test_models_vae.py 24.2 KB
Newer Older
1
# coding=utf-8
Patrick von Platen's avatar
Patrick von Platen committed
2
# Copyright 2023 HuggingFace Inc.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import gc
import unittest

import torch
20
from parameterized import parameterized
21

22
from diffusers import AsymmetricAutoencoderKL, AutoencoderKL, AutoencoderTiny
23
from diffusers.utils import floats_tensor, load_hf_numpy, require_torch_gpu, slow, torch_all_close, torch_device
24
from diffusers.utils.import_utils import is_xformers_available
25
from diffusers.utils.testing_utils import enable_full_determinism
26

27
from .test_modeling_common import ModelTesterMixin, UNetTesterMixin
28
29


30
enable_full_determinism()
31
32


33
class AutoencoderKLTests(ModelTesterMixin, UNetTesterMixin, unittest.TestCase):
34
    model_class = AutoencoderKL
35
36
    main_input_name = "sample"
    base_precision = 1e-2
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73

    @property
    def dummy_input(self):
        batch_size = 4
        num_channels = 3
        sizes = (32, 32)

        image = floats_tensor((batch_size, num_channels) + sizes).to(torch_device)

        return {"sample": image}

    @property
    def input_shape(self):
        return (3, 32, 32)

    @property
    def output_shape(self):
        return (3, 32, 32)

    def prepare_init_args_and_inputs_for_common(self):
        init_dict = {
            "block_out_channels": [32, 64],
            "in_channels": 3,
            "out_channels": 3,
            "down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"],
            "up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"],
            "latent_channels": 4,
        }
        inputs_dict = self.dummy_input
        return init_dict, inputs_dict

    def test_forward_signature(self):
        pass

    def test_training(self):
        pass

74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
    @unittest.skipIf(torch_device == "mps", "Gradient checkpointing skipped on MPS")
    def test_gradient_checkpointing(self):
        # enable deterministic behavior for gradient checkpointing
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**init_dict)
        model.to(torch_device)

        assert not model.is_gradient_checkpointing and model.training

        out = model(**inputs_dict).sample
        # run the backwards pass on the model. For backwards pass, for simplicity purpose,
        # we won't calculate the loss and rather backprop on out.sum()
        model.zero_grad()

        labels = torch.randn_like(out)
        loss = (out - labels).mean()
        loss.backward()

        # re-instantiate the model now enabling gradient checkpointing
        model_2 = self.model_class(**init_dict)
        # clone model
        model_2.load_state_dict(model.state_dict())
        model_2.to(torch_device)
        model_2.enable_gradient_checkpointing()

        assert model_2.is_gradient_checkpointing and model_2.training

        out_2 = model_2(**inputs_dict).sample
        # run the backwards pass on the model. For backwards pass, for simplicity purpose,
        # we won't calculate the loss and rather backprop on out.sum()
        model_2.zero_grad()
        loss_2 = (out_2 - labels).mean()
        loss_2.backward()

        # compare the output and parameters gradients
        self.assertTrue((loss - loss_2).abs() < 1e-5)
        named_params = dict(model.named_parameters())
        named_params_2 = dict(model_2.named_parameters())
        for name, param in named_params.items():
            self.assertTrue(torch_all_close(param.grad.data, named_params_2[name].grad.data, atol=5e-5))

115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
    def test_from_pretrained_hub(self):
        model, loading_info = AutoencoderKL.from_pretrained("fusing/autoencoder-kl-dummy", output_loading_info=True)
        self.assertIsNotNone(model)
        self.assertEqual(len(loading_info["missing_keys"]), 0)

        model.to(torch_device)
        image = model(**self.dummy_input)

        assert image is not None, "Make sure output is not None"

    def test_output_pretrained(self):
        model = AutoencoderKL.from_pretrained("fusing/autoencoder-kl-dummy")
        model = model.to(torch_device)
        model.eval()

130
        if torch_device == "mps":
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
            generator = torch.manual_seed(0)
        else:
            generator = torch.Generator(device=torch_device).manual_seed(0)

        image = torch.randn(
            1,
            model.config.in_channels,
            model.config.sample_size,
            model.config.sample_size,
            generator=torch.manual_seed(0),
        )
        image = image.to(torch_device)
        with torch.no_grad():
            output = model(image, sample_posterior=True, generator=generator).sample

        output_slice = output[0, -1, -3:, -3:].flatten().cpu()

        # Since the VAE Gaussian prior's generator is seeded on the appropriate device,
        # the expected output slices are not the same for CPU and GPU.
        if torch_device == "mps":
            expected_output_slice = torch.tensor(
                [
                    -4.0078e-01,
                    -3.8323e-04,
                    -1.2681e-01,
                    -1.1462e-01,
                    2.0095e-01,
                    1.0893e-01,
                    -8.8247e-02,
                    -3.0361e-01,
                    -9.8644e-03,
                ]
            )
        elif torch_device == "cpu":
            expected_output_slice = torch.tensor(
                [-0.1352, 0.0878, 0.0419, -0.0818, -0.1069, 0.0688, -0.1458, -0.4446, -0.0026]
            )
        else:
            expected_output_slice = torch.tensor(
                [-0.2421, 0.4642, 0.2507, -0.0438, 0.0682, 0.3160, -0.2018, -0.0727, 0.2485]
            )

173
        self.assertTrue(torch_all_close(output_slice, expected_output_slice, rtol=1e-2))
174
175


Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
class AsymmetricAutoencoderKLTests(ModelTesterMixin, UNetTesterMixin, unittest.TestCase):
    model_class = AsymmetricAutoencoderKL
    main_input_name = "sample"
    base_precision = 1e-2

    @property
    def dummy_input(self):
        batch_size = 4
        num_channels = 3
        sizes = (32, 32)

        image = floats_tensor((batch_size, num_channels) + sizes).to(torch_device)
        mask = torch.ones((batch_size, 1) + sizes).to(torch_device)

        return {"sample": image, "mask": mask}

    @property
    def input_shape(self):
        return (3, 32, 32)

    @property
    def output_shape(self):
        return (3, 32, 32)

    def prepare_init_args_and_inputs_for_common(self):
        init_dict = {
            "in_channels": 3,
            "out_channels": 3,
            "down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"],
            "down_block_out_channels": [32, 64],
            "layers_per_down_block": 1,
            "up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"],
            "up_block_out_channels": [32, 64],
            "layers_per_up_block": 1,
            "act_fn": "silu",
            "latent_channels": 4,
            "norm_num_groups": 32,
            "sample_size": 32,
            "scaling_factor": 0.18215,
        }
        inputs_dict = self.dummy_input
        return init_dict, inputs_dict

    def test_forward_signature(self):
        pass

    def test_forward_with_norm_groups(self):
        pass


226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
class AutoencoderTinyTests(ModelTesterMixin, unittest.TestCase):
    model_class = AutoencoderTiny
    main_input_name = "sample"
    base_precision = 1e-2

    @property
    def dummy_input(self):
        batch_size = 4
        num_channels = 3
        sizes = (32, 32)

        image = floats_tensor((batch_size, num_channels) + sizes).to(torch_device)

        return {"sample": image}

    @property
    def input_shape(self):
        return (3, 32, 32)

    @property
    def output_shape(self):
        return (3, 32, 32)

    def prepare_init_args_and_inputs_for_common(self):
        init_dict = {
            "in_channels": 3,
            "out_channels": 3,
            "encoder_block_out_channels": (32, 32),
            "decoder_block_out_channels": (32, 32),
            "num_encoder_blocks": (1, 2),
            "num_decoder_blocks": (2, 1),
        }
        inputs_dict = self.dummy_input
        return init_dict, inputs_dict

    def test_outputs_equivalence(self):
        pass


@slow
class AutoencoderTinyIntegrationTests(unittest.TestCase):
    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

    def get_file_format(self, seed, shape):
        return f"gaussian_noise_s={seed}_shape={'_'.join([str(s) for s in shape])}.npy"

    def get_sd_image(self, seed=0, shape=(4, 3, 512, 512), fp16=False):
        dtype = torch.float16 if fp16 else torch.float32
        image = torch.from_numpy(load_hf_numpy(self.get_file_format(seed, shape))).to(torch_device).to(dtype)
        return image

    def get_sd_vae_model(self, model_id="hf-internal-testing/taesd-diffusers", fp16=False):
        torch_dtype = torch.float16 if fp16 else torch.float32

        model = AutoencoderTiny.from_pretrained(model_id, torch_dtype=torch_dtype)
        model.to(torch_device).eval()
        return model

    def test_stable_diffusion(self):
        model = self.get_sd_vae_model()
        image = self.get_sd_image(seed=33)

        with torch.no_grad():
            sample = model(image).sample

        assert sample.shape == image.shape

        output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu()
        expected_output_slice = torch.tensor([0.9858, 0.9262, 0.8629, 1.0974, -0.091, -0.2485, 0.0936, 0.0604])

        assert torch_all_close(output_slice, expected_output_slice, atol=3e-3)


303
304
@slow
class AutoencoderKLIntegrationTests(unittest.TestCase):
Patrick von Platen's avatar
hot fix  
Patrick von Platen committed
305
306
307
    def get_file_format(self, seed, shape):
        return f"gaussian_noise_s={seed}_shape={'_'.join([str(s) for s in shape])}.npy"

308
309
310
311
312
313
314
315
    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

    def get_sd_image(self, seed=0, shape=(4, 3, 512, 512), fp16=False):
        dtype = torch.float16 if fp16 else torch.float32
316
        image = torch.from_numpy(load_hf_numpy(self.get_file_format(seed, shape))).to(torch_device).to(dtype)
317
318
319
320
321
322
323
        return image

    def get_sd_vae_model(self, model_id="CompVis/stable-diffusion-v1-4", fp16=False):
        revision = "fp16" if fp16 else None
        torch_dtype = torch.float16 if fp16 else torch.float32

        model = AutoencoderKL.from_pretrained(
324
325
326
327
            model_id,
            subfolder="vae",
            torch_dtype=torch_dtype,
            revision=revision,
328
        )
329
        model.to(torch_device)
330
331
332
333

        return model

    def get_generator(self, seed=0):
334
        if torch_device == "mps":
335
            return torch.manual_seed(seed)
336
337
338
339
340
        return torch.Generator(device=torch_device).manual_seed(seed)

    @parameterized.expand(
        [
            # fmt: off
341
342
            [33, [-0.1603, 0.9878, -0.0495, -0.0790, -0.2709, 0.8375, -0.2060, -0.0824], [-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824]],
            [47, [-0.2376, 0.1168, 0.1332, -0.4840, -0.2508, -0.0791, -0.0493, -0.4089], [0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131]],
343
344
345
            # fmt: on
        ]
    )
346
    def test_stable_diffusion(self, seed, expected_slice, expected_slice_mps):
347
348
349
350
351
352
353
354
355
356
        model = self.get_sd_vae_model()
        image = self.get_sd_image(seed)
        generator = self.get_generator(seed)

        with torch.no_grad():
            sample = model(image, generator=generator, sample_posterior=True).sample

        assert sample.shape == image.shape

        output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu()
357
        expected_output_slice = torch.tensor(expected_slice_mps if torch_device == "mps" else expected_slice)
358

359
        assert torch_all_close(output_slice, expected_output_slice, atol=3e-3)
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382

    @parameterized.expand(
        [
            # fmt: off
            [33, [-0.0513, 0.0289, 1.3799, 0.2166, -0.2573, -0.0871, 0.5103, -0.0999]],
            [47, [-0.4128, -0.1320, -0.3704, 0.1965, -0.4116, -0.2332, -0.3340, 0.2247]],
            # fmt: on
        ]
    )
    @require_torch_gpu
    def test_stable_diffusion_fp16(self, seed, expected_slice):
        model = self.get_sd_vae_model(fp16=True)
        image = self.get_sd_image(seed, fp16=True)
        generator = self.get_generator(seed)

        with torch.no_grad():
            sample = model(image, generator=generator, sample_posterior=True).sample

        assert sample.shape == image.shape

        output_slice = sample[-1, -2:, :2, -2:].flatten().float().cpu()
        expected_output_slice = torch.tensor(expected_slice)

Patrick von Platen's avatar
Patrick von Platen committed
383
        assert torch_all_close(output_slice, expected_output_slice, atol=1e-2)
384
385
386
387

    @parameterized.expand(
        [
            # fmt: off
388
389
            [33, [-0.1609, 0.9866, -0.0487, -0.0777, -0.2716, 0.8368, -0.2055, -0.0814], [-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824]],
            [47, [-0.2377, 0.1147, 0.1333, -0.4841, -0.2506, -0.0805, -0.0491, -0.4085], [0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131]],
390
391
392
            # fmt: on
        ]
    )
393
    def test_stable_diffusion_mode(self, seed, expected_slice, expected_slice_mps):
394
395
396
397
398
399
400
401
402
        model = self.get_sd_vae_model()
        image = self.get_sd_image(seed)

        with torch.no_grad():
            sample = model(image).sample

        assert sample.shape == image.shape

        output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu()
403
        expected_output_slice = torch.tensor(expected_slice_mps if torch_device == "mps" else expected_slice)
404

405
        assert torch_all_close(output_slice, expected_output_slice, atol=3e-3)
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427

    @parameterized.expand(
        [
            # fmt: off
            [13, [-0.2051, -0.1803, -0.2311, -0.2114, -0.3292, -0.3574, -0.2953, -0.3323]],
            [37, [-0.2632, -0.2625, -0.2199, -0.2741, -0.4539, -0.4990, -0.3720, -0.4925]],
            # fmt: on
        ]
    )
    @require_torch_gpu
    def test_stable_diffusion_decode(self, seed, expected_slice):
        model = self.get_sd_vae_model()
        encoding = self.get_sd_image(seed, shape=(3, 4, 64, 64))

        with torch.no_grad():
            sample = model.decode(encoding).sample

        assert list(sample.shape) == [3, 3, 512, 512]

        output_slice = sample[-1, -2:, :2, -2:].flatten().cpu()
        expected_output_slice = torch.tensor(expected_slice)

Patrick von Platen's avatar
Patrick von Platen committed
428
        assert torch_all_close(output_slice, expected_output_slice, atol=1e-3)
429
430
431
432
433
434
435
436
437

    @parameterized.expand(
        [
            # fmt: off
            [27, [-0.0369, 0.0207, -0.0776, -0.0682, -0.1747, -0.1930, -0.1465, -0.2039]],
            [16, [-0.1628, -0.2134, -0.2747, -0.2642, -0.3774, -0.4404, -0.3687, -0.4277]],
            # fmt: on
        ]
    )
438
    @require_torch_gpu
439
440
441
442
443
444
445
446
447
448
449
450
    def test_stable_diffusion_decode_fp16(self, seed, expected_slice):
        model = self.get_sd_vae_model(fp16=True)
        encoding = self.get_sd_image(seed, shape=(3, 4, 64, 64), fp16=True)

        with torch.no_grad():
            sample = model.decode(encoding).sample

        assert list(sample.shape) == [3, 3, 512, 512]

        output_slice = sample[-1, -2:, :2, -2:].flatten().float().cpu()
        expected_output_slice = torch.tensor(expected_slice)

Patrick von Platen's avatar
Patrick von Platen committed
451
        assert torch_all_close(output_slice, expected_output_slice, atol=5e-3)
452

453
    @parameterized.expand([(13,), (16,), (27,)])
454
    @require_torch_gpu
455
    @unittest.skipIf(not is_xformers_available(), reason="xformers is not required when using PyTorch 2.0.")
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
    def test_stable_diffusion_decode_xformers_vs_2_0_fp16(self, seed):
        model = self.get_sd_vae_model(fp16=True)
        encoding = self.get_sd_image(seed, shape=(3, 4, 64, 64), fp16=True)

        with torch.no_grad():
            sample = model.decode(encoding).sample

        model.enable_xformers_memory_efficient_attention()
        with torch.no_grad():
            sample_2 = model.decode(encoding).sample

        assert list(sample.shape) == [3, 3, 512, 512]

        assert torch_all_close(sample, sample_2, atol=1e-1)

471
    @parameterized.expand([(13,), (16,), (37,)])
472
    @require_torch_gpu
473
    @unittest.skipIf(not is_xformers_available(), reason="xformers is not required when using PyTorch 2.0.")
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
    def test_stable_diffusion_decode_xformers_vs_2_0(self, seed):
        model = self.get_sd_vae_model()
        encoding = self.get_sd_image(seed, shape=(3, 4, 64, 64))

        with torch.no_grad():
            sample = model.decode(encoding).sample

        model.enable_xformers_memory_efficient_attention()
        with torch.no_grad():
            sample_2 = model.decode(encoding).sample

        assert list(sample.shape) == [3, 3, 512, 512]

        assert torch_all_close(sample, sample_2, atol=1e-2)

489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
    @parameterized.expand(
        [
            # fmt: off
            [33, [-0.3001, 0.0918, -2.6984, -3.9720, -3.2099, -5.0353, 1.7338, -0.2065, 3.4267]],
            [47, [-1.5030, -4.3871, -6.0355, -9.1157, -1.6661, -2.7853, 2.1607, -5.0823, 2.5633]],
            # fmt: on
        ]
    )
    def test_stable_diffusion_encode_sample(self, seed, expected_slice):
        model = self.get_sd_vae_model()
        image = self.get_sd_image(seed)
        generator = self.get_generator(seed)

        with torch.no_grad():
            dist = model.encode(image).latent_dist
            sample = dist.sample(generator=generator)

        assert list(sample.shape) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]]

        output_slice = sample[0, -1, -3:, -3:].flatten().cpu()
        expected_output_slice = torch.tensor(expected_slice)

511
        tolerance = 3e-3 if torch_device != "mps" else 1e-2
512
        assert torch_all_close(output_slice, expected_output_slice, atol=tolerance)
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531

    def test_stable_diffusion_model_local(self):
        model_id = "stabilityai/sd-vae-ft-mse"
        model_1 = AutoencoderKL.from_pretrained(model_id).to(torch_device)

        url = "https://huggingface.co/stabilityai/sd-vae-ft-mse-original/blob/main/vae-ft-mse-840000-ema-pruned.safetensors"
        model_2 = AutoencoderKL.from_single_file(url).to(torch_device)
        image = self.get_sd_image(33)

        with torch.no_grad():
            sample_1 = model_1(image).sample
            sample_2 = model_2(image).sample

        assert sample_1.shape == sample_2.shape

        output_slice_1 = sample_1[-1, -2:, -2:, :2].flatten().float().cpu()
        output_slice_2 = sample_2[-1, -2:, -2:, :2].flatten().float().cpu()

        assert torch_all_close(output_slice_1, output_slice_2, atol=3e-3)
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677


@slow
class AsymmetricAutoencoderKLIntegrationTests(unittest.TestCase):
    def get_file_format(self, seed, shape):
        return f"gaussian_noise_s={seed}_shape={'_'.join([str(s) for s in shape])}.npy"

    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

    def get_sd_image(self, seed=0, shape=(4, 3, 512, 512), fp16=False):
        dtype = torch.float16 if fp16 else torch.float32
        image = torch.from_numpy(load_hf_numpy(self.get_file_format(seed, shape))).to(torch_device).to(dtype)
        return image

    def get_sd_vae_model(self, model_id="cross-attention/asymmetric-autoencoder-kl-x-1-5", fp16=False):
        revision = "main"
        torch_dtype = torch.float32

        model = AsymmetricAutoencoderKL.from_pretrained(
            model_id,
            torch_dtype=torch_dtype,
            revision=revision,
        )
        model.to(torch_device).eval()

        return model

    def get_generator(self, seed=0):
        if torch_device == "mps":
            return torch.manual_seed(seed)
        return torch.Generator(device=torch_device).manual_seed(seed)

    @parameterized.expand(
        [
            # fmt: off
            [33, [-0.0344, 0.2912, 0.1687, -0.0137, -0.3462, 0.3552, -0.1337, 0.1078], [-0.1603, 0.9878, -0.0495, -0.0790, -0.2709, 0.8375, -0.2060, -0.0824]],
            [47, [0.4400, 0.0543, 0.2873, 0.2946, 0.0553, 0.0839, -0.1585, 0.2529], [-0.2376, 0.1168, 0.1332, -0.4840, -0.2508, -0.0791, -0.0493, -0.4089]],
            # fmt: on
        ]
    )
    def test_stable_diffusion(self, seed, expected_slice, expected_slice_mps):
        model = self.get_sd_vae_model()
        image = self.get_sd_image(seed)
        generator = self.get_generator(seed)

        with torch.no_grad():
            sample = model(image, generator=generator, sample_posterior=True).sample

        assert sample.shape == image.shape

        output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu()
        expected_output_slice = torch.tensor(expected_slice_mps if torch_device == "mps" else expected_slice)

        assert torch_all_close(output_slice, expected_output_slice, atol=5e-3)

    @parameterized.expand(
        [
            # fmt: off
            [33, [-0.0340, 0.2870, 0.1698, -0.0105, -0.3448, 0.3529, -0.1321, 0.1097], [-0.0344, 0.2912, 0.1687, -0.0137, -0.3462, 0.3552, -0.1337, 0.1078]],
            [47, [0.4397, 0.0550, 0.2873, 0.2946, 0.0567, 0.0855, -0.1580, 0.2531], [0.4397, 0.0550, 0.2873, 0.2946, 0.0567, 0.0855, -0.1580, 0.2531]],
            # fmt: on
        ]
    )
    def test_stable_diffusion_mode(self, seed, expected_slice, expected_slice_mps):
        model = self.get_sd_vae_model()
        image = self.get_sd_image(seed)

        with torch.no_grad():
            sample = model(image).sample

        assert sample.shape == image.shape

        output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu()
        expected_output_slice = torch.tensor(expected_slice_mps if torch_device == "mps" else expected_slice)

        assert torch_all_close(output_slice, expected_output_slice, atol=3e-3)

    @parameterized.expand(
        [
            # fmt: off
            [13, [-0.0521, -0.2939,  0.1540, -0.1855, -0.5936, -0.3138, -0.4579, -0.2275]],
            [37, [-0.1820, -0.4345, -0.0455, -0.2923, -0.8035, -0.5089, -0.4795, -0.3106]],
            # fmt: on
        ]
    )
    @require_torch_gpu
    def test_stable_diffusion_decode(self, seed, expected_slice):
        model = self.get_sd_vae_model()
        encoding = self.get_sd_image(seed, shape=(3, 4, 64, 64))

        with torch.no_grad():
            sample = model.decode(encoding).sample

        assert list(sample.shape) == [3, 3, 512, 512]

        output_slice = sample[-1, -2:, :2, -2:].flatten().cpu()
        expected_output_slice = torch.tensor(expected_slice)

        assert torch_all_close(output_slice, expected_output_slice, atol=2e-3)

    @parameterized.expand([(13,), (16,), (37,)])
    @require_torch_gpu
    @unittest.skipIf(not is_xformers_available(), reason="xformers is not required when using PyTorch 2.0.")
    def test_stable_diffusion_decode_xformers_vs_2_0(self, seed):
        model = self.get_sd_vae_model()
        encoding = self.get_sd_image(seed, shape=(3, 4, 64, 64))

        with torch.no_grad():
            sample = model.decode(encoding).sample

        model.enable_xformers_memory_efficient_attention()
        with torch.no_grad():
            sample_2 = model.decode(encoding).sample

        assert list(sample.shape) == [3, 3, 512, 512]

        assert torch_all_close(sample, sample_2, atol=5e-2)

    @parameterized.expand(
        [
            # fmt: off
            [33, [-0.3001, 0.0918, -2.6984, -3.9720, -3.2099, -5.0353, 1.7338, -0.2065, 3.4267]],
            [47, [-1.5030, -4.3871, -6.0355, -9.1157, -1.6661, -2.7853, 2.1607, -5.0823, 2.5633]],
            # fmt: on
        ]
    )
    def test_stable_diffusion_encode_sample(self, seed, expected_slice):
        model = self.get_sd_vae_model()
        image = self.get_sd_image(seed)
        generator = self.get_generator(seed)

        with torch.no_grad():
            dist = model.encode(image).latent_dist
            sample = dist.sample(generator=generator)

        assert list(sample.shape) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]]

        output_slice = sample[0, -1, -3:, -3:].flatten().cpu()
        expected_output_slice = torch.tensor(expected_slice)

        tolerance = 3e-3 if torch_device != "mps" else 1e-2
        assert torch_all_close(output_slice, expected_output_slice, atol=tolerance)