_dict_index: Optional[Dict] = None,
    state_dict_folder: Optional[Union[str, os.PathLike]] = None,
230
) -> List[str]:
231
232
233
234
    """
    This is somewhat similar to `_load_state_dict_into_model`, but deals with a model that has some or all of its
    params on a `meta` device. It replaces the model params with the data from the `state_dict`
    """
235

236
    is_quantized = hf_quantizer is not None
237
    empty_state_dict = model.state_dict()
238

239
240
241
242
    for param_name, param in state_dict.items():
        if param_name not in empty_state_dict:
            continue

243
244
245
246
        set_module_kwargs = {}
        # We convert floating dtypes to the `dtype` passed. We also want to keep the buffers/params
        # in int/uint/bool and not cast them.
        # TODO: revisit cases when param.dtype == torch.float8_e4m3fn
247
248
249
        if dtype is not None and torch.is_floating_point(param):
            if keep_in_fp32_modules is not None and any(
                module_to_keep_in_fp32 in param_name.split(".") for module_to_keep_in_fp32 in keep_in_fp32_modules
250
251
            ):
                param = param.to(torch.float32)
252
                set_module_kwargs["dtype"] = torch.float32
253
254
255
            # For quantizers have save weights using torch.float8_e4m3fn
            elif hf_quantizer is not None and param.dtype == getattr(torch, "float8_e4m3fn", None):
                pass
256
257
            else:
                param = param.to(dtype)
258
259
                set_module_kwargs["dtype"] = dtype

260
261
262
263
        if is_accelerate_version(">", "1.8.1"):
            set_module_kwargs["non_blocking"] = True
            set_module_kwargs["clear_cache"] = False

264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
        # For compatibility with PyTorch load_state_dict which converts state dict dtype to existing dtype in model, and which
        # uses `param.copy_(input_param)` that preserves the contiguity of the parameter in the model.
        # Reference: https://github.com/pytorch/pytorch/blob/db79ceb110f6646523019a59bbd7b838f43d4a86/torch/nn/modules/module.py#L2040C29-L2040C29
        old_param = model
        splits = param_name.split(".")
        for split in splits:
            old_param = getattr(old_param, split)

        if not isinstance(old_param, (torch.nn.Parameter, torch.Tensor)):
            old_param = None

        if old_param is not None:
            if dtype is None:
                param = param.to(old_param.dtype)

            if old_param.is_contiguous():
                param = param.contiguous()

        param_device = _determine_param_device(param_name, device_map)
283
284

        # bnb params are flattened.
285
        # gguf quants have a different shape based on the type of quantization applied
286
287
        if empty_state_dict[param_name].shape != param.shape:
            if (
Aryan's avatar
Aryan committed
288
                is_quantized
289
                and hf_quantizer.pre_quantized
290
291
292
                and hf_quantizer.check_if_quantized_param(
                    model, param, param_name, state_dict, param_device=param_device
                )
293
            ):
294
                hf_quantizer.check_quantized_param_shape(param_name, empty_state_dict[param_name], param)
Aryan's avatar
Aryan committed
295
            else:
296
297
                model_name_or_path_str = f"{model_name_or_path} " if model_name_or_path is not None else ""
                raise ValueError(
298
                    f"Cannot load {model_name_or_path_str} because {param_name} expected shape {empty_state_dict[param_name].shape}, but got {param.shape}. If you want to instead overwrite randomly initialized weights, please make sure to pass both `low_cpu_mem_usage=False` and `ignore_mismatched_sizes=True`. For more information, see also: https://github.com/huggingface/diffusers/issues/1619#issuecomment-1345604389 as an example."
299
                )
300
301
302
303
304
305
        if param_device == "disk":
            offload_index = offload_weight(param, param_name, offload_folder, offload_index)
        elif param_device == "cpu" and state_dict_index is not None:
            state_dict_index = offload_weight(param, param_name, state_dict_folder, state_dict_index)
        elif is_quantized and (
            hf_quantizer.check_if_quantized_param(model, param, param_name, state_dict, param_device=param_device)
306
        ):
307
308
309
            hf_quantizer.create_quantized_param(
                model, param, param_name, param_device, state_dict, unexpected_keys, dtype=dtype
            )
310
        else:
311
            set_module_tensor_to_device(model, param_name, param_device, value=param, **set_module_kwargs)
312

313
    return offload_index, state_dict_index
314
315


316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
def check_support_param_buffer_assignment(model_to_load, state_dict, start_prefix=""):
    """
    Checks if `model_to_load` supports param buffer assignment (such as when loading in empty weights) by first
    checking if the model explicitly disables it, then by ensuring that the state dict keys are a subset of the model's
    parameters.

    """
    if model_to_load.device.type == "meta":
        return False

    if len([key for key in state_dict if key.startswith(start_prefix)]) == 0:
        return False

    # Some models explicitly do not support param buffer assignment
    if not getattr(model_to_load, "_supports_param_buffer_assignment", True):
        logger.debug(
            f"{model_to_load.__class__.__name__} does not support param buffer assignment, loading will be slower"
        )
        return False

    # If the model does, the incoming `state_dict` and the `model_to_load` must be the same dtype
    first_key = next(iter(model_to_load.state_dict().keys()))
    if start_prefix + first_key in state_dict:
        return state_dict[start_prefix + first_key].dtype == model_to_load.state_dict()[first_key].dtype

    return False


def _load_shard_file(
    shard_file,
    model,
    model_state_dict,
    device_map=None,
    dtype=None,
    hf_quantizer=None,
    keep_in_fp32_modules=None,
    dduf_entries=None,
    loaded_keys=None,
    unexpected_keys=None,
    offload_index=None,
    offload_folder=None,
    state_dict_index=None,
    state_dict_folder=None,
    ignore_mismatched_sizes=False,
    low_cpu_mem_usage=False,
):
    state_dict = load_state_dict(shard_file, dduf_entries=dduf_entries)
    mismatched_keys = _find_mismatched_keys(
        state_dict,
        model_state_dict,
        loaded_keys,
        ignore_mismatched_sizes,
    )
    error_msgs = []
    if low_cpu_mem_usage:
        offload_index, state_dict_index = load_model_dict_into_meta(
            model,
            state_dict,
            device_map=device_map,
            dtype=dtype,
            hf_quantizer=hf_quantizer,
            keep_in_fp32_modules=keep_in_fp32_modules,
            unexpected_keys=unexpected_keys,
            offload_folder=offload_folder,
            offload_index=offload_index,
            state_dict_index=state_dict_index,
            state_dict_folder=state_dict_folder,
        )
    else:
        assign_to_params_buffers = check_support_param_buffer_assignment(model, state_dict)

        error_msgs += _load_state_dict_into_model(model, state_dict, assign_to_params_buffers)
    return offload_index, state_dict_index, mismatched_keys, error_msgs


def _load_shard_files_with_threadpool(
    shard_files,
    model,
    model_state_dict,
    device_map=None,
    dtype=None,
    hf_quantizer=None,
    keep_in_fp32_modules=None,
    dduf_entries=None,
    loaded_keys=None,
    unexpected_keys=None,
    offload_index=None,
    offload_folder=None,
    state_dict_index=None,
    state_dict_folder=None,
    ignore_mismatched_sizes=False,
    low_cpu_mem_usage=False,
):
    # Do not spawn anymore workers than you need
    num_workers = min(len(shard_files), DEFAULT_HF_PARALLEL_LOADING_WORKERS)

    logger.info(f"Loading model weights in parallel with {num_workers} workers...")

    error_msgs = []
    mismatched_keys = []

    load_one = functools.partial(
        _load_shard_file,
        model=model,
        model_state_dict=model_state_dict,
        device_map=device_map,
        dtype=dtype,
        hf_quantizer=hf_quantizer,
        keep_in_fp32_modules=keep_in_fp32_modules,
        dduf_entries=dduf_entries,
        loaded_keys=loaded_keys,
        unexpected_keys=unexpected_keys,
        offload_index=offload_index,
        offload_folder=offload_folder,
        state_dict_index=state_dict_index,
        state_dict_folder=state_dict_folder,
        ignore_mismatched_sizes=ignore_mismatched_sizes,
        low_cpu_mem_usage=low_cpu_mem_usage,
    )

    with ThreadPoolExecutor(max_workers=num_workers) as executor:
        with logging.tqdm(total=len(shard_files), desc="Loading checkpoint shards") as pbar:
            futures = [executor.submit(load_one, shard_file) for shard_file in shard_files]
            for future in as_completed(futures):
                result = future.result()
                offload_index, state_dict_index, _mismatched_keys, _error_msgs = result
                error_msgs += _error_msgs
                mismatched_keys += _mismatched_keys
                pbar.update(1)

    return offload_index, state_dict_index, mismatched_keys, error_msgs


def _find_mismatched_keys(
    state_dict,
    model_state_dict,
    loaded_keys,
    ignore_mismatched_sizes,
):
    mismatched_keys = []
    if ignore_mismatched_sizes:
        for checkpoint_key in loaded_keys:
            model_key = checkpoint_key
            # If the checkpoint is sharded, we may not have the key here.
            if checkpoint_key not in state_dict:
                continue

            if model_key in model_state_dict and state_dict[checkpoint_key].shape != model_state_dict[model_key].shape:
                mismatched_keys.append(
                    (checkpoint_key, state_dict[checkpoint_key].shape, model_state_dict[model_key].shape)
                )
                del state_dict[checkpoint_key]
    return mismatched_keys


471
472
473
def _load_state_dict_into_model(
    model_to_load, state_dict: OrderedDict, assign_to_params_buffers: bool = False
) -> List[str]:
474
475
476
477
478
479
480
    # Convert old format to new format if needed from a PyTorch state_dict
    # copy state_dict so _load_from_state_dict can modify it
    state_dict = state_dict.copy()
    error_msgs = []

    # PyTorch's `_load_from_state_dict` does not copy parameters in a module's descendants
    # so we need to apply the function recursively.
481
482
483
484
485
486
    def load(module: torch.nn.Module, prefix: str = "", assign_to_params_buffers: bool = False):
        local_metadata = {}
        local_metadata["assign_to_params_buffers"] = assign_to_params_buffers
        if assign_to_params_buffers and not is_torch_version(">=", "2.1"):
            logger.info("You need to have torch>=2.1 in order to load the model with assign_to_params_buffers=True")
        args = (state_dict, prefix, local_metadata, True, [], [], error_msgs)
487
488
489
490
        module._load_from_state_dict(*args)

        for name, child in module._modules.items():
            if child is not None:
491
                load(child, prefix + name + ".", assign_to_params_buffers)
492

493
    load(model_to_load, assign_to_params_buffers=assign_to_params_buffers)
494
495

    return error_msgs
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511


def _fetch_index_file(
    is_local,
    pretrained_model_name_or_path,
    subfolder,
    use_safetensors,
    cache_dir,
    variant,
    force_download,
    proxies,
    local_files_only,
    token,
    revision,
    user_agent,
    commit_hash,
Marc Sun's avatar
Marc Sun committed
512
    dduf_entries: Optional[Dict[str, DDUFEntry]] = None,
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
):
    if is_local:
        index_file = Path(
            pretrained_model_name_or_path,
            subfolder or "",
            _add_variant(SAFE_WEIGHTS_INDEX_NAME if use_safetensors else WEIGHTS_INDEX_NAME, variant),
        )
    else:
        index_file_in_repo = Path(
            subfolder or "",
            _add_variant(SAFE_WEIGHTS_INDEX_NAME if use_safetensors else WEIGHTS_INDEX_NAME, variant),
        ).as_posix()
        try:
            index_file = _get_model_file(
                pretrained_model_name_or_path,
                weights_name=index_file_in_repo,
                cache_dir=cache_dir,
                force_download=force_download,
                proxies=proxies,
                local_files_only=local_files_only,
                token=token,
                revision=revision,
535
                subfolder=None,
536
537
                user_agent=user_agent,
                commit_hash=commit_hash,
Marc Sun's avatar
Marc Sun committed
538
                dduf_entries=dduf_entries,
539
            )
Marc Sun's avatar
Marc Sun committed
540
541
            if not dduf_entries:
                index_file = Path(index_file)
542
543
544
545
        except (EntryNotFoundError, EnvironmentError):
            index_file = None

    return index_file
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561


def _fetch_index_file_legacy(
    is_local,
    pretrained_model_name_or_path,
    subfolder,
    use_safetensors,
    cache_dir,
    variant,
    force_download,
    proxies,
    local_files_only,
    token,
    revision,
    user_agent,
    commit_hash,
Marc Sun's avatar
Marc Sun committed
562
    dduf_entries: Optional[Dict[str, DDUFEntry]] = None,
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
):
    if is_local:
        index_file = Path(
            pretrained_model_name_or_path,
            subfolder or "",
            SAFE_WEIGHTS_INDEX_NAME if use_safetensors else WEIGHTS_INDEX_NAME,
        ).as_posix()
        splits = index_file.split(".")
        split_index = -3 if ".cache" in index_file else -2
        splits = splits[:-split_index] + [variant] + splits[-split_index:]
        index_file = ".".join(splits)
        if os.path.exists(index_file):
            deprecation_message = f"This serialization format is now deprecated to standardize the serialization format between `transformers` and `diffusers`. We recommend you to remove the existing files associated with the current variant ({variant}) and re-obtain them by running a `save_pretrained()`."
            deprecate("legacy_sharded_ckpts_with_variant", "1.0.0", deprecation_message, standard_warn=False)
            index_file = Path(index_file)
        else:
            index_file = None
    else:
        if variant is not None:
            index_file_in_repo = Path(
                subfolder or "",
                SAFE_WEIGHTS_INDEX_NAME if use_safetensors else WEIGHTS_INDEX_NAME,
            ).as_posix()
            splits = index_file_in_repo.split(".")
            split_index = -2
            splits = splits[:-split_index] + [variant] + splits[-split_index:]
            index_file_in_repo = ".".join(splits)
            try:
                index_file = _get_model_file(
                    pretrained_model_name_or_path,
                    weights_name=index_file_in_repo,
                    cache_dir=cache_dir,
                    force_download=force_download,
                    proxies=proxies,
                    local_files_only=local_files_only,
                    token=token,
                    revision=revision,
                    subfolder=None,
                    user_agent=user_agent,
                    commit_hash=commit_hash,
Marc Sun's avatar
Marc Sun committed
603
                    dduf_entries=dduf_entries,
604
605
606
607
608
609
610
611
                )
                index_file = Path(index_file)
                deprecation_message = f"This serialization format is now deprecated to standardize the serialization format between `transformers` and `diffusers`. We recommend you to remove the existing files associated with the current variant ({variant}) and re-obtain them by running a `save_pretrained()`."
                deprecate("legacy_sharded_ckpts_with_variant", "1.0.0", deprecation_message, standard_warn=False)
            except (EntryNotFoundError, EnvironmentError):
                index_file = None

    return index_file
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686


def _gguf_parse_value(_value, data_type):
    if not isinstance(data_type, list):
        data_type = [data_type]
    if len(data_type) == 1:
        data_type = data_type[0]
        array_data_type = None
    else:
        if data_type[0] != 9:
            raise ValueError("Received multiple types, therefore expected the first type to indicate an array.")
        data_type, array_data_type = data_type

    if data_type in [0, 1, 2, 3, 4, 5, 10, 11]:
        _value = int(_value[0])
    elif data_type in [6, 12]:
        _value = float(_value[0])
    elif data_type in [7]:
        _value = bool(_value[0])
    elif data_type in [8]:
        _value = array("B", list(_value)).tobytes().decode()
    elif data_type in [9]:
        _value = _gguf_parse_value(_value, array_data_type)
    return _value


def load_gguf_checkpoint(gguf_checkpoint_path, return_tensors=False):
    """
    Load a GGUF file and return a dictionary of parsed parameters containing tensors, the parsed tokenizer and config
    attributes.

    Args:
        gguf_checkpoint_path (`str`):
            The path the to GGUF file to load
        return_tensors (`bool`, defaults to `True`):
            Whether to read the tensors from the file and return them. Not doing so is faster and only loads the
            metadata in memory.
    """

    if is_gguf_available() and is_torch_available():
        import gguf
        from gguf import GGUFReader

        from ..quantizers.gguf.utils import SUPPORTED_GGUF_QUANT_TYPES, GGUFParameter
    else:
        logger.error(
            "Loading a GGUF checkpoint in PyTorch, requires both PyTorch and GGUF>=0.10.0 to be installed. Please see "
            "https://pytorch.org/ and https://github.com/ggerganov/llama.cpp/tree/master/gguf-py for installation instructions."
        )
        raise ImportError("Please install torch and gguf>=0.10.0 to load a GGUF checkpoint in PyTorch.")

    reader = GGUFReader(gguf_checkpoint_path)

    parsed_parameters = {}
    for tensor in reader.tensors:
        name = tensor.name
        quant_type = tensor.tensor_type

        # if the tensor is a torch supported dtype do not use GGUFParameter
        is_gguf_quant = quant_type not in [gguf.GGMLQuantizationType.F32, gguf.GGMLQuantizationType.F16]
        if is_gguf_quant and quant_type not in SUPPORTED_GGUF_QUANT_TYPES:
            _supported_quants_str = "\n".join([str(type) for type in SUPPORTED_GGUF_QUANT_TYPES])
            raise ValueError(
                (
                    f"{name} has a quantization type: {str(quant_type)} which is unsupported."
                    "\n\nCurrently the following quantization types are supported: \n\n"
                    f"{_supported_quants_str}"
                    "\n\nTo request support for this quantization type please open an issue here: https://github.com/huggingface/diffusers"
                )
            )

        weights = torch.from_numpy(tensor.data.copy())
        parsed_parameters[name] = GGUFParameter(weights, quant_type=quant_type) if is_gguf_quant else weights

    return parsed_parameters
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743


def _find_mismatched_keys(state_dict, model_state_dict, loaded_keys, ignore_mismatched_sizes):
    mismatched_keys = []
    if not ignore_mismatched_sizes:
        return mismatched_keys
    for checkpoint_key in loaded_keys:
        model_key = checkpoint_key
        # If the checkpoint is sharded, we may not have the key here.
        if checkpoint_key not in state_dict:
            continue

        if model_key in model_state_dict and state_dict[checkpoint_key].shape != model_state_dict[model_key].shape:
            mismatched_keys.append(
                (checkpoint_key, state_dict[checkpoint_key].shape, model_state_dict[model_key].shape)
            )
            del state_dict[checkpoint_key]
    return mismatched_keys


def _expand_device_map(device_map, param_names):
    """
    Expand a device map to return the correspondence parameter name to device.
    """
    new_device_map = {}
    for module, device in device_map.items():
        new_device_map.update(
            {p: device for p in param_names if p == module or p.startswith(f"{module}.") or module == ""}
        )
    return new_device_map


# Adapted from: https://github.com/huggingface/transformers/blob/0687d481e2c71544501ef9cb3eef795a6e79b1de/src/transformers/modeling_utils.py#L5859
def _caching_allocator_warmup(model, expanded_device_map: Dict[str, torch.device], dtype: torch.dtype) -> None:
    """
    This function warm-ups the caching allocator based on the size of the model tensors that will reside on each
    device. It allows to have one large call to Malloc, instead of recursively calling it later when loading the model,
    which is actually the loading speed bottleneck. Calling this function allows to cut the model loading time by a
    very large margin.
    """
    # Remove disk and cpu devices, and cast to proper torch.device
    accelerator_device_map = {
        param: torch.device(device)
        for param, device in expanded_device_map.items()
        if str(device) not in ["cpu", "disk"]
    }
    parameter_count = defaultdict(lambda: 0)
    for param_name, device in accelerator_device_map.items():
        try:
            param = model.get_parameter(param_name)
        except AttributeError:
            param = model.get_buffer(param_name)
        parameter_count[device] += math.prod(param.shape)

    # This will kick off the caching allocator to avoid having to Malloc afterwards
    for device, param_count in parameter_count.items():
        _ = torch.empty(param_count, dtype=dtype, device=device, requires_grad=False)